Applications of.a Computer System

for Transformational Grammar*

by

Joyce Friedman
The University of Michigan
Ann Arbor, Michigan, U.S.A.

Writing a transformational grammar for even a fragment of a
natural language is a task of a high order of complexity. Not only
must the individual rules of the grammar perform as intended in
isolation, but the rules must work correctly together in order to
produce the desired results, The details of grammar-writing are
likely to be regarded as secondary by the linguist, who is most
concerned with what is in the language and how it is generated, and
would generally prefer to pay less attention to formal and notational
detail. It is thus natural to ask if a computer can be used to assist
the linguist in developing a grammar. The model is formal; there
are a large number of details to be worked out; the rules interact
with one another in ways which may not be foreseen. Most of the
errors which occur in writing grammars can be corrected if only they
are brought to the at_tention of the linguist. Those which cannot
be so corrected should be of even greater interest to the writer of

the grammar.

*

This research was supported in part by the United States Air
Force Electronic Systems Division under Contract F19628-C-0035, and
by the National Science Foundation under Grant GS-2271.

A computer system which attempts to provide this assistance
to the writer of a grammar is now available at both the University
of Michigan and Stanford University.l The system is written in
Fortran IV and runs on the IBM 360/67 computer.

The linguistic model embodied by the system is the theory of
transformational grammar, roughly as described by Chomsky in Aspects
of the Theory of Syntax.[2] The programs represent the linguistic
metatheory. Grammars are accepted by the pi‘ograms as data. The
program handles all three components of a transformational grammar:
phrase structure, lexicon, and transformations. It carries out the
full process of sentence generation, including phrase structure
generation, lexical insertion, and transformation.

The .technical details of the particular model of transformational
grammar have been described elsewhere [3]. This presentation will
emphasize the ways in which the progra.ms. can be used, and will
describe experiences in using them both in grammar writing and in

teaching.

An example of a grammar

The notation for grammars and the use of the programs will not
be described formally here, but will be illustrated by an extended
example, The example consists of a small grammar and a sample deri-

vation. Each part will be presented twice, first as initially

1This system was designed and programmed by the author, with

T. H. Bredt, R. W. Doran, T. S. Martner, and B.W. Pollack.

prepared by linguists at the University of Montreal [1], and then
as redone in the computer system. The grammar has been greatly
reduced by selecting only those transformations which were used in
the derivation of the sample sentence selected.

In Figures 1 and 2 the phrase-structure rules are given in
parallel, first as written by the linguists, secondly as prepared
for input to the computer system. The computer form can be seen to
be a linearization of the usual form, with both parentheses and
curly brackets represented by parentheses, No ambiguity arises from
this since the presence of a comma distinguishes the choices from
the options. The only other differences are minor: the symbol
" A" has been replaced by "DELTA", the sentence symbol "P" Has been
translated into English "S", and accents have been omitted., None of
these changes is of any consequence.

Figure 3 is a listing of a-partial lexicon. This component is
present only implicitly in the original French grammar, where the
complex symbols are indicated in the base trees. The lexicon specifies
first the features which are used in the grammar. The list of cate-
gory features also determines the order in which lexical insertion
takes place. The inherent features include some which are included
in complex symbols in the lexicon, and others which are added only
by transformations. Contextual features are défined in the lexicon
by giving a structural analysis of the context in which the item can
appear. -The location in which the word may be inserted is indicated
by an underline symbol. Thus, common nouns are marked +NCOM, which

means that they can occur only following a determiner (DET) in a

ADV
INST

sV

CoP

SN

COMPL

DET

DEF

DEM

bbbl

!

¢

Figure 1

Phrase Structure Rules, from [1]

(PRE) SN

(InT)

ne pas

(VEG)

sv (ADV

SA

par {SN

A
v (COMPL)

COP ADJ

‘est

(sn)
i(DET)

=]
.t

le

ce(i

SING
PLUR

INST

|

(COMPL)

i
N

SN

{ } (sW)
P

DEF
({ ?) (cARD)
quel

ci

13

ci
la

})}

1)

PRED

#

PRE
NEW

"MONTREAL FRENCH™
PHRASESTRUCTURE
S = # (PRE) SN PRED # .

