ABSTRACT

REL, Rapidly Extensible Language System, permits a variety of
languages to coexist within a single computer system. Here the term
"language" is understood to include a particular data base. New lan-
guages may be defined by constructing a new base language with its
syntax and semantics, by extending the terminology from a given base
level in order to reflect specific concepts, or by associating a given

base language with a certain data base.

REL consists of an operating environment, a language processor,
and the set of currently defined languages. The structural properties
of these languages which determine the characterization and organization
of the language processor are described. In particular, representation
and manipulation of syntax and semantics are discussed, the mechanism
of language extension is outlined, and the concept of a generator is

introduced.

I. INTRODUCTION

Language plays a twofold role. For an individual, or a group of
individuals with some common interest, it establishes a framework within
which to express the structuration of their experience and conceptuali-
zation of their enviromment. In a social organization it provides the
conventions through which these individuals or groups exchange and relate
their views. In this second role, language facilitates commuﬁication
between communities with divergent interes;s. In its first role lan-
guage supports the creative process within a given community. It becomes
highly idiosyncratic and dynamic in nature as the community, or individual

develops distinctive and specific concepts, and continuously reconciles

them with further observations of its environment.

In such a community, the computer functions as an external memory
which allows efficient and rapid presentation and organization of its
stored information according to the various concepts developed. Since
these concepts are expressed in a highly specific language, one must be
able to converse with the computer in that very language. REL, a Rapidly
Extensible Language System, is a conversational computer system designed
for these purposes [1]. REL provides a community with a base language
suitable to its own interests. As the community develops the conceptual

structure which deals most efficiently with its enviromment, it constructs

recursively from the base level a hierarchy of new terms or adjusts
them. Since the conceptual structure is determined by observations
of the environment (the "data"), so 1s the language. Language and
data thus become closely interrelated. If chosen appropriately, the
base language will remain invariant and all conceptual changes will

be reflected in its extensions.

REL is designed to support a large number of diverse groups. As
a consequence, it must be able to handle a large variety of languages.
Efficiency considerations, as well as the necessity for easy formation
and extension of a particular language suggest that a single processor
be provided which deals with all the implemented languages. In order
to determine the precise nature of the language processor we must
develop a structural description of language. This description, in
turn, will spell out the detailed organization of the language pro-
cessor. It is these questions that the present paper will concern

itself with.

2. LANGUAGES AND LANGUAGE PROCESSOR

We shall base our structural description of a language on the
formalism presented earlier by F. B, Thompson [2,3]. It postulates a
one-to-one correspondence between the syntactic and semantic aspects.

A language refers to some domain of discourse consisting of objects
-and relationships among them. One can order the objects and relation-
ships into a finite number of sets, or "semantic categories" according
to their structural properties. As a practical example, the ordering
may be with respect to representation within the computer memory.

There exist certain "transformations" mapping categories to categories;
these deal with the structural properties of the sets and apply to

any of their elements. On the syntactic level, the equivalent of
categories and transformations are the syntactic classes ("parts

of speech") and rewrite rules of the grammar, A particular composition
of rules in the grammar (a parsing tree) corresponds to a particular
composition of underlying transformations. The‘meaning of a sentence
is the effect of a given sequence of transformations on the domain of

discourse.

The language processor is designed to handle these "formal languages'.
Even though the majority of the languages in the system can be expected
to evolve from a relatively small set of base languages, the language
processor must provide for languages with diverse characteristics. Our

definition of formal language spans a large variety of grammars, ranging

from those that are easy to describe to others that are difficult to
characterize in a concise fashion. How much of this spectrum should

be covered by the language processor? In other words, how complex
should its architecture be? If we push its design towards accommo-
dating the entire spectrum, the language processor will be very ineffi-
cient in dealing with formally simple languages because it would
constantly have to treat aspects pertinent to only a few complex
languages. If we were to tailor the processor to efficient manipulation
of languages of little complexity we would limit the expressiveness which
any language within the system could attain. We chose a compromise --

a solution in which the language processor deals with those structural
properties that are common to the majority of what we consider in-
teresting languages, and which are simple to formalize in terms of the
demands on computer memory, and complexity of programs. The remainder
of this paper specifies and discusses these properties. On the other
hagd, all information regarding the present state and history of the
sentence analysis is made available to any language. Languages with
specific characteristics are thus allowed‘to perform certain steps in

the analysis, and change the status of the analysis, on their own.

