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Abstract

The increased demand for structured knowledge has created considerable interest in knowledge
extraction from natural language sentences. This study presents a new Korean knowledge extrac-
tion system and web interface for enriching KBox, a knowledge base that expands based on the
Korean DBpedia. We aim to create an endpoint where knowledge can be extracted and added to
KBox anytime and anywhere.

1 Introduction

Information extraction (IE) is an important task in the natural language processing (NLP) field. Various
large-scale knowledge bases (KBs) such as Freebase(Bollacker et al., 2008), DBpedia(Auer et al., 2007),
and YAGO(Suchanek et al., 2007) are widely used in many NLP tasks. These KBs store knowledge in the
form of a triple; for example, (Les Miserables, author, Victor Hugo). However, because
even large-scale KBs do not contain all the possible knowledge, the knowledge completion task remains
crucial in the NLP field. Various approaches can be used for constructing knowledge completion systems,
such as knowledge reasoning and extraction. Among them, the task of extracting factual knowledge from
unstructured text, such as natural language sentences, is important.

In addition, (Lin et al., 2017) mentioned that certain knowledge is described only in a certain lan-
guage. For example, the Korean Wikipedia contains much information about Korean culture; similarly,
the English Wikipedia contains information about English culture. Moreover, as far as we know, no
knowledge extraction system is available for all languages. In addition, building a KB for a specific
language requires an ontology schema definition and a knowledge extraction system that is appropriate
for that language, as if creating a WordNet (Miller et al., 1990) for each language.

This paper describes a work-in-progress (demo) for building a Korean knowledge extraction system1

for enriching a KBox2 knowledge base. The final goal of our research is to build an iterative knowledge
learning and extraction system. This web interface plays an important role in accepting new text at
anytime and anywhere. Then, knowledge can be extracted from the input text through the web interface
and can be accumulated directly in KBox. By doing so, the key modules for knowledge extraction,
entity linking and relation extraction (RE), can later learn and improve using this steadily accumulated
knowledge. This study makes the following contributions: (1) the first open Korean knowledge extraction
system with a web interface and (2) immediately accumulate knowledge that extracted from the proposed
system in KBox.

2 System Description

Figure 1 shows the architecture of the proposed demo system. This system has three main parts: Pre-
processing, Relation Extraction, and Post-processing. Through the web interface, text is processed se-

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://wisekb.kaist.ac.kr
2http://kbox.kaist.ac.kr
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Figure 1: Architecture of the proposed demo system.

quentially by each main parts to extract knowledge and this knowledge is stored in KBox immediately.
Details of each part are as follows.

2.1 Preprocessing

Preprocessing involves the following three steps in sequence. NLP Tool extracts features such as part-of-
speech (POS) tags, dependency parsing, and named entity of input text. Entity Linking (Kim and Choi,
2015) links entity mentions in the text with their corresponding entities in KBox. This entity linking
system consists of two modules: the entity boundary detection module finds out entity candidates from
the text using a bidirectional long-short term memory (LSTM) model with inside-outside-beginning
(IBO) and POS tags as features, and the entity disambiguation module takes entity candidates extracted
from the entity boundary detection module and selects the most appropriate entity candidate. The system
uses a support vector machine (SVM) with entity boundary information and semantic relations between
entity candidates, such as entity popularity and inter-entity relations, as features. Korean has an entity
made up of single character. Almost all single character entities have different meanings in the same
representation, but features that distinguish these different meanings are not enough. Therefore, in our
entity linking system, single character entity is not treated as candidate entity mention. Input Formatter
prepares the input data for each RE model. Because the rule-based RE model use all features generated
by the NLP tools, the JSON format was used to effectively deliver this data. Other RE models use
the entity-linked text, and a paragraph-level model takes information to distinguish paragraphs using a
new-line character.

2.2 Relation Extraction

RE is a task to classify ontological relations between two entities mentioned in a text, and it is a essential
for extracting knowledge from natural language sentences. However, even a state-of-the-art RE model
(Lin et al., 2017) shows low performance (F-scores 40%–50%). Because it cannot achieve satisfactory
performance with just one RE module, we have configured an ensemble with multiple RE models. In the
relation extraction step, our system considers not only the entities provided by the entity linking system
but also the results of named entity recognition (NER) module as the entity. A new entity that does not
exist in KBox cannot be identified by entity linking system, therefore we consider the result of NER as
a new entity. Of the many types of NER, only three types of Person, Location, and Organization are
considered to be new entities.
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The Pattern-based RE model (Choi et al., 2016) aims to extract knowledge with high reliability.
Human annotators use this model to generate patterns using lexical and syntactic features such as POS,
dependency tree, and named entity recognition. This model shows a high precision but low recall, and
therefore, scalability is a problem.

