
Applications of~a Com~uter System

for Transformational Grammar*

by

Joyce Friedman
The University of Michigan
Ann Arbor, Michigan, U.S.A.

Writing a transformational grammar for even a fragment of a

natural language is a task of a high order of complexity. Not only

must the individual rules of the grammar perform as intended in

isolation, but the rules must work correctly together in order to

pro~nce the desired results. The details of grammar-writing are

likely to be regarded as secondary by the linguist, who is most

concerned with what is in the language and how it is generated, and

would generally prefer to pay less attention to formal and notational

detail. It is thus natural to ask if a computer can be used to assist

the linguist in developing a grammar. The model is formal; there

are a large number of details to be worked out; the rules interact

with one another in ways which may not be foreseen. Most of the

errors which occur in writing grammars can be corrected if only they

are brought to the attention of the linguist. Those which cannot

be so corrected should be of even greater interest to the writer of

the grsmmar.

This research was supported in part by the United States Air
Force Electronic Systems Division under Contract F19628-C-00353 and
by the National Science Foundation under Grant GS-2271.

A computer system which attempts to provide this assistance

to the writer of a grammar is now available at both the University

1
of Michigan and Stanford University. The system is written in

Fortran IV and runs on the II~ 360/67 computer.

The linguistic model embodied by the system is the theory of

transformational grammar, roughly as described by Chomsky in

of the Theory of Syntax. [2] The programs represent the linguistic

metatheory. Grammars are accepted by the programs as data. The

program handles all three components of a transformational grammar:

phrase structure, lexicon, and transformations. It carries out the

full process of sentence generationj including phrase structure

generation, lexical insertion, and transformation.

The technical details of the particular model of transformational

grammar have been described elsewhere [3]. This presentation will

emphasize the ways in which the programs can be used, and will

describe experiences in using them both in grammar writing and in

teaching.

An example of a grammar

The notation for grammars and the use of the programs will not

be described formally here, but will be illustrated by an extended

example. The example consists of a small grarmnar and a sample deri-

vation. Each part will be presented twice, first as initially

iThis system was designed and programmed by the author 3 with

T. H. Bredt, E. W. Doran~ T. S. Martner, and B.W. Pollack.

prepared by linguists at the University of Montreal [i], and then

as redone in the computer system. The grammar has been greatly

reduced by selecting only those transformations which were used in

the derivation of the sample sentence selected.

In Figures i and 2 the phrase-structure rules are given in

parallel, first as written by the linguists, secondly as prepared

for input to the computer system. The computer form can be seen to

be a linearization of the usual form, with both parentheses and

curly brackets represented by parentheses. No ambiguity arises from

this since the presence of a comma distinguishes the choices from

the options. The only other differences are minor: the symbol

"~" has been replaced by "DELTA", the sentence symbol "P" has been

translated into English "S", and accents have been omitted. None of

these changes is of any consequence.

Figure 5 is a listing of a-partial lexicon. This component is

present only implicitly in the original French gran~nar, where the

complex symbols are indicated in the base trees. The lexicon specifies

first the features which are used in the grammar. The list of cate-

gory features also determines the order in which lexical insertion

takes place. The inherent features include some which are included

in complex symbol s in the lexicon, and others which are added only

by transformations. Contextual features are defined in the lexicon

by giving a structural analysis of the context in which the item can

appear. The location in which the word may be inserted is indicated

by an underline symbol. Thus, common nouns are marked +NCOM, which

means that they can occur only following a determiner (DET) in a

P

PRE

NEG

PRED

ADV
INST

SV

SA

COP

SN

COMPL

DET

DEF

ANAPH

DEM

CARD

Figure i

Phrase Structure Rules, from [i]

--, # (PRE) SN PRED #

_, (i~) (~m~)

ne pas

INST

v (c o ~)

cop ADJ (CO~L)

_, est

ICDE~) N

(| quel|) (CARD)

-" I~HI

tDEM J

-~ I cele (la)

-~ ce (i~

~PLURJ

"MONTREAL FRENCH"
PHRASES LRUCTURE
$ = # (P R E) SN PRED # .
PRE : (I N /) (N E G) .
NE~ : NE PAS.
PRED : (SV (ADVINS),SA).
ADVI~S = PAR (SN,DEL~A).
SV = V (COMPL).
SA = COP AD,J (C O N P L) .
COP = EST.
SN : ((SN) S, (DET) N).
COMPL : (SN,5) (SAD.
DET : ((DEF,QUEL))(CARD).
DEF : (ANAPH,DEM).
ANAPH = (CE ((CI,LA)),LE).
DEM = CE ((CI,LA)).
CARD = (SING,PLUR).
SING : UN.
PLUR = (PROCARD,QUELQUES,DEUX,IROIS).
PROCARD : NO~SRE DE.

