TREE GRAMMARS ( = A- GRAMMARS )
- Gladky A.V. (Novosibirsk) & Mel'€uk I.A. (Moscow) -

t. This paper suggests a new kind of formal grammar hereafter called
A- grammar¥) which in some respects is closely related to Chomsky%s
grammars but differs from these in that it is meant to process trees (in
the sense of graph theory) and not to process strings as Chomskys grammars
do. More precisely, we aim at a type of grammar with rewriting rules of
the "X - Y" where X and Y are trees (N.B. : with no linear order imposed
on their nodes '##),
Linguistically, the trees under consideration are dependency (not
phrase structure) trees representing natural sentences at different levels
of "depth"l: roughly speaking, "surface'" syntax, "deep" syntax, semantics.
A- grammars are designed to be used not for generating sentences
but rather for transforming given trees into other trees; this covers transi-
tions from one abstract representation of a natural sentence to another
(deeper or more superficial) representation of the same sentence as well as
transitions from an abstract representation of one sentence to a representa-
tion on the same level of another sentence, synonymous to the given one.
The conversion of a ""ready" surface tree into an actual sentence - a conver-
sion consisting of a) inflexion and b) determination of word order - must be
carried out by some autonomous device not included in the conception of

A-grammar,

#, Afrom the Greek J{VJpov(tree) .

#,  The limitations of place and time prevent us from comparing tree grammars
with those of Chomsky as well as from referring to other works dealing with
more or less analogous matters, such as studies by M. Arapow and V. Bor-
schtschow; G. Veillon, J. Veyrunes and B. Vauquois; Ch. Hockett; and
others.

The authors are glad to acknowledge here the friendly help and useful sugges-
tions by O.S8. Kulagina and A.Y. Dikovsky.

All shortcomings in the paper are, of course, ours.



The A~-grammar embodies an attempt to formalize the linguistic '"Meaning
~Text Model" described, e.g,, in [1]. In this model, the starting point for
producing a sentence is a detailed semantic description of its meaning conceived
as a rather involved graph (not merely a tree) consisting of '"semantic atoms"
and "“semantic links" connecting them. The semantic description is generated
outside of the linguistic model and constitutes the input of that model; it is
then subsequently "lingualized" (anglicized, russianized etc.) by means of
formally specified transformations: 1) extracting from the given semantic
description (of a family of synonymous sentences conveying the meaning repret
sented by that description) the deepest admissible tree-like structures;

2) proceeding in a multi-step fashion from the deeper trees to the more
superficial ones; 3) linearizing the most superficial syntactic trees (with simul-
taneous inflexion where needed) to produce actual sentences. The A-grammars
deal with the second phase of thig process only.

Z2. We shall consider trees with labelled branches; nodes are not labelled.
The labels can be interpreted as names of the types of syntactic link at the
corresponding level. For brevitys sake such trees will here be referred to
just as "trees",

A tree is called minimal if all its nodes, except the root, are terminal
(i.e., with no branches growing out of them}. A tree with but one node is called

an empty tree and is denoted as €, The composition of trees is defined as

follows: let ty, t, ta ..., tpbe trees, and let in t, some nodes o, op ..., @,
(not necessarily pairwise different) be marked. Then the result of the composi-
tion of the tree ty, with the trees t,, t, ..., t; will be any tree isomorphic to
the tree which can be obtained {rom t, by identifying the roots of the trees t;, tj,
.4+, tnwith the nodes oy, o ..., o, respectivelyin t,.

The composition of to in which the nodes o), @, ..., % 2re marked with
te t2 . oes by is denoted

T =C (tos &, O -vos Ol bty t2 .ooy tn) (1)

A tree is a subtree of T if T can be represented as:
T=C(To;aolc(t;0'p 0!2,---101"1'1sz- "'T;l)) (Z)

where g is a terminal node of Ty, and oy, o, ..., @, a repetitionless enumera-

tion of all nodes of t,



Now, an elementary transformation (ET) of trees is an ordered triple

<ty, t, f>, wheret; and t; are trees and { is a mapping of the set of all nodes
of t, into the set of all nodes of t, . Instead of <ty, t, f>, we shall write
ty = tzl f. The tree T' is said to be the result of the application of the ET ty=t; |

to the tree T if T and T' can be represented in the form:

