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Abstract

There are few corpora that endeavor to represent the semantic content of entire documents. We
present a corpus that accomplishes one way of capturing document level semantics, by annotat-
ing coreference, implicit roles and bridging relations on top of gold Abstract Meaning Repre-
sentations of sentence-level semantics. We present the methodology of developing this corpus,
alongside analysis of its quality and a plausible baseline for comparison. It is hoped that this
Multi-Sentence AMR corpus (MS-AMR) illustrates a feasible approach to developing rich rep-
resentations of document meaning, useful for tasks such as information extraction and question
answering.

1 Introduction

Although Abstract Meaning Representation (AMR) (Banarescu et al., 2013) shows promise for a range
of tasks such as summarization (Liu et al., 2015; Viet et al., 2017) and information extraction (Garg et
al., 2016), it is restricted to capturing the semantics of individual sentences. For many purposes, when
examining the semantics of a document, one also needs access to cross-sentence information such as
coreference.

We suggest that the AMR approach to semantic representation has useful characteristics for an exten-
sion to discourse-level representations. AMR represents sentence meaning in a simple, readable semantic
graph, such that annotators may directly mark coreference relations upon the AMR graph itself. AMR
also annotates implicit roles in some within-sentence contexts, and the PropBank predicate annotations
provide a resource for extending those implicit roles annotations to a document level.

The Multi-Sentence Abstract Meaning Representation (MS-AMR) corpus is a corpus annotated on
top of existing gold AMRs, extending them with this additional information. By linking those AMRs
together, it presents an integrated representation of the meaning of an entire document or discourse, as
the addition of the coreference, implicit role reference and bridging relations across each AMR helps
to build a larger representation of the entire propositional content of the document. Because these MS-
AMR representations are annotated directly onto the variables within an AMR semantic representation,
it is also a different task from traditional coreference, event coreference or implicit role coreference
tasks, and results in a fundamentally different kind of data. We present a baseline system and inter-
annotator agreement scores, which we hope will illuminate the nature and quality of the dataset, and
outline methods for how to score MS-AMR system outputs.

2 Annotation Methodology

2.1 Background: Within-sentence Abstract Meaning Representation
AMRs are directed acyclic graph representations of sentence meaning (Banarescu et al., 2013), designed
to capture the important meaning elements of a sentence while abstracting away from syntactic details
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Bill left for Paris
(l / leave-11

:ARG0 (p / person :wiki - :name (n / name :op1 “Bill”))
:ARG2 (c / city :wiki “Paris” :name (n / name :op1 “Paris”)

He arrived at noon
(a / arrive-01

:ARG1 (h / he)
:ARG3 (i / implicit role: start point)
:ARG4 (i2 / implicit role: end point; destination)
:TIME (d / date-entity :dayperiod (n3 / noon)))

Figure 1: Example of MS-AMR annotation; annotators link coreferent variables (such as marking a
relation between between p and h (in red)) and implicit roles, here linking the destination (arg4) in the
second sentence to the previous variable c (in blue)

of how that meaning was expressed. AMRs capture basic representations of semantic roles (using the
numbered arguments of PropBank (Palmer et al., 2005)), as well as within-sentence coreference, named
entity and entity linking information. Thus, a simple sentence such as “Bill left for Paris” can be repre-
sented as in the first AMR in Figure 1, with “leave-11” denoting the physical departure sense of “leave”,
numbered arguments such as “arg2” denoting semantic roles that are unique to that sense (e.g. for leave-
11, arg2 is the destination), and “Bill” and “Paris” both having named entity labels (person and city) as
well as links to Wikipedia when possible. One can therefore think of an AMR as a graph of the mean-
ing of a sentence, with “variables” such as l, p and c being nodes in that graph, and “/” denoting an
“instance-of” relation, showing that p is a thing of type person and that c is a thing of type city.

2.2 Annotating Multi-sentence Coreference Over AMRs

Annotating multi-sentence AMR has fundamentally different characteristics from coreference annotation
over surface forms. Annotators start with gold AMR annotations (using the upcoming AMR public
release), and add coreference relations (and related annotations such as bridging and implicit roles) as
a layer on top of those gold AMRs. Therefore, rather than annotating spans, annotators label clusters
of variables that refer to the same entity or event over the AMRs constituting a document. Figure 1
illustrates a basic example of coreference in MS-AMR, showing both coreference and an example of
implicit role coreference.