$ENDPSG

Figure 2

Phrase Structure Rules

Figure 3

Lexicon

^

A

Z

~ ^

A

O V
Z~J

O9 V

r ~ ~ Q_ ~ , ~ ~ ' n
---j m-- ~-- t~.l ^ I=.I I.~I E
• " ' . ~ I 0 . - 3 ~ A E O
< = I : L z Q " _-3 IQ.. - - L }

0 "~' I-,,

I - , O <1: l.,.. =~ V

O {'1~ E I.~ o z {)~ :3I. U'I
L,L.] "--~ ~ ~ CY') V V

~ " n ~r" ~"~ Q . . - - I V

~'--I "-q ~ I I
r E : ? : {'--" "--~

0 '~,.~ L=J ~- ' C.) ' '~

"--~ '~E "~" 0

. J

L~

L ~ L , J +

/ /

J J (: 3 0 . -
~'Z'JE (3 (3 / /
(: 3 0 Z : ~ - : E _ ~ -
(3 (3 / + + O O
~ " Z :.~E (3 0

,?~ r E :=~- ... l . J 0

, ,- I . -J I 0 --~ : 3 D -
I L l : I . r E - - I . - I J

i i ::::3.'E_ E I ~ . r~.
- - I L~J tTJ I t . 'E

LI. l .~ I.~ L~I I--, "--1

L L I : : 3 r ' ~ I t ,~:: i /
~/} O,) I=. - E ~,LI .,~ 0
• ' ~ - , ~ -F + l*J..r~ r ~ I r-. 0

0 0 r~r:- FE i - " r', n L~ - - O Q . . - 0

I I O 0 ~ / ' l l - - , l - ~ : ~ I ~ ' ~ I "-~

{ ~ ~ I - , I-., -I.=J I~1 I~: / ' {/~ / :3,
: Y ' E I I 0 . .D ' } ~ ' f } l - , l :~ ::3L,~I + E l , = .
l.,.ll..~.l I r~: , " E , , - I + I - ' , 1~: (:3 I

L~]~ . I + + + O , ' n ' ~ ~ + O ~ L E L , J
~ : ~ ; ~ . P_. / / 0 : : 3 r ~ L) + ~L, r E

/ / ' ~1~ O O I"1) I'--I ~"~ ~" "1" LIJ h~ I X

+ t ' J + + ' " ~ + : ~ ' -- ' " ~ a . . . - I
/ r h 0 / : > + l.,.I L.~ <l : <I: O i : : ~

I.~11.,J + ~,.I i - , ..~.. ~ {/~ / + 1.~1

noun phrase (SN).

After the preliminary definitions, the lexicon contains a set

of lexical entries. In a computer derivation of a sentence, lexical

items will be selected at random from those of the appropriate cate-

gory which match inhereht, features already in the tree and have con-

textual features, satisfied by the tree.

Figures ~ and 5 are presentations of the transformational

component. In the computer version a transformation consists of

three parts, identification, structural description (SD), and

structural chan~e (SC). The identification contains the number and

name of the transformation, plus information to be used in deter-

mining when it is to be invoked. This includes a group number

repetition parameters, keywords, etc. The structural description is

similar to the linguistic form, but allows also subanalysis to any

depth. Representation of the structural change by a sequence of

elementary operations removes any possible ambiguity from the state-

ment. In addition to adjunctions and substitutions, there are also

elementary operations which alter complex symbols. \+PASSIF \ MERGEF

adds a new feature specification to the complex symbol of term 4.

*FEM *PERS\ MOVEF 4 7 will change those two features of term 7 so

that they are the same as for term 4.