The composite of syntactic rules and underlying transformations is
a "language structure'. Language is the combination of the language
structure and a particular data base with objects and relationships.
The language processor deals with a language 'only in terms of its structure
and is entirely divorced from the data. The language itself, through its

transformations, is responsible for carrying out all the manipulations

of its data.

3. ANALYSIS OF A SENTENCE

The close correspondence between the syntactic and semanticr
aspects of a language suggests a syntax-directed analysis. The
syntactic analysis of a sentence provides clues as to the semantic
transformations to be applied, their combinatioA and sequence. Thus
sentence analysis proceeds in two major stages, syntactic analysis

and semantic interpretation.

The syntactic analysis itself consists of three phases performed
in succession: (1) parsing, (2) feature tests, and (3) syntax comple-
tion. The first examines the phrase marker accumulated so far in
order to determine whether a new rule of grammar can be applied to
some portion of it. The second phase is suggested by the fact that
rich languages may include a large number of structural categories
and, consequently, a high number of grammar rules. It is often possible
to establish categories whose structural properties differ only in
minor respects, and to group them into more comprehensive sets. For
example, consider the singular and plural forms of a noun. Parts of
speech will denote such sets of categories, e.g. "noun"; a part of
speech may then be qualified by "features" (N. Chomsky [4]) according
to the specific characteristics, e.g. singular or plural. Furthermore,
elements in a given category must often by subcategorizied in terms of

their amalytical characteristics. Take as an example the precedence rules

governing the sequence of arithmetical operations on numbers. Features

can serve this purpose as well.

As ; consequence, a rule of grammar is expressed in terms of
parts of speech, and may be assigned subrules operating on features.
This offers two distinct advantages. First, the number of rules, and
with it the amount of searching necessary, is reduced considerably.
Second, many rules need not distinguish among all the categories in a
set so that the total number of grammar rules and subrules is less than
the number of rules had no features been employed. In many practical
cases, subrules assume an extremely simple form. If a feature can be
expressed as a binary choice, then for all features being mutually
independent the subrule may be formulated as "the grammar rule applies
if, for each of its parts of speech, all features in a given list hold
and all in a second list do not hold." In other words, the subrule may
be expressed in form of two bit maps per part of speech, one identifying
the features which must hold, the other specifying those which must not

hold; features not referred to in either map are ignored.

If the subrule assumes a more complicated form, the language pro-
vides an explicit program, the "syntax completion' routine, to accomplish
the analysis necessary. Such a program may also be needed to perform
aspects of the syntactic analysis not covered yy the language processor.
Indeed, each rule has its syntax completion part to determine the syntactic

portion of the result, possibly on the basis of its arguments.

A node in the phrase marker denotes either a "phrase' or a function
symbol. A phrase consists of syntactic information (part of speech and
features), and a semantic interpretation which for the time being we
assume to describe a particular element in the category denoted by the
syntax, In a string matched by a rule of grammar, the phrases constitute
the arguments of the corresponding rule while function symbols only serve
the purpose of identifying the rule. For example, in the string
N + N (N = part of speech "number") the N constitute the arguments of
the rule N— N + g}, and "+" is a function symbol. Thus syntax comple-
tion and semantic transformation are functions mapping categories to a
category, and individual objects to an object, respectively. The syntax
completion furnishes the syntactic portion of the resulting phrase, the

transformation determines its interpretation.

In many languages, the rules will be context-free, that is, of
the form a——ébl...bn. For more interesting languages, we may expect

the grammar to include general rewrite rules of the form a ...am——+ b

1 l"'bn'

Since the combination of syntax completion and semantic transformation

gives rise only to a single phrase, the language must provide an

1 This notation is referred to as "

generative'. In the remainder of
this paper the terms "left-hand side" and "right-hand side" refer to

this form.

individual pair for each a.