This annotation is structured so that alongside the annotation of explicit coreference information,
annotators can also capture implicit role information. Because within-sentence AMR has all predicates
annotated with PropBank senses, we have access to the lexicon with a list of all numbered arguments
we might expect for that predicate. We can therefore produce a list of the numbered arguments that
are not explicitly filled in the text and show these unfilled roles to annotators. These unfilled roles are
temporarily added during annotation – as is illustrated with the arg3 and arg4 of the predicate “arrive-
01” in Figure 1 – and can be added to coreference clusters just like any other variable. This is similar
to prior works in implicit role annotation (Gerber and Chai, 2010) in that we are using semantic role
inventories to prompt annotators with possible implicit roles, while adding the innovation of fitting this
within a coreference task. However, while previous annotations prompted annotators with an implicit
role and asked them to look through prior text for its referents, this annotation fits implicit roles into the
task of coreference labeling. An example of the actual act of annotation with the Anafora toolkit(Chen
and Styler, 2013) for these additional implicit role options can be seen in Figure 2.

This annotation also labels some examples of “bridging” coreference relations (Clark, 1977; Poesio et
al., 1997). We annotate two more common bridging relations, part/whole relations (as in example 1) and
set/member relations (as in example 2), with a focus upon those between named entities and common
nouns.

1. I think this shows that pretty much every President can do any design thing they want with both the



3695

Figure 2: Annotation interface, illustrating implicit role links. Annotators click on boxes within the
AMR (left) to add them to coreference chains (full chains shown on the right), as with the link between
the implicit topic (“i2”) and the earlier “l / lie” mention.

Residence and the Office Wings (both given part/whole relation to “the White House”)

2. I also liked “Deception point”. So I have read all four of his books and enjoyed them. (set/member
relation)

Those examples illustrate the emphasis upon capturing part/whole and set/member relations that require
contextual understanding; annotators were instructed not to link part/whole relations that are only know-
able through world knowledge, specifically those between named, wikified entities (such as knowing that
Damascus is part of Syria).

This annotation also captures more event coreference phenomena than what is captured in OntoNotes-
style coreference annotations (Pradhan et al., 2011). While those prior annotations focused upon nominal
coreference, capturing verbal mentions only occasionally (when they were coreferent with a nominal
mention), multi-sentence AMR annotators were instructed to link together coreferent variables regardless
of their part of speech. Furthermore, because of the AMR normalization of surface-form variation,
complex details regarding how to represent an event (such as the span to use for light verbs) is already
normalized into single PropBank rolesets during AMR annotation. Annotation guidelines are publicly
available at https://github.com/timjogorman/Multisentence-AMR-guidelines/.

2.3 Annotation Toolkit and Pipeline

MS-AMRs are annotated using the Anafora toolkit (Chen and Styler, 2013), a web-based system de-
signed for coreference and temporal annotation. An example of the actual annotation interface is shown
in Figure 2. As MS-AMR representations provide an annotation layer on top of gold AMRs – rather than
as a change to the format of the AMRs themselves – the output of this annotation does not modify the
AMRs. THis results in a set of stand-off annotations linking to each variable within a given AMR. We
assert this is a useful characteristic of any modifications of the AMR corpus, as it allows the AMRs to
remain compatible with existing parsing or generation systems.

Some coreference information was already provided during within-sentence AMR annotation, as
AMR annotations are annotated with links between named entities and the relevant Wikipedia ID. This
gold “wikification” information was provided as pre-annotations, and allowed annotators to focus upon
more difficult coreference links involving pronouns, common nouns, verbs and implicit roles.

Quality control tested for consistency and coverage of the data. First and second person pronouns were
checked against speaker metadata to confirm that annotators were properly keeping track of discourse
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Train Test Double Annotation
Files 284 9 43
AMRs 7826 201 588
Tokens 122000 3700 8200
Coreference Chains 3810 87 381
Implicit Roles 2386 67 371
Bridging Relations 1792 54 160

Table 1: Basic statistics about size of the MS-AMR corpus

participants, and certain highly anaphoric elements (such as “he” and “she”) flagged whenever not anno-
tated as anaphoric. As the AMR corpus was also being corrected and revised during this annotation to
improve predicate coverage and treatment of comparatives (Bonial et al., 2018), annotations were stored
with their concept labels and double-checked for changes in the underlying AMR.

Final data (included in an upcoming AMR public release) includes a description of each AMR doc-
ument (as defined by LDC segmentations of multi-thread discourse into tractable discussions), defined
as an ordered list of AMRs identified by their IDs. Each coreference cluster identifies explicit mentions
by the ID within the normal AMR release and the variable within that AMR; implicit roles are identified
by the identity of the predicate they are an argument of, with a label for the numbered argument that is
implicit.