CINT) C(NEG).
RE PAS,.

PRED = (SV (ADVINS) ,SA).
ADVINS

SV =
SA =
cop

-

= PAR (SN,DELTA),

V (COMPL) .
COP ADu (COMPL).

BT.

5N = ((SN) S, (DET) NJ.
COMPL = (SN,3) (SM).

DET

((DEF,QUEL)) (CARD),

DEF ‘= (ANAPA,DEM),
ANAPH = (CE ((CI,LA)),LE),

DEM

CARD
SING
PLUR

n e n

CE ((CI,LA}).

(SING,PLUR).
UN.
(PROCARD, QUELQUES, DEUX, TROIS) .

PROCARD = NOMBRE DE.
SENDPSG

Figure 2

Phrase Structure Rules

Figure 3

X3IaN3IS °
\9QUd~- ¥NINd- LANd- J0I+\1ST
‘\WONIYd+ ray+\170r
‘\rans+ LQU+\INIYSSIOAN
‘\ooud- MOALNA- LT¥d- A+\IUINODNIY IqUy9IY
\13¥d- 50¥d- YNLQA+ A+\ 314300V
\NSY+ A+\LTIYTd
, 17UY4
\ \PNSQT+ A+\ISO
\INTZA+ PACGT+ AHNITV]
‘N A+ \ IN¥3Ig
. ISNVA LI0MD HI¥NOS IA3RT
\WOON - ¥NTd- W3d- SYAMOML+ S¥Id+ TOI+ N+NTOL
.. \WOON- ¥NTd- W3- SYIJOML- S¥IJd+ IOW+ N+\TOW
J\WOON+ ¥NTd- W2~ SYILOML- SHId- H+\ HNZSSIIOMd
\WOON+ ¥NTd=- W34+ WNH+ S¥IJOML- S¥Id- N+\ 371114
o \WOON+ ¥NTd- W34+ SUIJOML- S¥Id- M4\ TUATT
(\KOON=- ¥NTd- WAL+ SYIJOML- SHIL- N4\ INIWITFD
\UOON - ¥NTd- WAL~ SHIJOMEI- SHIJ- N+\ FT1INv93q
31839V NYIL NvIANHL
, - SATHING
* <2 03 1 IUIHM "<<<y N NSZ 2>/S NSI>TdWOD T>/AS> = rgoal
. _ <2 93 1 IYIHM
<#<<< L A NSZ %>/S T>AS>GIUd NS} (I¥d) #>/S> = rnsdl
<<” 130>NS> = WOON
TYNLXIINOGD
* 3 JISSUd 134d 908d HNINA NOHd
WONI¥d PENS ¥ ANIZA INDHSYD 4NT
NSY TOL NIWON TOW WNH
¥NTd W34 SYIJOML "eMId INIMIHUNI
*PAY N d0OD A ANO0DHIYD
T NODIXET

Lexicon

noun phrase (SN).
) Aftei the preliminary definitions , the lexicon contains a set
of-lexica.l entries. In a computer derivation of a sentence, lexical
items will be selected at random from those of the appropriate cate-
gory which match inherernt. features already in the tree and have con-
textual features. satisfied by the tree.

Figures 4 ang 5 are presentations of the transformational

component. In the computer version a transformation consists of

three parts, identification, structural description (SD), and

structural change (8C). The identification contains the number and
name of the transformation, Plus information to be used in deter-
mining when it is to be invoked. This includes a group number
repetition parameters, keywords, etc. The structural description is
similar to the linguistic form, but allows also subanalysis to any
dépth. Representation of the structural change by a sequence of
elementary operations removes any possible ambiéuity from thé state-
ment, In addition to adjunctions and substitutions, there are also
elementary operations which alter complex symbols. \+PASSIF\ MERGEF
4 adds a new feature specification to the complex symbol of term 4.
\ *FEM *PERS\ MOVEF 4 7 will change those two featureé of term 7 so
that they are the same as for term 4.

