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1 Motivation

Given the current growth in research and related emerging technologies in machine learning and deep
learning, it is timely to introduce this tutorial to a large number of researchers and practitioners who are
attending COLING 2018 and working on statistical models, deep neural networks, sequential learning
and natural language understanding. To the best of our knowledge, there is no similar tutorial presented
in previous ACL/COLING/EMNLP/NAACL. This three-hour tutorial will concentrate on a wide range of
theories and applications and systematically present the recent advances in deep Bayesian and sequential
learning which are impacting the communities of computational linguistics, human language technology
and machine learning for natural language processing.

2 Tutorial description

This tutorial introduces the advances in deep Bayesian learning with abundant applications for natural
language understanding ranging from speech recognition (Saon and Chien, 2012; Chan et al., 2016) to
document summarization (Chang and Chien, 2009), text classification (Blei et al., 2003; Zhang et al.,
2015), text segmentation (Chien and Chueh, 2012), information extraction (Narasimhan et al., 2016),
image caption generation (Vinyals et al., 2015; Xu et al., 2015), sentence generation (Li et al., 2016b),
dialogue control (Zhao and Eskenazi, 2016; Li et al., 2016a), sentiment classification, recommendation
system, question answering (Sukhbaatar et al., 2015) and machine translation (Bahdanau et al., 2014),
to name a few. Traditionally, “deep learning” is taken to be a learning process where the inference or
optimization is based on the real-valued deterministic model. The “semantic structure” in words, sen-
tences, entities, actions and documents drawn from a large vocabulary may not be well expressed or
correctly optimized in mathematical logic or computer programs. The “distribution function” in discrete
or continuous latent variable model for natural language may not be properly decomposed or estimated
in model inference. This tutorial addresses the fundamentals of statistical models and neural networks,
and focus on a series of advanced Bayesian models and deep models including hierarchical Dirich-
let process (Teh et al., 2006), Chinese restaurant process (Blei et al., 2010), hierarchical Pitman-Yor
process (Teh, 2006), Indian buffet process (Ghahramani and Griffiths, 2005), recurrent neural network
(Mikolov et al., 2010; Van Den Oord et al., 2016), long short-term memory (Hochreiter and Schmidhuber,
1997; Cho et al., 2014), sequence-to-sequence model (Sutskever et al., 2014), variational auto-encoder
(Kingma and Welling, 2014), generative adversarial network (Goodfellow et al., 2014), attention mecha-
nism (Chorowski et al., 2015; Seo et al., 2016), memory-augmented neural network (Graves et al., 2014;
Graves et al., 2014), stochastic neural network (Bengio et al., 2014; Miao et al., 2016), predictive state
neural network (Downey et al., 2017), policy gradient (Yu et al., 2017) and reinforcement learning (Mnih
et al., 2015). We present how these models are connected and why they work for a variety of applica-
tions on symbolic and complex patterns in natural language. The variational inference and sampling
method are formulated to tackle the optimization for complicated models (Rezende et al., 2014). The
word and sentence embeddings, clustering and co-clustering are merged with linguistic and semantic
constraints. A series of case studies are presented to tackle different issues in deep Bayesian learning
and understanding. At last, we point out a number of directions and outlooks for future studies.
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3 Tutorial outline

e Introduction

— Motivation and background

— Probabilistic models

— Neural networks

— Modern natural language models

e Bayesian Learning

— Inference and optimization

— Variational Bayesian (VB) inference

— Monte Carlo Markov chain (MCMC) inference
— Bayesian nonparametrics (BNP)

— Hierarchical theme and topic model

— Hierarchical Pitman-Yor-Dirichlet process

— Nested Indian buffet process

e Deep Learning

— Deep unfolded topic model
— Gated recurrent neural network

— Bayesian recurrent neural network (RNN)
(Coffee Break)

