
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 128–131
Santa Fe, New Mexico, USA, August 20-26, 2018.

128

On-Device Neural Language Model based Word Prediction

Seunghak Yu∗ Nilesh Kulkarni∗ Haejun Lee Jihie Kim
Samsung Research, Seoul, Korea

{seunghak.yu, n93.kulkarni, haejun82.lee, jihie.kim}@samsung.com

Abstract

Recent developments in deep learning with application to language modeling have led to success
in tasks of text processing, summarizing and machine translation. However, deploying huge
language models on mobile devices for on-device keyboards poses computation as a bottle-neck
due to their puny computation capacities. In this work, we propose an on-device neural language
model based word prediction method that optimizes run-time memory and also provides a real-
time prediction environment. Our model size is 7.40MB and has average prediction time of 6.47
ms. The proposed model outperforms existing methods for word prediction in terms of keystroke
savings and word prediction rate and has been successfully commercialized.

1 Introduction

Recurrent neural networks (RNNs) have delivered state of the art performance on language modeling
(RNN-LM). A major advantage of RNN-LMs is that these models inherit the property of storing and
accessing information over arbitrary context lengths from RNNs. The model takes as input a textual
context and generates a probability distribution over the words in the vocabulary for the next word in
the text. However, the state of the art RNN-LM requires over 50MB of memory (Zoph and Le (2016)
contains over 25M parameters; quantized to 2 bytes). This has, in the past, hampered deployment of
RNN-LM on mobile devices for word prediction, word completion, and error correction tasks. Even
on high-end mobile devices, keyboards have constraints on memory (10MB) and response time (10ms),
hence we cannot apply RNN-LM directly without compression.

Various deep model compression methods have been developed. Compression through matrix factor-
ization (Sainath et al., 2013; Xue et al., 2013; Nakkiran et al., 2015; Prabhavalkar et al., 2016; Lu et al.,
2016) has shown promising results in model compression but has been applied to the tasks of automatic
speech recognition. Network pruning (Han et al., 2015a; Han et al., 2015b) keeps the most the relevant
parameters while removing the rest. Weight sharing (Gong et al., 2014; Chen et al., 2015; Ullrich et al.,
2017) attempts to quantize the parameters into clusters. Network pruning and weight sharing methods
only consider memory constraints while compressing the models. They achieve high compression but do
not meet the time constraints of mobile devices and hence none of them are suitable for our application.

To address the constraints of both memory size and computation we propose a word prediction method
that optimizes for run-time, and memory to render a smooth performance on embedded devices. We
propose shared matrix factorization to compress the model along with using knowledge distillation to
compensate the loss in accuracy while compressing. The resulting model is approximately 8× com-
pressed with negligible loss in accuracy and has a response time of 6.47ms per prediction on a high-end
mobile devices (e.g. Samsung Galaxy S7). To the best of our knowledge, this is the first approach to
use RNN-LMs for word prediction on mobile devices whereas previous approaches used n-gram based
statistical language models or unpublished. We achieve better performance than existing approaches in
terms of Keystroke Savings (KS) (Fowler et al., 2015) and Word Prediction Rate (WPR). The proposed
method has been successfully commercialized.

* Equal Contribution
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Figure 1: Overview of the proposed method. oki: the ith logits of kth model, pi: the ith softened output
of ensemble. (Psoftmax × Wshared)T and Pembed × Wshared substitute Wsoftmax and Wembed in the
proposed model respectively.

2 Proposed Method

2.1 Baseline Language Model
Figure 1 shows an overview of our approach. All language models in our pipeline mimic the conventional
RNN-LM architecture. Each model consists of three parts: word embedding, recurrent hidden layers,
and softmax layer. We use the architecture similar to the non-regularized LSTM model by (Zaremba et
al., 2014). The hidden state of the LSTM unit ht is affine-transformed by the softmax function, which
is a probability distribution over all the words in the V . We train the model with cross-entropy loss
function using Adam optimizer. The initial learning rate is set to 0.001 and decays with roll-back after
every epoch with no decrement in perplexity on the validation dataset.

2.2 Distilling Language Model
Knowledge Distillation (KD) (Hinton et al., 2015) uses an ensemble of pre-trained teacher models (typ-
ically deep and large) to train a distilled model (typically shallower). Knowledge Distillation helps
provide global information to the distilled model, and hence regularizes and requires less iteration for
parameter updates. We refer to ‘hard targets’ as true labels from the data which the baseline model uses,
we adapt KD to learn a combined cost function from ‘hard targets’ and ‘soft targets’. ‘Soft targets’ are
generated by adding a temperature T (Eq.1) to averaged logits of teachers’ zi to train distilled model.

pi =
exp( ziT )∑
j exp(

zj
T )

(where zi =
1

K

K∑
k=1

oki) (1)

2.3 Shared Matrix Factorization
We present a compression method using shared matrix factorization for embedding and softmax lay-
ers of the RNN-LM. We facilitate sharing by Wshared for the softmax and embedding layers, al-
lowing for more efficient parameterization of weight matrices. This reduces the total parameters in
embedding and softmax layers by half. We introduce two trainable matrices Pembed and Psoftmax,
called the projection matrices, that adapt the Wshared for the individual tasks of embedding and soft-
max as Wembed = PembedWshared and Wsoftmax = (PsoftmaxWshared)T . Furthermore, in the layers
parametrized by Wshared only a few outputs are active for a given input, we suspect that they are probably
correlated and the underlying weight matrix has low rank r. For such a weight matrix, W , there exists a
factorization of Wm×n = WA

m×rW
B
r×n where WA and WB are full rank. In our low-rank compression

strategy, we expect rank of W as r′ which leads to factorization as Wm×n ≈WA
m×r′W

B
r′×n.