Sentence analysis consists of repeated applications of the four
steps: recognition of a rule (parsing), feature subrule, syntax comple-
tion, and semantic transformation. Since the language processor accepts
general rewrite rule grammars, the primary objective in parsing is to avoid
ahy redundant analyses, that is, repetitions of portions of the analysis.
This is achieved by means of a very elegant algorithm due to Martin Kay
and adapted to our purposes. Basically, parsing is single pass, right-to-
1eft2, bottom-to~top; all analyses of a sentence allowed by the grammar

are produced.

The details of the algorithm cannot be discussed here. Let us
briefly indicate that it achieves its objectives by means of dummy
nodes; the connections between these nodes carry the phrases or
function symbols. This is shown in figure 1. The analysis at any
stage is described in terms of a directed graph. The parser explores
all possible paths through the graph from a given node to its right
before advancing to the next node to the left. The result of a rule
is inserted as a new connection, or, in case of a general rewrite rule,
as a sequence of nodes and connections. If several phrase markers
develop they cannot be distinguished and are only recognized by the

fact that more than one successful analysis is observed. Likewise,

I

2 The parser organization is symmetric and could easily be changed

to left-to-right direction.

10

parsings that did not contribute to the final analyses appear in the

graph in the same way as those that did contribute.

So far we implied that syntax and semantics for a given rule are
performed simultaneously; syntactic and semantic analysis proceed "in
parallel". A rule may not only fail to apply on syntactic grounds but on
semantic grounds as well. Its arguments may not map into any object; the
path matched by the rule is meaningless. As a consequence, by simultaneousl
considering the semantic aspects the size oflthe parsing graph may be
kept considerably below what it would otherwise be, with concomitant
reduction in parsing time, On the other hand, spurious parsings may not
be recognized immediately but only after they participated in the analysis
to considerable extent. The corresponding transformations may often be
complex and time-consuming, especially when manipulating large-size
data bases. Many of these parsings are finally excluded on syntactic
grounds. Unnecessary execution of such transformations can be avoided
by postponing the semantic analysis until the syntactic analysis has
been completed; in this case syntactic and semantic analyses are per-
formed "serially". The decision as to which alternative is the appropriate
one under given circumstances is made by the language itself; it

notifies the language processor of its choice.

A statement entered into the system must be converted into a form

suitable for analysis. In turn, the result of the analysis must be

11

returned to the user in intelligible form. Most languages will wish to
treat some aspects of input and output in a specific way. For example,
pre-editing of the statement, or substitution of lexical items may be
desired prior to analysis. On output, the language may examine the
parsing graph for successful analyses, treat gtructural ambiguities
appropriately, or initiate the execution of postponed semantics. As a
consequence, i;put and output routines are part of a language, aside

from some basic services provided by the system.

Fig. 2 summarizes the basic organization of the language processor

as discussed in this section.

12
4., COMPILATION AND LANGUAGE EXTENSION

When postponing the semantic analysis, the language processor
must "compile" information during the syntactic analysis which enables it
to perform the appropriate semantic transformations in the correct sequence.
Since the syntactic analysis reflects the individual transformations, and
the sequence in which they are to be combined, the compiled information
contains a list of transformations in precisely the order in which their
corresponding rules applied. Transformations require arguments, hence

the compiled information must also contain a list of those.

A 1ist of transformations associated with a phrase marker repre-
sents that portion of it whose semantic analysis must still be performed.
In the example figure 3, this portion 1s marked by broken lines. Now
consider the phrase marker in terms of the semantic analysis alone.

By removing all broken lines and the nodes they connect to, one obtains

the present status of the semantic analysis., The remainder of the analysis
must, clearly, be performed on all those symbols which do not have an
ancestor in the tree, excluding, of course, function symbols since they

do not participate as arguments. Because transformations expect their
arguments in left-to-right order, the phrases are listed in that very

order. Figure 4a shows the compiled information for the given examplé.