It may be noted that the transformation I;OWESTS and the control
program of Figure 5 have no correspondents in Figure 4. They are
needed because the program I"equires that the traffic rules be given

explicitly as part of a gremmar., LOWESTS selects the lowest sentence

[T7] POST -SUJ OBL

(PRE) ©SN

93]
= = oo

1 2 3 5 6 7 8 =)
1 2 8 5 6 T 3 9
[T9] ANTEP-OEL. OBL

. (PRE) A V SN (SN) par+sn

1 2 3 4 5 6 7 8 =)
1 2 5 4 { +passif g6 7 8
[T13] AC-PRED OBL
(PRE) [(DET) & fem (13)]SN (cop) {V]
o pers ADJ
d2 pers
dplur
N
1 2 3 4 5 6 7
Z #
8 9 =)
1 2 3 4 5 6 74 dfem
. dpers
o2 pers
o plur
8 9
COND: 7 ¢ dfem
& pers
~ . o 2 pers
A plur
[T33] ELLIPSE ## ' OBL
X
1 2 3 =>
2 ¢

Figure 4
Transformations, from [1]

[152]

M-PASS,

X {+passifd

v
1 2
l+est 2(+€
conD: 24 +6
TR-TRAITS-PASS
X est
1 2
1 2 < dprogr
< dfutur
{dpreterit
{dpers
{d2 pers
{afem
{oplur
{ainf
COND: Q{clprog
dfutur
dpreterit

OBL

OBL

+passif v
{progr
o futur
dpreterit
dpers
o2 pers
dinf
dfem
o plur

Figure 4 (Contimued)

10

Figure 5

Transformations

NINI*

Y¥LANIS CTI f3IUL f<I> 0Q (1)SLISIKOT NI d9D
JUVESONd TO¥LINOD
. *2 ¢ 43N0W
¥NTd* WId* SUIJOML* SUTd* II¥d*x ¥NINd* 90Yd*\ 0§
*% \4I1SSYd+\A§ 1€32 % dS
.. (A 1S3) 20WY YdUINL 3§ SNYYL
*2 3SI4Y 3 ‘2 439¥IW \I+\ ‘2 3537V 1S3 23S
* 4 \ATSSYd+\ A 2 % 4S5
* 20yy TT SSvdl 16 SNWEL
LSNOTIVWYCASNYY¥L OITOASLSOd,

*¢ 2syy¥3 ‘1 Isy¥l ag
*# ¢ %L # 1 QS
*38JIT13 €€ SHYML
"LV AIA0W \¥NTd* SHIJOMI* SHId* WIA*\ OS
*# L (PAYIAY L (d0D) <(%)
Ny (13A)>/NS (F¥d) # @S
*00¥Y QINdIY €1 Shvdl
‘v 439YIN \JISSYd+\ ‘¢ FSans ¢ as
*# NS M¥d (NS) NS G A ¥ YIT3d € (IHd) # 49
*(uyd YIT37) I90LIINY 6 SNYML
‘8 78NS ¢ ‘¢ SI¥ay 8 23S
*# Y1130 8 ¥Yd (MS) NS A NS § (J¥d) # qsS
*(YI13Q ¥Y¥d) T PNSLSOd L SHvyl
LSNOTLIYWEOASNYYL QT7I0AD,
*# W0Q 1 AUAHA ‘<% <# % #>8 Y>>/ S 1 (S
*(#) I11 SISIMOT 0 SNY¥I
SNOTIVMYHOASHYYEL

11

aTTnen op Jed uIsq 389 NBSDPNIL

-
Z - .
= neapniy,
o f
[}
mc o ¢ antd-»>
g & < wdg->
BB <sxadz-> - -
& < saad-> auxaq
& < N¥>
N .
_ a1 T0eD mv.._
NS
[< A+> < aatd->
~ - < wusI->
v xed TIHOD A <sxadz->
<sxad~->
<
. L N+2 -
e \?.4&/\.\>m)
addda _ NS