— Sequence-to-sequence learning

— Convolutional neural network (CNN)
— Dilated recurrent neural network

— Generative adversarial network (GAN)
— Variational auto-encoder (VAE)

e Advances in Deep Sequential Learning

— Memory-augmented neural network

— Neural variational text processing

— Neural discrete representation learning

— Recurrent ladder network

— Stochastic recurrent network

— Predictive-state recurrent neural network

— Sequence generative adversarial network

— Deep reinforcement learning & understanding

e Summarization and Future Trend

4 Description of tutorial content

The presentation of this tutorial is arranged into five parts. First of all, we share the current status of
researches on natural language understanding, statistical modeling and deep neural network and explain
the key issues in deep Bayesian learning for discrete-valued observation data and latent semantics. A new
paradigm called the symbolic neural learning is introduced to extend how data analysis is performed from
language processing to semantic learning and memory networking. Secondly, we address a number of
Bayesian models ranging from latent variable model to VB inference (Chien and Chang, 2014; Chien and
Chueh, 2011; Chien, 2015b), MCMC sampling (Watanabe and Chien, 2015) and BNP learning (Chien,
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2016; Chien, 2015a; Chien, 2018) for hierarchical, thematic and sparse topics from natural language.
In the third part, a series of deep models including deep unfolding (Chien and Lee, 2018), Bayesian
RNN (Gal and Ghahramani, 2016; Chien and Ku, 2016), sequence-to-sequence learning (Graves et al.,
2006; Gehring et al., 2017), CNN (Kalchbrenner et al., 2014; Xingjian et al., 2015; Dauphin et al.,
2017), GAN (Tsai and Chien, 2017) and VAE are introduced. The coffee break is arranged within this
part. Next, the fourth part focuses on a variety of advanced studies which illustrate how deep Bayesian
learning is developed to infer the sophisticated recurrent models for natural language understanding. In
particular, the memory network (Weston et al., 2015; Chien and Lin, 2018), neural variational learning
(Serban et al., 2017; Chung et al., 2015), neural discrete representation (Jang et al., 2016; Maddison et
al., 2016; van den Oord et al., 2017), recurrent ladder network (Rasmus et al., 2015; Prémont-Schwarz
et al., 2017; Sgnderby et al., 2016), stochastic neural network (Fraccaro et al., 2016; Goyal et al., 2017;
Shabanian et al., 2017), Markov recurrent neural network (Venkatraman et al., 2017; Kuo and Chien,
2018), sequence GAN (Yu et al., 2017) and reinforcement learning (Tegho et al., 2017) are introduced in
various deep models which open a window to more practical tasks, e.g. reading comprehension, sentence
generation, dialogue system, question answering and machine translation. In the final part, we spotlight
on some future directions for deep language understanding which can handle the challenges of big data,
heterogeneous condition and dynamic system. In particular, deep learning, structural learning, temporal
modeling, long history representation and stochastic learning are emphasized. Slides of this tutorial are
available at http://chien.cm.nctu.edu.tw/home/coling/.

5 Instructor

Jen-Tzung Chien received his Ph.D. degree in electrical engineering from National Tsing Hua Univer-
sity, Hsinchu, Taiwan, in 1997. He is now with the Department of Electrical and Computer Engineering
and the Department of Computer Science at the National Chiao Tung University, Hsinchu, where he is
currently a Chair Professor. He was a visiting researcher with the IBM T. J. Watson Research Center,
Yorktown Heights, NY, in 2010. His research interests include machine learning, deep learning, natural
language processing and computer vision. Dr. Chien served as the associate editor of the IEEE Signal
Processing Letters in 2008-2011, the guest editor of the IEEE Transactions on Audio, Speech and Lan-
guage Processing in 2012, the organization committee member of ICASSP 2009, ISCSLP 2016, the area
coordinator of Interspeech 2012, EUSIPCO 2017, 2018, the program chair of ISCSLP 2018, the general
chair of MLSP 2017, and currently serves as an elected member of IEEE Machine Learning for Signal
Processing Technical Committee. He received the Best Paper Award of IEEE Automatic Speech Recog-
nition and Understanding Workshop in 2011 and the AAPM Farrington Daniels Paper Award in 2018. He
has published extensively including the book “Bayesian Speech and Language Processing”, Cambridge
University Press, 2015. He was the tutorial speaker for APSIPA 2013, ISCSLP 2014, Interspeech 2013,
2016 and ICASSP 2012, 2015 and 2017. (http://chien.cm.nctu.edu.tw/)
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