13

After a step in the semantic analysis has been carried out, the
compiled information must reflect the new status of the analysis. Thus
in figﬁre 4b transformation T/ has been executed, "adding" node Ng to
the phrase marker. Correspondingly, T/ has been removed from the
information while phrases 53 and §4 have been substituted by phrase §6'
Figures 4c,d illustrate this process through the subsequent two steps.
The semantic analysis is completed when no transformation is left; the
list of arguments has been reduced to a2 single element, the result.

The arguments of a particular transformation are identified by their
total number, and their position in the list of arguments. These

specifications remain unchanged during successive steps because of

the strict right-to-left order of the analysis.

If no spurious parsings were ever found during syntactic analysis,
and the possibility of structural ambiguity could be excluded, the
language processor would have to maintain only a single compiled infor-
mation and update it for each rule which did not fail on syntactic grounds.
Since usually that is not the case, each phrase in the parsing graph
carries, in place of its interpretation, the compiled information reflect-
ing the analysis which gave rise to it and which, if executed, delivered
the actual interpretation of the phrase. Whenever a rule applies, the
resulting phrase receives a new compiled information derived from that

of each of its arguments, and the characteristics of the present rule.

14

Our discussion so far did not distinguish between grammar rules
constituting the base level of the language and those which are its
extensions. The base level, being the invariant portion of the language,
cannot be changed in the conversational mode. Its syntax completions and
transformations are computer programs which determine the structural cate-
gories as well as the "primitive" operations on them. Extensions are

recursively constructed from the base level in conversational mode.

There are two extreme positions for handling extensions, (1)
string manipulation, or (2) compilation into some basic notation, for
example the base level of the language. In the first case, a defined
string of symbols is always replaced by the string of symbols which
constitutes its definition. Redefinition of a term effectively propa-
gates to redefine all terms directly or indirectly derived from it.
However, if the hierarchy of compounded extensions is deep there is
excessive expansion of the original string with concomitant cost in
parsing time. If, on the other hand, the extension is compiled down
to the base level a redefinition cannot propagate. We have chosen a
compromise position that incorporates most of the advantages of both: the
syntactic analysis is carried out while the semantics are postponed.
Hence the semantic aspects of a new term are determined by the trans-
formations of the terms which are directly referred to in its defini-
tion, be they base level or extension terms, At the same time, this
compromise position is identical to the compilation scheme introduced

above, permitting use of this scheme for language extension as well.

15

The language processor should treat base level and extension rules
alike. Indeed, one can identify the syntax completion routine and
semantic transformation for an extemsion rule. Both are obtained by

analyzing the defining expression. For example, in the extemsion
£(x,y) ¢ x * x + &y

the syntax for the left-hand side of the new rule is given by the syntax
of the phrase dominating the expression "x * x + 4/y"; syntax completion
simply reproduces this portion., The new transformation coincides with

the compiled information for the expression.

In general, an extension rule will again be a function on some
arguments with given structural properties. In the example above, the
transformation for f(x,y) operates on any pair of objects from the
categories described by x and y. Hence x and y are entirely syntactic
in nature; they represent specific structural categories but have no
interpretation. They are the "free variables" in the definition.
Variables serve two purposes in an extension.

(1) They determine the right-hand side of the new rule. The cate~
gories they represent are described by part of speech and
features. The part of speech determines the sequence of
symbols in the rule; for example, if x and y are number
variables, the rule reads f(N,N). The fe;tutes specify the

subrules,

16

(2) In the compiled information, argument list elements which
correspond to variables have no interpretation. They receive
the interpretation on "definition expansion", that is, before
the semantics are performed on the given arguments. Therefore,
they must contain some key which relates them to the corres-
ponding argument. This kéy is provided by the variables which
may thus be comsidered as "place markers”. Suppose the position
of the argument in the rule serves as key. Then gi, §2, and Eﬂ

in figure 4a have no interpretation and are labeled by 1, 1, and

2, respectively.