12 -

which contains boundaries. The control program specifies that the
cyclic transformations are to be cari'ied out for this lowest
sentence. After a cycle the boundaries are erased and the next
highest sentence becomes lowest. The postcyclic transformations will
then be carried out. v

A particular tree, created as an example in [1], is presented
in Figures 6 and 7. Figure 7 contains two alternative versions, a
fixed-field format and a bracketted free-field form. Either of these
is acceptable to the programs. ‘The sentence at the top of the figure
is merely a title; it will not be processed by the program. The
lexical items "Trudeau”, "deGaulle", and "berne" have not been in-
cluded, although they could have been. If these items had been
entered in the tree, the lexical insertion process would merely have
added the appropriate complex symbols for them.

Figure 8 gives the derivation as presented in [1]. Figure 9 is

the final part of the listing of the computer output.

The use of the programs

The system was designed to be used by a linguist who is in the
process of writing a. transformational grammar. As lexical items or
transformations are added they can be tested in the context of all
previous rules and their effect can be examined.

The easiest errors to detect and repair ‘in a grammar are

syntactic errors. As a grammar is read in by the program a check is

made for formal correctness. For each error a comment is produced

which attempts to explain what is wrong. The program then continues

13

Figure 7

Alternative forms of Base Tree

* <# <<yl73Q Yvd> SNINQY<<<l> NS> 1dW0D <A> AS> (3Yd <N> NS #>S

v173da
YYLSNIAQY
N NS TdW00 .
A AS a3avd
N NS
s
*377NYHIC ¥YL INYIAR 1S3 NYIANYL

14

Figure 8

Derivation, from [1]

d
[

d

{

d N

{ [eTTrED °p) aed @ hmc

d
{

aayd

{ [oTTned op] aed ﬁocumng_
e >

alyd

[

N

[a110eD °p)

N

N

[a11ned °P]

A

aed

xed

<2

R
xaq 389 [neapnay}).
+ >
SS¥d-W =TS

sandIIOA0-150d

A - N
auxaq neapniy,]
¢saadz-» <sxadz-~>
¢ saad-» <sxad-»
¢ W3~ < wdF~>
<angd-> ¢antd-»
QIJ-OV -£1
A N

N

[nespnay)]
ssed+

£40~-d3INY ~6

A
[neapnay)

[ouxeq)] V)
rns-1sod ~L
FNDITOXD

NOTLVIRIOASNVYY,

15

Figure 9

jon

ivat

Computer Der

ANINITIAS ¥Yd 3 3CHY9IY 1¢3 I1SI0TY

\<<"L12G>KS>~ HNTd- WA+ SYIJOML-
\3+ JISSYd+ 13Yd— 90¥d- ¥NINd- ¥NTd- WAL~ SYIJOMI-

Syiad-
cHid-

\13Y¥d= 90¥d~ UNINS- ¥NTd- WIA- SHIJOMI- S¥Id-\

\<<T130>NS>- ¥NTd- WAL~ SYTJOML-~ SYAd- N+\

ININIT30 97 N ¥ NS
¥yd

] 3

Jq¥Y93Y o1 A

1s3

J1S331Y

¢
2l
02
L
61
Ll

A¥Y AITTddY IAYH HOTHM

SNIAQY 11

AS 9
N Ol

Yd¥I¥L
SSY i
1841113
a3yday
1043 LNY
rNSLSod
S1S3n01

a3l¥d ¢
NS 6
NTYld

Z e N TNOT

[72]

N+\
Ny 3aeN
A\
AL 30N
1S3 61 390N
N o1 3qOH
s 1
Ag Qyi¥ 33I¥L
OTLVW¥OASNYHL

AAAAAAANAXAAMAAAANANANAA

AAAAAAAARA

16

to read in the rest of the grammar, recovering as best it can from
the error. In most cases a single error will cause a small part of
the grammar to be xjead badly, but the rest of the grammar will be
read in and used in whatever tests were requested. An effort was
made to make the error comments as clear ;a.nd explicit as possible,
and -to make the program continue despite input errors.