It may be noted that the transformation LOWESTS and the control

program of Figure 5 have no correspondents in Figure 4. They are

needed because the program requires that the traffic rules be given

explicitly as part of a grammar. LOWESTS selects the lowest sentence

[~] ~ S T - ~ J

(P ~) SN V SN (SN) p ~ A #

i 2 3 4 5 6 7 8 9 =>

l 2 8 4 5 6 7 3 9

[Tg] ANTEP-OBL. OBL

.(P~) A v SN (sN) p~+SN #

1 2 3 4 5 6 7 8 =~

i 2 5 4 <+passif ~ 6 7 8

[TI3] AC-PRED

(PRE) [(DET)

l 2 3

li fem ~ (P)]sN pers|
2 pers~

p1~ IN

4 5

i 2 3 4 5

OBL

(cop)

COND: 7 $ ~fem
pers

~2 pers
~plur

[T33? ELLIPSE ##

X

1 2

2

3

Figure 4

Transformations, from [I]

OBL

0BL

AD

7

9=>

7~ ~fem
~pers
,~2 pers
~plur

9

[~ l]

[~52]

M-PASS.

x <+~ssif>

1 2

l+est 2(+~

cow: 2~+~

TR- TRAITS- PASS

X est

1 2

i 2 • ~progr
(d futur
(~preterit
(~per s
<42 pers
<~fem
(gplur
(~inf

CON]), 2~4prog
~futur
~preterit

Y
V

3 =>

le+ 3

~+passif ~
~progr
futur

~preterit
~pers
2 pers

a inf
afem
4plur

V

0BL

0BL

v

4 =>

4

Figure 4 (Continued)

~0

Figure 5

Transformations

v

<~0

o o
L~

,<~

<~

~ 2

: I--.. , , ~ ~ ~

0 "-' . -~ + "U: ~ ~ " *

V r.~ ~ .--I '-~ "~ r'-- (,")

/

l "1

0

o C~, L~I / l.J.I
,~ , I~.. C~ C'< / ~..~ L.z. ,m--

(~ C.~ L ~ ~....4 r~

(~ ' ~ C.) < ~ ,,::~ / "" t

.--.1 r < L,...I > . . , m I IT~ I--, C:~

~ ¢,'~ ~ 0 , , 1 I-.-, C%I ~ J I:1...

,m C< L , . . I r , , ~ /

0
° ~

0

~ J t - - '
~ Z
O 0

I

LLI

I.'-4

. ~

o~
A

V

(~

(0

O
...1

Figure 6

Base Tree, from [1]

"

V

I I I I
v v v v V d}

i I " ' ~ J

I " ' ~

OJ 0.. ~ ¢-t ~

&'} + I I 1 I E',
V V V V V

t ,I

~J

. Q
I '

r~

L~

p4

,Q

@

E-~

i2"

which contains boundaries. The control program specifies that the

cyclic transformations are to be carried out for this lowest

sentence. After a cycle the boundaries are erased and the next

highest sentence becomes lowest. The postcyclic transformations will

then be carried out.

A particular tree, created as an example in Ill, is presented

in Figures 6 and 7. Figure 7 contains two alternative versions, a

fixed-field format and a bracketted free-field form. Either of these

is acceptable to the programs. The sentence at the top of the figure

is merely a title; it will not be processed by the program. The

lexical items "Trudeau", "deGaulle", and "berne" have not been in-

cluded, although they could have been. If these items had been

entered in the tree, the lexical insertion process would merely have

added the appropriate complex symbols for them.

Figure 8 gives the derivation as presented in Ill. Figure 9 is

the final part of the listing of the computer output.

The use of the ~ro6rams

The system was designed to be used by a linguist who is in the

process of writing a transformational grammar. As lexical items or

transformations are added they can be tested in the context of all

previous rules and their effect can be examined.

The easiest errors to detect and repair in a grammar are

syntactic errors. As a grammar is read in by the program a check is

made for formal correctness. For each error a comment is produced

which attempts to explain what is wrong. The program then continues

~3

Figure 7

Alternative forms of Base Tree

~ Z

,..I

lxJ

t~

A

^
A

V

A

V

U'/
V

A

V

(f l
V

' - I
r ~

A

V

V

14

Figure 8

Derivation, from [l]

e.

A

z ~..

.-~ ,-4
,-4 ~ r4

0 P. Z

. ~/~ l-i l @

0 ~ E~ ..~ ~

~n ~ 0 Z

>

~ ~ 1 ~ 1 ~ ~ ~

+ . ~ I ! I I . ~ "
v v v v

! ^ I "z

U I I I I I-i
,,~ v v v v ~

!

Z

>

+

Z

0 ,-q

~5

0

E

0

r~

A A A A A A A A

Figure 9

Computer Derivation

I ,d

b4
E

b. I
O !

IL l

(/1

,_,1 { f) ,,~ : ~

Z

N

/

, - I

A !
^

~ o

V !