Certain decisions with regard to language extension, such as
whether to reject certain definitions on the basis of their analysis,
or how to deal with structural or other ambiguities, must be left to a
language itself. Comsequently, each language includes a base level
rule which determines the result of an extension. The language pro-
cessor merely performs the compilation, ensures that the new rule is
stored in standard form, and controls subsequent definition expansion.
A language may also employ the extension mechanism if it wishes to avoid
the use of a lexicon, and instead enter the referent words identifying
objects in its universe of discourse in the form of a grammar rule. In

this case each character must be considered a function symbol.

17

5. GENERATORS

We notice that general rewrite rules and definition expansion have
a property in common. In each case a list of functions is given. Each
function is exercised in turn, and the result of each step is utilized

in a m r which d ds only on the criterion governing the list. In

"the case of a general rewrite rule the results enter the phrase marker
as a sequence of phrases, while for definition expansion they participate

in subsequent steps.

This is an instance of a phenomenon known in list-processing as
"generation” [5]. The general scheme of generation is shown in fig. 5.
A generator can be considered a relation between two sets, an ordered
set a of arguments, and a set r of results. In the course of constructing
the set r, the generator repeatedly selects, according to some internal
criteria, an element from a set of processes p, supplies it with an
ordered set i of input arguments, and receives an output set ¢ which it
may simply collect, or utilize in further actions. Two cases are of

special interest:

(1) TFor each selection j, ij

set of elements, namely the set of arguments for the generator.

= a; each process operates on the same

Further, each successive selection of a process is independent of
I

previous ones; there is a list of processes which are applied in

turn until the list is exhausted. Generators of this kind will

be termed "operator gemerators".

18

(2) There is only a single process, that is, p = {p}. For each
selection (''pulsing”), it is supplied with a set ij which is iden-
tical to a, except that one and the same element in a is substituted
on each pulsing. Again, each successive selection is independent

of previous ones. Generators of this type will be denoted as

"operand generators”,

Under this scheme, general rewrite rules become an operator gene-
rator; each '"elementary'" syntax completion/transformation pair utilizes
the arguments of the rule. Definition expansion exhibits some aspects
of an operator generator, but the first condition (ij = a) does not hold.
However, it is the only generator of interest which does not fall into

one of the two specified classes.

There is a variety of other phenomena in languages that may con-

veniently and efficiently be represented by generators:

Ambiguity. -- More complex languages, and certainly natural
languages, permit local ambiguities within a sentence; usually
these are resolved by considering a wider context within thg sentence.
It is those ambiguities that we wish to deal with; of course, this
includes the case of an ambiguous sentence. Ambiguities arise when a
grammar includes several rules with identical right-hand sides which
differ in their feature subrules, syntax completions, or semantic trans-
formations. The first two cases of ambiguity are syntactic in nature, the

third one semantic. All three are described by operator generators

19

since the same set of arguments is processed by a sequence of subrules,
syntax completions, and/or transformations. Syntactic operator ambiguities
can usually be resolved within limited contexts and on syntactic grounds.
On the other hand, semantic operator ambiguity may render the meaning of
the entire sentence ambiguous, and may be introduced deliberately in order
to compare different concepts in a variety of situations. Ambiguityvalso
arises when a transformation maps its arguments into more than one object,
thus associating various meanings with a given string. In the subsequent
analysis, such ambiguous interpretations of phrases will act as an operand
generator. On each pulsing, the transformation of an applying rule will

be provided with a new interpretation.

Numerical quantification., -~ Central to many programming languages
is the notion of a loop, often taking the form of a "do" or "for" state-
ment. A given sequence of expressions is repeatedly executed, each time
for a new value of one of its variables. Cumulative sum (£) and product

(1) are other examples of operand generators in arithmetic languages.

Linguistic quantification. —-~ In ordinary language we have such
expressions as "all" or "some". In examining the sentence "Does some
boy live in Boston?", one must consider each boy in turn until one 1is
found which satisfies the condition, or all are checked negatively.
Similarly, "what”, "how many'", "at least 3", etc. are handled by

operand generators.