Deeper errors arise when a grammar is syntactically correct,
but does not correctly describe the language of which it purports to
be a grammar. These errors of intent cannot be detected directly by
the program, since it has no standard of comparison. The program
attempts to provide enough feedback to the linguist so that he will
be able to detect and investigate the errors.,

The information produced by the program consists of derivations
which may be partially controlled by the user. Since random deriva-
tions have been found to be of rélatively little interest, the system
allows the user to control the sentences to be generated ‘so that
they are relevant to his current problem. (The device used for this
purpose has been described in [#].) It is only in the sense of
providing feedback to the user that the system can be called a
Ygrammar tester”; it does not directly seek out errors in a grammar,
nor does it evaluate the grammar.

For a standard run of the system the inputs are a grammar, a

!
$MAIN card, and some _trees. The grammar consists of one or more of

phrase structure, lexicon, and transformations. The $MAIN card is

a specification of the type of run to be made. The system must be

told (1) what type of input trees to expect:

TRIN, for fixed-field tree
FTRIN, for free-field bracketted tree

(2) whether to generate a tree around a skeletal input or whether it

is only necessary to insert lexical items:

GEN, to generate a tree and insert lexical items

LEX, to insert lexical items
and (3) whether or not transformations are to be applied:
TRAN, if transformations are to be invoked.

The general form of the $MAIN card can be represented as

TRIN GEN
$MATN { (n) { }) (TRAN) .
FTRIN 1EX) /

The integer n specifies the number of time each input tree is to be
used.
An an example,
$MATN TRIN GEN TRAN .
specifies a run in which a skeletal tree is read, a full tree is
generated including lexical items, and the transformations are
applied.

The specification
$MAIN TRIN 5 LEX |TRAN .

might be used in testing a lexicon and transformations against a

fixed base tree. The tree will be read and five cases of lexical

17

18

insertion plus transformation will be carried out.

$MATN TRIN 4 LEX .
would do four examples of lexical insertion for each input.
After the process is completed for one input, another input is
read and the cycle repeats. A run terminates when there are no more
ihpﬁts.

Computer experiments in transformational grammar

The system has been in use since February 1968, although not
fully complete at that time. The first experiments were carried out
by the designers of the system, using grammars based on material in
the linguistic literature. This was done to provide test material
for the programs, but, more importantly, to help ensure that the
notational conventions would be adequate. A fragment of grammar
from Chomsky's Aspects was used to test ideas and programs for
lexical insertion. The IBM Core Grammar of Rosenbaum and Lochak
[6] was used in developing and testing the transformational component.
Both of these projects led to valuable teaching materials, as we
shall discuss later.

Aspects and Core provided us with separate examples of lexicon
and transformations. There was at first no single source which con-
fained both. A relatively formal grammar was needed, even though a
final translation into the notation of the system would still of

course be necessary. FElizabeth Closs Traugott's Deep and surface

structure in Alfredian Prose [7] appeared at about that time and

was the first grammar which was formalized in the notation after the

fact. Considerable effort had gone into designing the notation; we
were anxious to see if it would now seem natural for a grammar which
was nevw to us. Alfred was thus the first real test for the system.
As it turned out there were a few difficulties which arose because the
notation had not been explained clearly enough, but the results of the
run were also revealing about the grammar.

One general effect which was noticed in these first few cases
had continued to be striking: the need for complete precision in
the statement of a grammar forces the linguist to consider problems
vwhich are important, but of which he would otherwise be unaware.

Also during the spring of 1969 Barbara Hall Partee made two
sets of runs with preliminary versions of a grammar of English being
developed by the U.C.L.A. Air Force English Syntax Project. This
grammar presented another kind of challenge to the system, because
it was not based directly on the Aspects model, but incorporated some
recent ideas of Fillmore. As before, these runs assisted in cleaning
up the programs but were also of interest to the linguist. The major
advantages from the linguistic point of view seem to have been, first,
that the notational system of the computer model provided a framework
in which grammars could be stated, and second, that the computer runs
made it easier to detect certain errors in the grammars. In the main,
these errors were not particularly subtle, and could have been caught
by working over the grammar carefully.