2.4 Corpus Profile

Multi-Sentence AMR was annotated over previously annotated gold AMRs of colloquial written English
(from multi-post discussion forums and web blogs), filtered for discussions with fewer than 100 sen-
tences. The corpus is composed of 293 annotated documents in total, with an average of 27.4 AMRs
(429 words) per document, covering roughly 10% of the total AMR corpus. Counts for different types
of mentions are listed in Table 1.

A small test split is also defined, annotated over documents from the test split of the AMR corpus.
This is a small test set for systems to report preliminary results; it is hoped that this can result in shared
tasks that might test against larger sets of unseen data. Annotation of this corpus is complete, and will
be released in the next public release of AMR data through the Linguistic Data Consortium.

2.5 Related Work

Densely annotated datasets in which semantic data and coreference have been represented in the mul-
tiple layers of the OntoNotes corpus (Pradhan et al., 2011) and the Prague Czech-English Dependency
Treebank (PCEDT) (Čmejrek et al., 2004). This MS-AMR data differs primarily in that the data is more
directly joined into a single set of connected graphs, rather than many different layers of annotation.
Annotations such as ACE and ERE also capture roles and entity annotations alongside coreference, but
only cover a small portion of the total semantics of a document, filtering only the elements relevant to a
task-specific ontology (Song et al., 2015; Bies et al., 2016).

Li Song and Xue (2018) annotates dropped pronouns over Chinese AMR annotators, but only deals
with implicit roles in specific constructions. Annotations independent of AMR have provided implicit
role annotations with PropBank or NomBank(Palmer et al., 2005; Meyers et al., 2004) semantic roles,
but both resources were limited to a small inventory of 5-10 predicate types, rather than all implicit
arguments in a text(Gerber and Chai, 2012; Moor et al., 2013).

Bridging information has also been annotated in a range of recent corpora (Nedoluzhko et al., 2009;
Poesio et al., 2008; O’Gorman et al., 2016; Roesiger, 2018) and resulted in systems (Poesio et al., 2004)
capable of predicting such relations. Some bridging relations were also captured by within-sentence
AMR annotations, encoded by the “include-91” relation.

While MS-AMR focuses upon capturing the propositional content of a document, it does not capture
other dimensions of discourse annotation, such as rhetorical structure. Corpora such as RST (Carlson
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et al., 2003), SDRT (Baldridge et al., 2007), GraphBank (Wolf et al., 2004) or PDTB (Miltsakaki et
al., ) therefore capture dimensions of meaning that differ from the propositional content captured in this
corpus.

3 Measuring MS-AMR Corpus Quality

For a subset of the training data, we took each document (i.e. the sequence of AMRs that reflect a
document) and double-annotated it, to measure inter-annotator agreement and check for persistent errors.
These additional annotations are listed in Table 1 under the “Double Annotation” column, and provided
in the release.

3.1 Coreference Chain Quality

When dealing with two MS-AMR annotations done over the same set of gold AMRs – as with inter-
annotator agreement data here – we can treat a given variable in each AMR as a possible “mention”,
just as one might treat a span of text in a document. With that assumption, we may therefore measure
MS-AMR IAA coreference scores using standard means of measuring coreference quality. One current
approach – used because it is the standard for scoring coreference systems – is to use an average of
the BCUB (Bagga and Baldwin, 1998), MUC (Vilain et al., 1995) and CEAF-E (Luo, 2005) metrics,
referred to as the “CoNLL-2012 F1 score” (calculated using the reference implementation of Pradhan et
al (2014a)).

Under those assumptions, the annotations get a CoNLL-2012 F1 of 69.86, using the reference im-
plementation for these scores. For comparison, more traditional span-based coreference annotations
(O’Gorman et al., 2016) found inter-annotator agreement of 65.5 for event F1, and 70.4 for entity F1
(CoNLL F1 score). This is therefore in the rough range of where one might expect human performance
to be. However, this does not have actual comparability to other annotation schemes, as this data uses
both event and entity coreference, and does not encompass within-sentence coreference (which is already
provided in gold AMR annotations).

3.2 Agreement when underlying AMRs are not identical

Because MS-AMR was annotated on top of gold AMRs, most inter-annotator agreement pairs were
annotated over an identical set of within-sentence AMRs for the document. This has the advantage
of separating multi-sentence AMR disagreements from other AMR disagreements, but it left open the
question of whether that agreement would change drastically if the underlying AMRs were different.
Starting with documents where two separate annotators provided different AMRs for each sentence, we
separately annotated two multi-sentence AMR annotations for that same document, each annotated on
top of a different set of AMRs.