20

An operand generator thus refers to aggregates of objects. The
individual objects are evaluated in the larger context of all or part of
the sentence, and the results summarized in accordance with the particular
principle characterized by the generator. Except in the case of ambiguity,
such a principle must be explicitly expressed in the language. Conse-
quently, operand generators enter the analysis through a rule of grammar.
The corresponding semantic transformations differ from the ones discussed
so far in that they result in aggregates rather than single elements
within a semantic category. However, the p;evious considerations still
hold if wé require a transformation to produce a single interpretation
for the resulting phrase. This interpretation may now be of arbitrary
complexity; in the case of a generator, it may list all alternatives, or

a method to construct them, and identify the particular generator.

As a consequence, the interpretation of a phrase also conveys
structural properties of a language to the language processor. It
may identify a single element ("data"), a generator, or compiled
information, and similarly may differentiate between the base level

and extensions.

At the time generators are encountered in an analysis there is
often insufficient context to sum up alternatives. Hence the result
of generators may again be a generator phrase. A particular generator
thus propagates through the analysis until it is in a position to

summarize the effect of the alternatives it introduced. As an exception,

21

ambiguity does not summarize but excludes individual alternatives as they
become meaningless in a given context. Among the operator generators,
general rewrite rules add sequences of phrases to the phrase marker while
syntactic ambiguity may introduce structural ambiguity. Semantic operator
ambiguity, if not resolved, propagates through the subsequent analysis

in form of an operand generator.

Detection of a generator indicates to the language processor that
the present stage of the analysis is to apply separately to each of its
alternatives, On pulsing, the generator produces a new structural
deszription of the environment to which the analysis is reapplied.
Pulsing will therefore cause the language processor to recurse at its
present stage. A separate portion of the language processor directs
pulsing, establishes the new environment, and controls recursiom.

Figure 6 shows the updated language processor organization,

A selected alternative may itself represent a generator; for
example, on definition expansion or operator ambiguity a transformation
may again consist of compiled information. Hence recursion may continue
for several levels. Moreover, several generators may occur on a given
level, for example, when several arguments of a rule are generator
phrases. By accepting one generator at a time such cases are resolved
into a sequence of recursions. Generators thus cause the language

processor to recurse to arbitrary depth.

The use of generators raises a number of intricate issues which
we cannot further pursue here. Their treatment and illustration by

examples must be reserved for future publication.

22

23

6., LANGUAGE STRUCTURES

In order to be able to analyze a sentence in a given language, the
language processor must have access to a standardized description of

the language. This description consists of two major components.

1. Grammar table. ~~ This contains the right-hand sides of all
rules of grammar, The rules are organized in the form of a "symbol
tree" in which a symbol is either a part of speech or a function symbol,
a node carrying a single symbol. A rule corresponds to a path starting
from the top; the bit maps identifying its fgature subrules are
attached to the last node in the path, The tree arrangement matches the
parsing strategy; as the parser advances or backtracks in the parsing
graph it performs identical actions in the symbol tree.

Since parsing and feature testing constitute major functions of
language processor, it is advantageous to retain the grammar table in
high-speed memory during the entire analysis of a sentence, Even if
the grammar table is or becomes too extensive, base level rules
should continue to reside in high-speed memory while extension rules may
be relegated to peripheral storage since they rarely participate in the
analysis beyond the level of the input string. In such a case, however,
storage organization must be such as to minimize the number of references

to peripheral storage.

24

2. Definitions. -~ The remainder of a rule, syntax completion

and semantic transformation, is generally too voluminous to be part of

the grammar table. Therefore, it is maintained separately on peripheral

storage, linked to the corresponding node in the gramﬁat table., Defi-
nitions are of two kinds:

(a) Base level rule. The definition, in principle, consists of the
programs for syntax completion and transformation. For rules
introducing generators into the analysis, it also includes the
pulser. Since operator generators cannot be introduced by a rule
of grammar, they are part of the language processor.,

(b) Extension rule. The analysis of the defining expression determines
for the rule both the syntax of its result and its transformation.
Entering a definition for an extension rule is not always trivial.
Since we tolerate ambiguity, accept general rewrite rules, and
permit deletion or replacement of definitions, considerable
bookkeeping may be necessary to ensure that any new meaning pro-
pagates to terms based on the rule in question. Because defini-
tions must be in standard format, the bookkeeping is a function

of the language processor.