Sentence-level RE consists of both convolutional neural network (CNN) (Nam et al., 2018) and LSTM
models to address scalability issues and increase recall. These models use distant supervision (Mintz et
al., 2009) as a way to collect training data. Distant supervision assumes to collect all the sentences that
contain both entities of a triple. Thus, it is widely used as an effective way to automatically create labeled
data between a large-scale KB and a corpus. Both CNN and LSTM models use entity-embedded Korean
word embedding as input vectors; the CNN model additionally uses vectors for position and POS. The
sentence-level RE model is used to reveal the relation between two entities in a sentence; therefore, it is
weak at extracting facts that can be found across sentences (paragraph).

One of the differences between Korean and English is the zero anaphora. In Korean, repeated subjects
are frequently omitted in the latter sentence. To address this problem, the Paragraph-level RE model
(Kim and Choi, 2018), which is useful for estimating omitted subjects and predicting relations, explores
the incorporation of global contexts derived from paragraph-into-sentence embedding as a means of com-
pensating for the shortage of training data in distantly supervised RE. This model specifically performs
zero subject resolution through entity-relation-based graph analysis to find a central entity. The central
entities are selected from each paragraph by calculating the out-degree centrality based on the network
model of the entity graph using the knowledge base triples. This allows us to learn RE models for in-
formal sentences and has the advantage of compensating for a shortage of training data in the DS-based
approach to null subject languages.

2.3 Post-processing

Rather than independently determining the knowledge extracted from each RE module, it is important
to combine the results of all modules. We have created an Ensemble module based on two concepts:
(1) knowledge with high score from one module and (2) same knowledge extracted in multiple modules.
A KB should be built based on an ontology schema. Unfortunately, automatically extracted knowledge
includes some errors, many of which do not fit the ontology schema. Schema Filtering identifies invalid
triples and filters them out using domain and range definition of each relation(property) based on two
concepts: (1) If the domain or range of relation and subject or object entity types do not match, the triple
will be filtered. (2) If the type of entity is not defined, the triple will pass with low calibrated score. Out-
put Formatter produces two types of output data. The first is the JSON format for the web interface, and
the second is the tab-separated values format that includes triple, triple score, source module, and source
sentence for adding to KBox. Through this series of processes, knowledge is extracted and accumulate
continuously in KBox.

2.4 KBox

KBox is a new KB that expands Korean DBpedia3. KBox consists of two types of storage: One keeps
track of both candidate and reliable triples by MySQL, and the other stores only the reliable triples in
the former storage by Stardog, a type of a triple store. All the information about all the triples, such
as triple scores, the source module, and the source sentence, are stored by MySQL. The reliable triples
consist of (1) the initial triples extracted from the Wikipedia infobox (DBpedia) and (2) the automati-
cally extracted triples using the proposed system with a score above 0.9. The expansion of KBOX in
Korean DBpedia is three-fold. First, the class hierarchy follows that used in DBpedia4, but property def-
initions are revised and strengthened. The domain and range of each property are defined to be common
to each language; however, we examined the triples in the Korean DBpedia and found that the schema
can be defined more precisely or need to be modified. We then revised the KBox schema by performing
instance-based domain range inference. Second, KBox has improved on the triple compared to Korean

3http://ko.dbpedia.org/
4http://mappings.dbpedia.org/server/ontology/classes/
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Figure 2: Screenshot of an extracted knowledge from a sample input

DBpedia. First, we defined 763,974 types for 81,991 entities based on the sameAs link information of
the English DBpedia and Wikidata more than Korean DBpedia. Second, we converted local properties
into ontological properties using a mapping table which was manually created by three expert annota-
tors. As a result, 1,678,163 triples represented by Korean local properties were converted, for example,
prop-ko:chul-saeng-ji to dbo:birthPlace. This makes it possible to express a triple repre-
sented by a different relation name for the same knowledge in one unified relation. Third, automatically
extracted triples are added from this proposed demo and other batch processes in our own server.

3 Demonstration

Figure 2 shows a screenshot of the proposed demo system. Our demo system basically uses Korean
natural language sentences as an input. The extracted knowledge is presented to the user in two forms.
First, the entity linking results are displayed in color and underline on the input text. When you move
the mouse over an entity, the entity type, lexical mention, and Korean and English entity names are
displayed. Second, the triples are displayed sorted and rolled up by entity. To demonstrate effectively
to users who do not use Korean as a native language, English entities corresponding to Korean entities
are displayed together. The source code for our demonstration system has been released5 under a CC
BY-NC-SA license.

4 Conclusion

This study develops a new Korean knowledge extraction system for enriching a KBox. The main contri-
bution is to improve the user accessibility through a web interface, and to provide a Korean knowledge
extraction system. Furthermore, new knowledge extracted from the web interface is continuously accu-
mulated in KBox. The core knowledge extraction core modules such as entity linking and RE have laid
the foundation for improving the learning model based on the enhanced KBox.
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