V ~ *
, .~

2 3 I

.-.I
E ~

* E
L,..I

[t l

Q C~

I O

/ { ; 1 /

/

+

r,,

t ~

4 -

I-,,

"l

O ^

I , . I

: :~ rd'}
I .~ V

! !

: 3 -m
. - I ._J

! $

E E
b,4

* 4 -

I.s.I
r~ 0. .
O O

! I

! I

+ ~
/ /

2:> Z

E
,-..,
. -J
I.s.I
c~

r ~

b J

[.0

L:.,I

f ~
. J
<~

z

O O ' O O

A ' A A A A A A ~ A A A A A A A A A A

16

to read in the rest of the gra~nar, recovering as best it can from

the error. In most cases a single error will cause a small part of

the grammar to be read badly, but the rest of the grammar will be

read in and used in whatever tests were requested. An effort was

made to make the error com~aents as clear and explicit as possible,

and to make the program continue despite input errors.

Deeper errors arise when a grammar is syntactically correct,

but does not correctly describe the language of which it purports to

be a grammar. ~lese errors of intent cannot be detected directly by

the program, since it has no standard of comparison. The program

attempts to provide enough feedback to the linguist so that he will

be able to detect and investigate the errors.

The information produced by the program consists of derivations

which may be partially controlled by the user. Since random deriva-

tions have been found to be of r@latively little interest, the system

allows the user to control the sentences to be generated so that

they are relevant to his current problem. (The device used for this

purpose has been described in [g].) It is only in the sense of

providing feedback to the user that the system can be called a

"grammar tester"; it does not directly seek out errors in a gran~nar,

nor does it evaluate the grammar.

For a standard run of the system the inputs are a grammar, a
t

SMAIN card, and some trees. The grammar consists of one or more of

phrase structure, lexicon, and transformations. The SMAIN card is

a specification of the type of run to be made. The system must be

i7

told (i) what type of input trees to expect:

TRIN, for fixed-field tree

FTRIN, ffor free-field bracketted tree

(2) whether to generate a tree around a skeletal input or whether it

is only necessary to insert lexical items:

GEN, to generate a tree and insert lexical items

LEX, to insert lexical items

and (3) whether or not transformations are to be applied:

TRAN, if transformations are to be invoked.

The general form of the SMAIN card can be represented as

SMAIN I TRIFTR~N~ ((n)I~l)(TRAN) .

The integer n specifies the number of time each input tree is to be

used.

An an example,

$MAIN TRIN GEN TRAN .

specifies a run in which a skeletal tree is read, a full tree is

generated including lexical items, and the transformations are

applied.

The specification

$~u~ ~I~ 5 u~x T~.

might be used in testing a lexicon and transformations against a

fixed base tree. The tree will be read and five cases of lexical

/

~8

insertion plus transformation will be carried out.

SMA~N ~IN 4 nEX .

would do four examples of lexical insertion for each input.

After the process is completed for one input, another input is

read and the cycle repeats. A run terminates when there are no more

inputs.

Computer experiments in transformational ~rammar

The system has been in use since February 1968, although not

fully complete at that time. The first experiments were carried out

by the designers of the system, using granrnars based on material in

the linguistic literature. This was done to provide test material

for the programs, but, more importantly, to help ensure that the

notational conventions would be adequate. A fragment of grammar

from Chomsky's Aspects was used to test ideas and programs for

lexical insertion. The II~ Core Grammar of Rosenbaum and Lochak

[6] was used in developing and testing the transformational component.

Both of these projects led to valuable teaching materials, as we

shall discuss later.

Aspects and Core provided us with separate examples of lexicon

and transformations. There was at first no single source which con-

tained both. A relatively formal grammar was needed, even though a

final translation into the notation of the system would still of

course be necessary. Elizabeth Closs Traugott's Dee~0 and surface

structure in Alfredian Prose [7] appeared at about that time and

was the first grammar which was formalized in the notation after the

19

fact. Considerable effort had gone into designing the notation; we

were anxious to see if it would now seem natural for a grammar which

was new to us. Alfred was thus the first real test for the system.

As it turned out there were a few difficulties which arose because the

notation had not been explained clearly enough, but the results of the

run were also revealing about the grsm~nar.

One general effect which was noticed in these first few cases

had continued to be striking: the need for complete precision in

the statement of a grammar forces the linguist to consider problems

which are important, but of which he would otherwise be unaware.