The challenges in evaluating this kind of agreement presage the challenges of measuring the quality of
system-predicted MS-AMR. In traditional annotations of coreference over surface forms, one can assume
that two mentions are identical when they refer to the same span of text. However, with two separate
AMRs, one cannot directly infer whether two mentions reference the same span, but must determine a
mapping between the variables of each AMR. The SMATCH (Cai and Knight, 2013) algorithm, used for
evaluating AMRs, calculates such a mapping. Using SMATCH to align those AMRs and coreference
scores from the reference implementation of the scoring metrics (Pradhan et al., 2014b), we find the
CoNLL-2012 F1 to be 66.72. Such a score is limited in that it was measured over a very small exploration
set (40 AMRs), but it provides some preliminary suggestion that the identical underlying AMRs used in
the IAA numbers above are not dramatically inflating the inter-annotator agreement.

3.3 Implicit Role Agreement

Implicit roles have been annotated in prior corpora, but those annotations have been limited in size or
coverage (Ruppenhofer et al., 2010; Gerber and Chai, 2010). The most comparable prior annotation is
that of Gerber and Chai (2010), which looked at 10 nominal predicates in WSJ data, presenting anno-
tators with numbered arguments without explicit mentions and instructions to link these arguments to
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Relation Type Resource Metric Score
Coreference This work CoNLL-F1 69.9

RED-Entities (O’Gorman et al. 2016) CoNLL-F1 70.4
RED-Events (O’Gorman et al. 2016) CoNLL-F1 65.5

Implicit Role This work Cohen’s K 0.59
Gerber and Chai (2010) Cohen’s K 0.64

Table 2: Agreement, alongside agreement in similar corpora (not perfectly comparable)

previously mentioned terms. That annotation resulted in a Cohen’s kappa (Cohen, 1960) of κ=0.64. The
current annotations result in a lower kappa of κ=0.59, which is a testament to the difficulty of the task.

As found in Gerber and Chai (2010), the bulk of this type of error is in the task of discerning whether
a given referent is implicit at all. When both annotators agreed that a given implicit role was present,
κ=0.85.

The implicit roles that annotators disagreed on were often those whose referents could be construed
either as a specific referent in context or as a generic reference, most commonly with the non-focused
element in a communication or mental state verb – such as the person being interested in “that’s interest-
ing”, or the cause of “I laughed out loud”. A similar issue involved the recipient or listener role for verbs
like “say-01” or “ask-01”, which can sometimes be inferable from context but are low in prominence.

4 Measuring MS-AMR similarity — scoring system performance

4.1 A baseline implementation
We present a simple baseline that hints at a lower bound for the task. We use the publicly available
version of the Brandeis transition-based AMR parser (Wang et al., 2016) combined with an off-the-shelf
coreference system (Clark and Manning, 2016) using an AMR-to-surface-form aligner (Flanigan et al.,
2014) to convert the surface coreference to links between AMR nodes.

4.2 Simple evaluation of system prediction
As mentioned in section 3.2, one hurdle in evaluating system predictions comes from the absence of
clearly alignable “mentions” for use in coreference metrics. We can use the SMATCH metric on each
individual sentence within an AMR document to resolve this, as calculating a SMATCH score involves
determining the highest scoring alignment between variables within a system prediction and a gold AMR.
We can then score against that mapping.

The simple baseline outlined above was evaluated according to this metric, and we found a 27.79
CoNLL-F1 average (evaluating against the inter-annotator agreement data, which we use as a develop-
ment set). While some amount of this may reflect simple differences such as the shift in domain to
discussion forum data, it also underlines the inherent challenge of the task.

4.3 Evaluation with Document-level SMATCH
One hope with MS-AMR data is to encourage people to produce systems that go from strings to a
representation of the meaning of a document. We therefore may want to have metrics that do not simply
score coreference, but which score the entire quality of a resultant knowledge graph. One method to
accomplish this goal is to use these multi-sentence AMR annotations to combine all the AMRs of a
document into a single large “document graph”, and to score entire document graphs using the SMATCH
metric.

We follow prior work in abstractive summarization (Liu et al., 2015), which originally outlined simple
methodologies for combining AMRs into a larger AMR for a document. This fundamentally involves a
combination of two things – concatenating all sentences together under a new root node, and merging
variables that are coreferent into a single variable.