The program was also used by L. Klevansky, who wrote a grammar
of Swahili for the dual purposes of testing the programs and learning

the language.

20

These early experiments are described in a report [5] which
gives the grammars as well aé a detailed discussion of the results
of the computer runs.

The form of the French grammar used in the extended‘example
above is based on the form of the Core grammar; it was therefore
easily translated into the notation of the system. Shortly after
the grammar was received, a large part of it was running on the
computer. Minor errors in the grammar have been found and corrected;
it will now be available to students as another example of a trans-
formational grammar.

The next experiment planned using the system is a project
proposed by Susumu Nagara and Donald Smith at the University of
Michigaﬁ, who plan to use the system to aid in writing a grammar of

Japanese.

Modifications to grammars based on computer runs

In almost all cases the grammars used with the system have
been sufficiently complete for at least informal distribution. The
programs were really designed to make it easier to write grammars,
not to test completed grammars. Nonetheless, on the basis of computer
runs, certain types of changes have been found to be needed in the
grammars. The comments which follow are based on all the grammars;

they do not all apply to any one of them.

Trivial corrections

The most common errors are typographical errors in transcription

of the grammar. These are not errors in the grammar itself; having

to deal with them is one of the prices of using the computer. In
géneral, these can be caught ;ﬂith relative ease.

More than one grammar has had simple errors with respect to
repetition of a transformation. Number agreement transformations
are written so that they produce CAT S S S ... where CAT S is wanted.
(The grammar as written calls for an infinite sequenée of S's to be
added. The program, more cautious, adds ten S8's, then complains and
goes on to the next transformation.)

Transformations are often stated so that they fail to apply in
all cases where it is intended they apply. For example, the
structural description of PASSIVE as
SD # (PRE) 3NP AUX 5V (PREP) 7NP % PREP 10P % # ,

WHERE 3E 7.

.fails to take into account some additional parts of the VP, The
correction to
SD # (PRE) 3NP AUX (HAVE EN)(BE ING) 5V (PREP) 7NP
% PREP 10P % #, WHERE 3 EQ 7.
will allow PASSIVE to work in the additional cases. Similarly, a
NOMI NAL-AGREEMENT tra.nsforma.tion vhich marks subjects as +NOMIN must
apply not only to pronouns which precede verbs but also to those which
precede copulas. Thus the structural description
SD # % 3(PRON,REL) V % # .
must be replaced by

sD # % 3(PRON,REL) (V,COP) % # ..

21

22

Interrelatedness of transformations

A slightly more interesting set of problems found in the
computer runs are those which arise through the interrelatedness of
two or more transformations. For example, in one of the grammars
there were both WH-questions and TAG-guestions. It was found that

the TAG transformations was (optionally) applicable to any question,

so that for example

TOM HAS PREFER E{N WHAT GIRL HAS TOM NOT
was produced. This error was easily repaired once it was detected.
On the other hand, a similar problem which was not easily
fixed arose withlanother transformation which was marked optional,
Testing showed that for certain base trees the result was bad if the
trapsformation did not apply; however, when the transformation was
tem;ora.rily changed to obligatory, the grammar then failed to produce
some intended sentences. The proper correction to the grammar would
have required specification of the contexts in which the transforma-

tion was obligatory.

Incompleteness of grammars

Formal grammars so far have each attempted to describe some
subset of a language. In computer testing many problems outside
the scope of the grammar are evident. If, for example, a grammar
does not treat prepositions seriously, then once this becomes apparent,
!

the computer runs need to be designed to avoid prepositions.

Deep structure problems

Two of the grammars which have been studied suffer problems

with the WH-morpheme when it occurs in non-sentences and not as a
relative marker. Thus, for example, sentences such as

WHAT BLAME MAY NT BE BE ING
and

WHICH THING MUST HAVE BE EN APPROVE ING OF

WHAT TABIE
‘a.re in fact even worse than they appear, because they are not
questions, Although this problem has no simple solution in the
current framework, the imputs to the program can be controlled to
avoid generating sentences of this form.