T =C.(Ty; o/0| C(ty; o 0 ooy ol Ty T, e, T ) (3)
and T'=C (Tos ap C (ty; floy), £log) «ooy o) | T, T, ooty T)) (4
where oyis a terminal node of To , and oy, @, ..., 0n a repetionless enumera-
tion of all nodes of t; . Informally, an application of certain ET to a tree T con-

sists of the substituting of t, for an occurence of t; in T ; if o (a node of t, )
is mapped on B( a node of t, ), i.e., 8=f(d}), then all "untouched" nodes of T
""pending" from ware transferred to B with the same labels on corresponding

branches.
Example: - E

A /s
Let t; = a l\(} , b= g e and let f be specified

as follows: f(A) =E, f(B) =H, f(D} =F. Then, applying the ET t, =t,| f to the
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T contains three occurences of t ; the replaced one is the subtree of T with
the nodes M, N, O, Q.

3. A syntactic A -grammar is an ordered pairl =<V, > wherev is a

finite set of symbols (branch labels) and  a finite set of ET 's,called rules
of grammar . A derivation in a syntactic A-grammar is a finite sequence
of trees where each subsequent tree is obhtainable from the preceding one by
application of an ET offl. A tree t' is derivable from T inl’ if there exists a
derivation inl" beginning with T and ending with T',

For linguistic applications, it may prove to be of interest to define
some specific types of syntactic A -grammars,

A syntactic A -grammar will be called expanding if each rule it contains
has in its left side no more nodes than in its right.

An expanding syntactic A ~grammar will be called minimal if in each
of its rules of the form 'ty = t, | f'' the trees t; and t, can be represented
in the form

ty = Cltgsopl Clusop o vve |9, B ooy ) (5)
and

t, =C (t; o | C (v £og), fleg)s «vvs floy) [ 5, & -0 og) ) (6)
" where 1) p is a minimal tree, 2) o, &, ..., Oy i a repetitionless enume-
ration of all nodes of p, 3) o is the root of p, 4)floy), f(ay), ..., flan)
are pairwise different, 5) fap), f(eg), ..., f(o) are terminal nodes of
v, 6)for every i =2, 3, ..., n the label on the branch of p ending in
coincides with the label on the branch of V ending in f(o) , 7) for all nodes
of t differing from o, o, ..., @,, the mapping is identical.
A minimal expanding syntactic A -grammar will be called context-free

if in the expressions (5) and (6) the trees 4, 71 , %, ..., Th Aare unity trees,

4. Linguistic considerations dealt with in ""Meaninge»Text Model" (see,

e.g., [ 1 1) imply the introduction of a subset of ET's, special elementary

transformations (SET's). A SET is an ET of one of the following three types:
1) Splitting of one node -~ a transforméttion of the form 1}=>I-3___e_a,_’ c

where either {(A) = B or f(A) = C,

Notation: A = a(B, C) | f(A) =B and A= a(B, C}, a(A) = C .



2) Transfer of one node - a transformation of the form

b A
Al *?L.‘f:sa/\ﬁ or a/\»:,f’L.’fL,fﬁ ’
. EF B ¢

in both cases f(A) =D, {(B) =E, {(C) =F

(Notation : a(A, B). b(B, C)= a(D, E). b(D, F) and a(A, B). b{A, C) =
a(D, E). b(E, F)).

3) Lumping two nodes into one - a transformation of the form
B_a, C_, A, where f(B) ={(C) = A
Notation : a(B, C) = A.

Let t; = tg l f be an ET and let M be a set of ET's. Then the statement
"The ET t, = t, I f can be simulated by ET's of M"" means that there

exists some finite sequence my, my, ..., my of ET's in M such that for
any trees T and T' where T' can be obtained from T by application of the
ETt =t l f the tree T' can be obtained from T by applying
m, my, ..., my, in tandem.

Theorem {. Any elementary transformation can be simulated by

special elementary transformations.

5. For the representation of natural sequences it is reasonable to assume
not arbitrary syntactic trees but rather a subset of those - namely, those with
limited branching. The precise meaning of limited branching is as follows:

for each branch label a; there is fixed an integer n; such that each node

can be a starting ppint at most for n; branches labelled a; . The trees
meeting this restriction are called (ny, np, ..., ny)-regular (k being

the number of different branch labels); for brevity we shall call these trees
simply regular trees.