Moreover, we compress by applying Singular Value Decomposition (SVD) to initialize the decom-
posed matrices. SVD has been proposed as a promising method to perform factorization for low rank
matrices (Nakkiran et al., 2015; Prabhavalkar et al., 2016). We apply SVD on Wm×n to decompose
it as Wm×n = Um×mΣm×nV

T
n×n. U,Σ, V are used to initialize WA and WB for the retraining pro-

cess. We use the top r′ singular values from Σ and corresponding r′ rows from V T . Therefore,
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Model PP Size CR
Baseline 56.55 56.76 -
+ KD 55.76 56.76 -
+ Shared Matrix 55.07 33.87 1.68×
+ SVD, Retrain 59.78 14.80 3.84×
+ Quantization ∼59.78 7.40 7.68×

Table 1: Evaluation of each model in our pipeline. Baseline uses ‘hard targets’ and Knowledge Distilla-
tion (KD) uses ‘soft targets’. Size is in MB and 16-bit quantization is empirically selected for the final
model. PP: Word Perplexity, CR: Compression Rate.

WA = Um×mΣm×r′ and WB = V T
r′×n, we replace all the linear transformations using Wm×n with

WA ×WB . Approximation during factorization leads to degradation in model performance but when
followed by fine-tuning through retraining it results in restoration of accuracy. This compression scheme
without loss of generality is applied to Wshared.

3 Experimental Results

3.1 Evaluation of proposed approach

Train data1 is extracted from resources on the social network services in a raw form it contains 8 billion
words. We uniformly sample 10% (196 million) from the dataset. Then we split dataset as 60% for
training, 10% for validation and 30% for test. We preprocess raw data to remove noise and filter phrases.
We also replace numbers in the dataset with a special symbol, <NUM> and out-of-vocabulary (OOV)
words with <UNK>. We append start of sentence token <s> and end of sentence token </s> to every
sentence. We convert our dataset to lower-case to increase vocabulary coverage and use top 15K words
as the vocabulary. Table 1 shows evaluation result of each step in our pipeline. We empirically select
600 dimensional embedding , a single hidden layer with 600 LSTM hidden units for the baseline model.
Word Perplexity is used to evaluate and compare our models. Perplexity over the test set is computed
as exp(− 1

N

∑N
i=1 log p(wi|w<i)), where N is the number of words in the test set. Our final model is

roughly 8× smaller than the baseline (which is huge and slow) with 5% (3.16) loss in perplexity.

3.2 Performance Comparison

We compare our performance with existing word prediction methods using manually curated dataset2,
which covers general keyboard scenarios. Due to lack of access to language modeling engine used in
other commercial solutions, we are unable to compare with them on word perplexity metric. To the
best of our efforts we try to minimize all the personalization these solutions offer in their prediction
engines while performing the human evaluation on the manually curated dataset. We employed three
evaluators from the inspection group to cross-validate all the tests in Table 2 to eliminate human errors.
We achieve the best performance compared to other solutions in terms of Keystroke Savings (KS) and
Word Prediction Rate (WPR) as shown in Table 2. KS is a percentage of keystrokes not pressed compared
to a keyboard without any prediction or completion capabilities. Every character the user types using the
predictions of the language model counts as keystroke saving. WPR is a percentage of correct word
predictions in the test set.

4 Conclusions

We have proposed a practical method for training and deploying RNN-LM for a mobile device which
can satisfy memory and run-time constraints. Our method utilizes averaged output of teachers to train a
distilled model and compresses its weight matrices by applying shared matrix factorization. Our memory

1The dataset is available at https://github.com/Meinwerk/WordPrediction
2The dataset consists of 102 sentences (926 words, 3,746 characters) which are the collection of formal and informal

utterances from various sources. It is also available at https://github.com/Meinwerk/WordPrediction
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Developer KS(%) WPR(%)
Our model 65.11 34.38
iOS 64.35 33.73
Swiftkey 62.39 31.14
Samsung Galaxy S6 59.81 28.84
G-board 58.89 28.02

Table 2: Performance comparison of our method and other commercialized keyboard solutions by vari-
ous developers. Higher the better.

footprint is 7.40MB and is well within the run-time constraint of 10ms per prediction (6.47ms). Also,
we have compared proposed method to existing commercialized keyboards in terms of keystroke savings
and word prediction rate. In our benchmark tests, our method out-performed the others.
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