Inadequacies in the linguistic model

An interesting change to the system was suggested by the
attempt to formalize the Core grammar. In both the WH-attraction
and the Question-transformations the structural description contains
a two-part choice between a PREP NP pair and simply an NP. This is
of the form:

% (PREP NP, NP) %
where % is a variasble. Any structure which satisfies
the first part of the choice will also satisfy the second, and any
analysis algorithm must have some order of search which will either
always select PREP NP or always select NP only. .But the intent is
that there should be a genuine choice, so that the grammar produces
both

ABOUT WHAT DID JOHN SFEAK

and

23

WHAT DID JOHN SPEAK ABOUT

The solution which was found for the problen.x was to add an additional
value (AAC) for the repetition parameter for a transformation.

If a transformation is marked AAC, all possible analyses will
be found, but only one of them, selected at random, will be used as
the basis for structural change. This seemed the appropriate way to
solve the problem for the Core grammar, and it turned out also to
solve a slightly different repetition problem in the grammar of Al-
fredian prose. Notice that this is really an observation about the
form of grammars, rather than about a particular grammar. Yet it
arose by consideration of particular examples.

Surface structure

The surface structure associated with a sentence derivation is
much easier to study if it can be produced automatically. In several
cases it has been apparent from the information provided by the compﬁter
runs that revisions in the grammar were needed if the surface structure
is to be at all reasonasble. This is a case where the computer runs are
certainly not necessary, but where they reduce the tediousness of
studying the problem.

In summary, it seems to me that main value in computer testing
of a completed grammar is that the need for a precise statement
brings to the consideration of the linguist p'roblems which are other-
wise below the surface. These problems may be in the grammar itself
or they may be in the linguistic model itself. For a grammaer in

process of being written the greatest advantage is in allowing rules

25

to be checked as they are added, and in bringing out the interaction

between rules.

Instructional use of the system

The system has now been used by Sziliard Szabo in teaching

general linguistics at the University of San Francisco, by Michael

O'Malley in a course in natural language structure at the University

of Michigan, and by the author in courses in computational linggstics

at Stanford and Michigan.

The method of use is to make availsble to the students a file
of one or more grammars to be used as examples and as bases for
modifications. The fragments from Aspects and the IEM Core grammar
have been most useful, although small grammar written for this purpose
have also been used. The students are then asked to meke modifications
and additions to the grammars.

For graduate students, a reasonable exercise for a term paper
is to read a current journal article on transformational grammar, and
then show how the results can be incorporated into the basic grammar,
or show why they cannot be. The papers chosen by the students have
generally been ones in which transformations are actually given.

This project has been very successful as an introduction to trans-
formational grammar for computer science students.

Other students have chosen simply to use the computer to obtain
fully developed examples of derivations illustrating aspects of
grammar in which they are interested.

These experiences have confirmed our belief that specific

26

examples presented by the computer, and the feedback provided when
a student modifies a grammar, are valuable in enabling the -udent

to understand the notion of transformational grammar.

(1]

(2]

[7]

References

Colmerauer, C., M. Courval, M, Poirier, and Antonio A. M. Querido.

27

Grammeire- I, Description syntaxique d'un sous-ensemble du francais,

Universite de Montreal, (March, 1969).

Chomsky, N. Aspects of the Theory of Syntax., M.I.T. Press,

Cambridge, Massachusetts (1965).

Friedman, Joyce. A computer system for transformational grammar.

Comm. ACM (to appear).

Friedman, Joyce. Directed random generation of sentences. Comm.

ACM, 12, pp. 40-46.

Friedman, Joyce. (Ed.) Computer Experiments in Transformational

Grammar, CS-108, Computer Science Dept., Stanford University,
(August, 1968).

Rosenbaum, R., and Lochak, D. The IBM core grammar of English.

In Lieberman, D. (Ed.) Specification and utilization of a

transformational grammar. AFCRL-66-270 (1966).

Traugott, Elizabeth C. Deep and surface structure in Alfredian

prose. Mimeographed. PEGS Paper #Abh (August, 1967).