It follows that the language processor, during sentence analysis,
requests considerable information from peripheral storage, some of it
perhaps repeatedly. This suggests page organization of memory. How-

ever, it is important that the language processor be able to deal with

25

pages explicitly in order to arrange the varfous components of a lan-

guage in an optimal fashion with regard to page transfers.

Among the temporary configurations guiding the language processor
are the parsing graph, and the syntax and interpretations of its phrases.
Since the configurations are described by 1lists, the language proceséor
demands a list-formatted work area in core memory. This area is also

used to describe the environment of generators, or control the recursion.

Manipulation of data is a concern of the language of which they
are part. Data structures may cover a wide range, from simple formats
such as single numbers to complex ones such as hierarchical file organiza-
tions or interconnected rings. If the data are transient in nature and
limited in size, they may be embedded in the list work area. In most
cases, however, they must be retained on peripheral storage. Again,
by controlling their arrangement on memory pages a language may be

able to minimize the number of page transfers.

26

7. CONCLUSIONS

Some of the notions underlying the REL language processor were
first introduced in connection with the DEACON project [2]. However,
this language processor exhibits vastly increased capabilities, espe-
cially the facility of accommodating a wide variety of languages, the
inclusion of, and emphasis on, language extension, and the treatment
of generators. A first version containing most of the described pro-
perties has been in use under the Caltech time-sharing system since
spring of 1968. Since then, it has served as the basis for the
development of a number of languages, and provided us with more insight
into their structural descriptions. This experience led to the revised
version of the language processor which constitutes the subject of
this paper. The processor is supported by a multiprogramming>operating

system geared to the needs of REL [1].

Of necessity, this article represents a rather brief summary. In
the accompanying paper on REL English, some of the topics discussed will

be illustrated by one of the more prominent applications of REL.

1}

[2]

[3]

[4]

[5]

27

REFERENCES

Thompson, F, B., Lockemann, P. C., Dostert, B. H. and Deverill,
R. S., REL: A Rapidly Extensible Language System, to appear
in Proc. 24th Natl. ACM. Conf. (1969)

Thompson, F. B., English for the computer, Proc. AFIPS
Fall Joint Comp. Conf. 29 (1966), 349-356

Thompson, F. B., Man-machine communication, in: Seminar on
Computational Linguistics, Public Health Service Publ.
No. 1716, 57-68

Chomsky, N., Aspects of the theory of syntax, The MIT
Press, 1965, 75ff.

Newell, A., et al., Information Processing Language - V
Manual, The RAND Corp., Prentice-Hall Inc., 1964

va

%f}f[i+ L

(b)

Fig. 1. Phrase marker for the statement ''3%4 + 6/3".

(a) Standard representation,
(b) representation as connected graph with nodes.

./V: part of speech for "number!.

28

29

input parser

output

feature
subrule

I

syntax
completion

postpone~
ment of se~
mantics ?

semantics

Fig. 2. Basic organization of language processor

1

Fig. 3.
arg trans
N T, 3.2
N T, 1,2
N T, 1,2
A’4

(a)
Fig. 4.

A7

P 30
-7 S~
- 1 S
- ! -~ -
As : %/
,”T\\ : /’7\\
T L Ty
x N
M , + N A
Phrase marker of a simple arithmetic statement.
Broken lines indicate reductions whose semantics
were postponed. Subscripts are used to identify
individual phrases.
arg trans arg trans arg tran
N1, 12 Ny T, 1,2 N, -
a
N, T, 1,2 N

He

(b) (c) (d)

Compiled information for fig. 3. Values supplied with
a transformation identify position and number of
corresponding arguments.

(a) Information prior to semantic ana.lysis,.
(b-d) during successive steps of the semantic analysis.

31

arguments : result
0y, ————————.y generator . 4
input output
1 o
processes
Fig. 5. Generator scheme
input parser output
B 3 L
feature
subrule
syntax
completion
generator
control compilation
desired?
semantics

Fieg.

Oreganization of language processor