Earlier work on this (Liu et al., 2015) merged only identical named entities and date-entity sub-
graphs, and therefore did not run into the complexities in terms of merging documents with similar
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Bill left for Paris
(l / leave-11

:ARG0 (p / person :wiki - :name (n / name :op1 “Bill”))
:ARG2 (c / city :wiki “Paris” :name (n / name :op1 “Paris”)

He arrived at noon
(a / arrive-01

:ARG1 (h / he)
:ARG4 (i2 / implicit role: end point; destination)
:TIME (d / date-entity :dayperiod (n3 / noon)))

Merged form:
(m / multi-sentence)

:snt1 (l / leave-11
:ARG0 (p / person :wiki - :name (n / name :op1 “Bill”))

:instance-of “he”
:ARG2 (c / city :wiki “Paris” :name (n / name :op1 “Paris”)

:snt2 (a / arrive-01
ARG1 p
ARG4 c
:TIME (d / date-entity :dayperiod (n3 / noon)))

Figure 3: Example of merging multiple documents into a single AMR.

but non-identical information. When two triples are identical – such as twice labeling “Hillary Clinton
as “:instance-of person”, or adding multiple “:wiki” links to “Hillary Clinton” – we merge those redun-
dant bits of information. However, if a variable has different concepts or relations (e.g. “person” in one
AMR and “woman” in another), the additional concepts are added as additional “instance-of” relations
to the resultant merged entity. Figure 3 illustrates how the merging of AMRs is actually enacted into an
output AMR.

We then score these two document graphs using the SMATCH metric, originally proposed to score
single-sentence AMRs. SMATCH scores each relation within an AMR graph, as measured as a triple
containing the variable, the relation, and the variable or constant that is being linked to. These triples
can reflect an actual relation, such as saying that there is a TIME relation between variable a and variable
d, or can express the “instance-of” relations captured by the “/” in AMR, such as a being an instance-of
“arrive-01”. The SMATCH metric calculates an F1 measuring how many of the triples within the gold
AMR correspond to a triple in the system AMR. The issue is that AMR variable names are somewhat
arbitrary — “a” and “d” in one AMR do not necessarily correspond to “a” and “d” in another AMR —
and therefore one needs to calculate how to map the variables within another AMR onto the variables
within the gold AMR; Cai and Knight (2013) introduced a hill-climbing method allowing one to calculate
the alignment that gives the highest F1 over these triples. Importantly for multi-sentence AMR, we can
utilize the same metric over a much larger AMR graph, although this becomes computationally expensive
with larger document sizes.

We therefore score these document AMRs by treating them as single AMRs to be scored using
SMATCH. As such, this is an evaluation of both the quality of within-sentence AMRs and coreference
information. Table 3 illustrates the performance of the baseline system, compared with inter-annotator
agreement scores. Following the suggestion to approach coreference evaluation based on how it works
on edge cases (such as leaving all mentions as singletons) (Recasens and Hovy, 2011), we also report
scores for the document-level graphs when no cross-sentence coreference information is used. The
“AMR=identical” condition illustrates most instances of double annotation in our data, where both ver-
sions were annotated over the same AMRs; these receive very high SMATCH scores, due to the identical
underlying AMRs. The “AMR=human” condition illustrates a small set where two different annotations
of each AMR were used; this therefore represents human performance at this task. One can see that there
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System type AMR Coreference Double-annotation data Test
baseline system none 53.0 43.2
baseline system system 53.6 44.0
IAA human none 58.0
IAA human human 68.9
IAA identical none 78.5 80.6
IAA identical system 80.1 82.9
IAA identical human 87.3

Table 3: Agreement and baseline performance using SMATCH over document graphs. The
AMR=human condition is evaluated on a much smaller set of AMRs where we have two annotated
AMRs for each sentence.

is still a quite meaningful gap between this performance and the baseline system performance.
Notably, the simple baseline systems do not have dramatic increases over simply scoring the document

SMATCH of a sequence of AMRs with no coreference. Basic analysis of this shows that some of this
error is a consequence of the discussion genre: a baseline coreference model that did not track speakers in
the AMRs makes important errors in coreference chains regarding “I” and “you”. However, one can also
see from Table 3 that the MS-AMR score is still very dependent upon the quality of the within-sentence
AMRs, as one might expect from a measure of the general quality of a document representation.

5 Conclusions

We present here a new corpus of coreference, partial coreference and implicit roles on top of the Ab-
stract Meaning Representation corpus. While this is fundamentally an extension of AMR, we frame this
in relation to prior coreference work and propose a methodology for evaluating multi-sentence AMR
system predictions against these gold annotations. Such an annotation does not fully capture all of the
information one might hope to represent about the meaning of a document, as these representations leave
unmarked a great deal of information about temporal and aspectual structure, discourse structure or in-
formation structure. However, this corpus illustrates a methodology of annotating new layers of meaning
on top of AMR representations, which might be extended to such other representations.
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