Also during the spring of 1969 Barbara Hall Partee made two

sets of runs with preliminary versions of a grammar of English being

developed by the U.C.L.A. Air Force English Syntax Project. This

grammar presented another kind of challenge to the system, because

it was not based directly on the Aspects model, but incorporated some

recent ideas of Fillmore. As before, these runs assisted in cleaning

up the programs but were also of interest to the linguist. The major

advantages from the linguistic point of view seem to have been, first,

that the notational system of the computer model provided a framework

in which grammars could be stated, and second, that the computer runs

made it easier todetect certain errors in the grammars. In the main,

these errors were not particularly subtle, and could have been caught

by working over the grammar carefully.

The program was also used by L. Klevansky~ who wrote a grammar

of Swahili for the dual purposes of testing the programs and learning

the language.

20

These early experiments are described in a report [5] which

gives the gran~nars as well as a detailed discussion of the results

of the computer runs.

The form of the French grammar used in the extended example

above is based on the form of the Core grammar; it was therefore

easily translated into the notation of the system. Shortly after

the grsmmnar was received, a large part of it was running on the

computer. Minor errors in the grammar have been found and corrected;

it will now be available to students as another example of a trans-

formational grammar.

The next experiment planned using the system is a project

proposed by Susumu Nagara and Donald Smith at the University of

Michig~, who plan to use the system to aid in writing a grammar of

Japanese.

Modifications to grammars based on computer runs

In almost all cases the gran~nars used with the system have

been sufficiently complete for at least informal distribution. The

programs were really designed to make it easier to write grammars,

not to test completed grammars. Nonetheless, on the basis of computer

runs, certain types of changes have been found to be needed in the

grammars. The cotangents which follow are based on all the grammars;

they do not all apply to any one of them.
i

Trivial corrections

The most co~on errors are typographical errors in transcription

of the grammar. These are not errors in the grammar itself; having

2i

to deal with them is one of the prices of using the computer. In

general, these can be caught with relative ease.

More than one grammar has had simple errors with respect to

repetition of a transformation. Number agreement transformations

are written so that they produce CAT S S S ... where CAT S is wanted.

(The grammar as written calls for an infinite sequence of S's to be

added. The program, more cautious, adds ten S's, then complains and

goes on to the next transformation.)

Transformations are often stated so that they fail to apply in

all cases where it is intended they apply. For example, the

structural description of PASSIVE as

SD # (PRE) 3NP AUX 5V (PREP) 7NP % PREP 10P % # ,

WHERE 3EQ7.

fails to take into account some additional parts of the VP. The

correction to

SD # (PRE) ~NP AUX (HAVE EN)(BE ING) 5V (PREP) 7NP

PREP lOP ~ #, WHERE 3 EQ 7-

will allow PASSIVE to work in the additional cases. Similarly, a

NOMINAL-AGREemeNT transformation which marks subjects as +NOMIN must

apply not only to pronouns which precede verbs but also to those which

precede copulas. Thus the structural description

SD # ~ 3(~ON, REL) V ~ # .

must be replaced by

SD # ~ 3(PRON, REL) (V, COP) % # .

22

Interrelatedness of transformations

A slightly more interesting set of problems found in the

computer runs are those which arise through the interrelatedness of

two or more transformations. For example, in one of the grsmm~ars

there ~ere both WH-questions and TAG-questions. It was found that

the TAG transformations was (optionally) applicable to any question,

so that for example

TOM HAS PREFER EN WHAT GIRL HAS TOM NOT

was produced. This error was easily repaired once it was detected.

On the other hand, a similar problem which was not easily

fixed arose with another transformation which was marked optional.

Testing showed that for certain base trees the ~esult was bad if the

tr~usformation did not apply; however3 when the transformation was
l

temporarily changed to obligatory, the grammsx then failed to produce

some intended sentences. The proper correction to the grammar would

have required specification of the contexts in which the transforma-

tion was obligatory.

Incompleteness of grammars

Formal gram~nars so far have each attempted to describe some

subset of a language. In computer testing many problems outside

the scope of the grammar are evident. If, for example, a grammar

does not treat prepositions seriously, then once this becomes apparent,
i

the computer runs need to be designed to avoid prepositions.