Now, a slight modification of the notion of the application of an ET
suggests itself: if we suppose that the trees T and T' in (3) - (4) are regular,
we need consider only ET's with regular left and right sides; such ET's will
also be called regular,

A regular syntactic A -grammar is an ordered triple <v, {1 >, where

v ={ a;, a5, ..., ay } is a finite set of symbols {branch labels), £ is a
mapping of V into the set of positive integers (for every a €V the integer

€ (a) being the maximum number of branches labelled a which can grow out

of any single node) and is a finite set of (E(a, ),¥ (a2 ), ..., ¥ (ax ))-regular
ET's.



The set of all regular syntactic A-grammars may be divided into
hierarchical subsets which are fully analogous to the corresponding subsets
of the syntactic A -grammars as defined above. Special elementary trans-

formations (SET' 8) can be defined here too.

Theorem {', Any (v, ng, ..., n, )-regular elementary transfor-
mation can be simulated by (n; , ng, ..., n, 1)-regular SET's,

Theorem 2. a) If ny +.. «tmez3 orif ny +...4n =1, then any
(ny, ny, .» ny)-regular ET can be simulated by (n,, Dy, ..., ny)-regular
SET's.
b) There exists ({, {)-regular and (2)-regular ET's which cannot

be simulated by ({, {)-regular and (2)-regular SET's respectively.

6. If a regularity characteristics (ny , ng, ..., n, ) is fixed on the basis
of some empirical (linguistic) evidence, then a "universal syntax' can be
constructed as an abstract calculus of all possible syntactic structures and
all possible transformations of these. Choosing (1, 1, 1, 1, 10, 1) - regula-
rity* as a first approximation to the deep syntactic description of natural
languages, we obtain a universal (1, 1, 1, 1, 10, 1)-regular A-grammar,
Mo B ily>, where vy={a, a,, ..., ag) is the set of types of deep syntac-

tic connections and where
g.(a1) = Bu(az) = §fas) = E(aq) =Efas) =1 ; £fag) =10 .

consists of the following 80 rules:

1) 12 "splitting'" rules of the form A = ai(B, C) | {(A) =B and
A= ai(B, C)| fA) =C (i=1, ..., 6)

2) 62 "transfer' rules of the form ai (A, B) . aj(B, C)=a(D, E) . aj(D, F)
2nd ai(A, B) . aj(A, C)= a (D, E). a(E, F);

*)The description of deep syntax suggested in [ {] is meant here. 6 types of syn-
tactic connections are differentiated and interpreted as follows: connections 1
through 4 link a predicate with its arguments (only predicates with no more than
4 places are considered), connection 5 formalizes the general attributive rela-
tion, and connection 6 expresses coordination; a node can be a starting point
for only one branch of each of types 1, 2,3, 4,6 and for several branches of

type 5 (we have set the number of the latter at 10 as a sufficient upper limit),
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herei, j=1, ..., 6 and eitheri #jori=j =5,
3) 6 "lumping" rules of the form a;(A.B)=C (i =1, ..., 6).
7. It may be useful, in view of possible linguistic applications, to consider -

also such regular trees where the branches as well as the nodes are labelled
filled regular trees, The node labels may be interpreted as characterized lexemes,

i.e., symbols denoting words, idioms and so-called lexical functions with
morphological subscripts attached to them (1], p. 186) The notion of regu-
lar ET and that of regular syntactic A~grammar can in an obvious manner

be modified accordingly. As a result, we obtain regular lexico-syntactic

A —grammars, For these grammars (see p.6-7) we can define SET's of the
types ''splitting',"transfer" and "lumping' in a manner analogous to the one
above; in addition another type of SET must be introduced:
w
4) "renaming" of a node - a transformation of the form ‘-"ia S 4

where w;, and w are node labels.

If SET's are understood as transformations of the types 1-4, the theorems t!

and 2 will hold also for this case.

[ 11 Xoxaxosowak A K, Mespuyk HA 0 CeMAHTHUECKOM CJAHTERE.~

Tipo6aexs KadepHeTar4, B, 19 1967, 177 » 238.