Dee~ structure ~roblems

Two of the grammars which have been studied suffer problems

Z3

with the WH-morpheme when it occurs in non-sentences and not as a

relative marker. Thus, for example, sentences such as

WHAT BLAME MAY NT BE BE ING

and

WHICH THING MUST HAVE BE EN APPROVE ING OF

WHAT TABLE

are in fact even worse than they appear, because they are not

questions. Although this problem has no simple solution in the

current framework, the inputs to the program can be controlled to

avoid generating sentences of this form.

Inadequacies in the linguistic model

An interesting change to the system was suggested by the

attempt to formalize the Core grammar. In both the WH-attraction

and the Question-transformations the structural description contains

a two-part choice between a PREP NP pair and simply an NP. This is

of the form:

% (PREP NP, ~P)

where ~ is a variable. Any structure which satls~ies

the first part of the choice will also satisfy the second, and any

analysis algorithm must have some order of search which will either

always select PREP NP or always select NP only. But the intent is

that there should be a genuine choice, so that the grammar produces

both

ABOUT WHAT DID JOHN SPEAK

and

24

WHAT DID JOHN SPEAK ABOUT

The solution which was found for the problem was to add an additional

value (AAC) for the repetition parameter for a transformation.

If a transformation is marked AAC, all possible analyses will

be found, but only one of them, selected at random, will be used as

the basis for structural change. This seined the appropriate way to

solve the problem for the Core grammar, and it turned out also to

solve a slightly different repetition problem in the grammar of A1-

fredian prose. Notice that this is really an observation about the

form of grammars, rather than about a particular grammar. Yet it

arose by consideration of particular examples.

Surface structure

The surface Structure associated with a sentence derivation is

much easier to study if it can be produced automatically. In several

cases it has been apparent from the information provided by the computer

runs that revisions in the grammar were needed if the surface structure

is to be at all reasonable. This is a case where the computer runs are

certainly not necessary, but where they reduce the tediousness of

studying the problem.

In stmmmary, it seems to me that main value in computer testing

of a completed grsm~nar is that the need for a precise statement

brings to the consideration of the linguist problems which are other-
l

wise below the surface. These problems may be in the grammar itself

or they may be in the linguistic model itself. For a grammar in

process of being written the greatest advantage is in allowing rules

25

to be checked as they are added, and in bringing out the interaction

between rules.

Instructional use of the s~stem

The system has now been used by Sziliard Szabo in teaching

~eneral linguistics at the University of San Francisco, by Michael

O'Malley in a course in natural language structure at the University

of Michigan, and by the author in courses in co~0utational linguistics

at Stanford and Michigan.

The method of use is to make available to the students a file

of one or more grammars to be used as examples and as bases for

modifications. The fragments from Aspects and the IEM Core grammar

have been most useful3 although small grammar written for this purpose

have also been used. The students are then asked to make modifications

and additions to the grammars.

For graduate students, a reasonable exercise for a term paper

is to read a current journal article on transformational grammar, and

then show how the results can be incorporated into the basic grammar,

or show why they cannot be. The papers chosen by the students have

generally been ones in which transformations are actually given.

This project has been very successful as am introduction to trans-

formational grammar for computer science students.

Other students have chosen simply to use the computer to obtain

fully developed examples of derivations illustrating aspects of

grammar in which they are interested.

These experiences have confirmed our belief that specific

26

examples presented by the computer, and the feedback provided when

a student modifies a grammar, are valuable in enabling the udent

to understand the notion of trausformational grammar.

27

References

[i] Colmerauer, C., M. Courval, M. Poirier, and Antonio A. M. Querido.

Grammaire- I~ Description s~ntaxi~ue d'un sous-ensemble du francais,

Universite de Montreal, (March3 1969).

[2] Chomsky, N. Aspects of the Theory of S~ntax. M.I.T. Press,

Cambridge, Massachusetts (1965).

[3] Friedman, Joyce. A computer system for transformational grammar.

Cosnn. ACM (to appear).

[4] Friedman, Joyce. Directed random generation of sentences. Comm.

AC_~M, 12, pp. 4O-46.

[5] Friedman, Joyce. (Ed.) Computer Experiments in Transformational

Grammar, CS-108, Computer Science Dept., Stanford University,

(August, 1968).

[6] Rosenbaum, R., and Lochak, D. The I~M core grammar of English.

In Lieberman, D. (Ed.) Specification and utilization of a

transformational grammar. AFCRL-66-270 (1966).

[7] Traugott, Elizabeth C. Deep and surface structure in Alfredian

prose. Mimeographed. PEGS Paper #14 (August, 1967).

