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Abstract

We use a broad coverage, linguistically precise English Resource Grammar (ERG) to detect
negation scope in sentences taken from pathology reports. We show that incorporating this in-
formation in feature extraction has a positive effect on classification of the reports with respect
to cancer laterality compared with NegEx, a commonly used tool for negation detection. We an-
alyze the differences between NegEx and ERG results on our dataset and how these differences
indicate some directions for future work.

Title and Abstract in Russian

К вопросу о применении формальных грамматик в посторении признаковых векторов для
классификации отчетов о заключениях патологоанатомов

Мы предлагаем способ обогащения векторов признаков (feature vectors) лингвистичекой
структурой. Для внешней оценки эксперимента (extrinsic evaluation) мы смотрим на
результаты автоматической классификации отчетов о заключениях патологоанатомов
(pathology reports, такие как заключение о результатах гистологического исследования
и др.). В качестве лингвистической структуры мы выбрали сферу действия отрицания
(scope of negation), так как известно, что отрицание в тексте может влиять на качество
классификации медицинских заключений. В эксперименте мы используем имплементацию
формальной грамматики английского языка (English Resource Grammar) для определения
сферы действия отрицания на уровне предложения. Сначала текст отчета делится на
предложения. Из каждого предложения при помощи базы данных UMLS мы выбираем
слова и фразы – признаки. Те признаки, которые оказываются в сфере действия отрицания,
мы заменяем на специальные признаки. Например, в предложении No tumor in left breast,
если сфера отрицания определена достаточно широко, признак left breast будет заменен на
признак NEG:left breast. Все признаки, полученные из одного отчета, собираются в один
вектор (признаковый вектор данного отчета). Обогащенные таким образом признаковые
векторы затем используются для классификации отчетов на группы по расположению
первичного очага (в правой или левой части легкого или молочной железы). Мы сравниваем
воздействие нашей системы построения признаковых векторов на точность классификации
с популярной системой NegEx, которая использует для определения сферы действия
отрицания ряд эвристик. Результаты и анализ ошибок позволяют увидеть, что формальная
грамматика, основанная на глубоком синтаксическом анализе, действует точнее, чем
система NegEx. Система NegEx может ошибочно предположить сферу действия отрицания
в плохо структурированном тексте (например, в блоке текста, неправильно разбитом на
предложения), а формальная грамматика в этом случае не выдаст никакого ответа и тем
самым избежит ошибки. Мы делаем вывод, что использование формальных грамматик для
подобных задач может быть целесообразно.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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1 Introduction

Detecting negation scope remains a challenge in clinical notes information extraction (see e.g. Morante
and Daelemans 2009 for an overview of existing approaches for negation detection and related issues).
Perhaps the most extensively used negation detection tool is NegEx (Chapman et al., 2001), a regular
expressions-based tool, with 696 citations on Google Scholar,1 which is part of such well-known systems
as cTAKES (Savova et al., 2010). One reason NegEx is so popular is that it is rule based and thus
easily adapted to any English dataset. In general, rule based methods are important for domains where
data cannot be easily shared and so there is no guarantee an existing machine learning approach can
be successfully used, such as the clinical notes domain. That said, NegEx identifies negated tokens
from surface strings using a set of domain-specific heuristics which it applies directly to the surface
strings rather than to some syntactic or semantic representations of those strings. Such an approach is
unlikely to capture the rules of English negation in their generality. In contrast, linguistically motivated
implemented formal grammars2 map surface strings to abstract syntactic and semantic representations
and model language rules more accurately and robustly, in a domain-independent fashion.

For this paper, we classified a set of pathology reports diagnosing the cancer as located in the right or
in the left part of the body, an important data element used in clinical operations and research for paired
organ sites. The contribution of the paper is in incorporating precise negation scope information obtained
with an implemented broad-coverage grammar of English into the feature extraction procedure. The ex-
periment yielded incremental though consistent improvement when compared to NegEx, showing fairly
clear evidence that incorporating robust domain-independent linguistic structure into feature extraction
can be helpful for classification of this kind.

After summarizing related work (section 2), we present our experiment (section 3). The structure
of the experiment is as follows. Each pathology report in the dataset (section 3.1) is represented by a
feature vector constructed from a Unified Medical Language System (UMLS)-based feature set, which is
obtained as described in section 3.2 and then augmented by what we call negated features (section 3.3).
To help the reader, we introduce negated features right here first: In any sentence, a lexical feature which
was selected as highly informative for the training dataset (e.g. right, or malignancy) could actually
correspond to a negated concept. Assume the feature malignancy was selected by a feature selection
algorithm and will now be used in a classification task on a test dataset. Compare two hypothetical
single-sentence reports from this test dataset: A malignancy was identified and No malignancy was
identified. For the second report, which contains the feature malignancy within the scope of negation, we
want to exclude that feature when we turn this sentence into a vector. Otherwise, if we were to include
malignancy, we might misclassify the report as positive.3 Furthermore, a negated concept (which we
will represent as NEG:malignancy in this case) may itself be an informative feature. We identify these
negated features in the text of the reports using NegEx (as baseline) and the English Resource Grammar
(ERG; Flickinger, 2000, 2011), as described in 3.3. Then we train a number of classifiers on the training
portion of the dataset represented as feature vectors to discriminate between the classes left and right;
we then evaluate on the test portion of the data. Since our dataset was not annotated for negation, we are
performing an extrinsic evaluation of negation detection by showing the effect that using the grammar
for feature extraction had on classification. This extrinsic evaluation can later be complemented by an
intrinsic one.4 We present the numeric results (section 4) which show small but consistent improvement
of our approach over NegEx and conclude with a detailed analysis of the differences between the two
systems, which helps us identify directions for future work.5

1Accessed June 5, 2018.
2Not to be confused with domain specific grammars, common in natural language processing.
3Admittedly if the training data contained lots of negated examples, the feature would not come up as one of the best for

positive classification. However, negated and non-negated concepts may be unbalanced in the data, and furthermore, machine
learning-based classification here is just one scenario.

4As discussed in the related work section, the effect of finding negation scope using a precision grammar of English has
been examined by MacKinlay et al. (2012) on the sentence-level.

5To protect possible traces of sensitive data, the code will be available upon request.
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2 Related Work

Both rule-based and machine learning approaches exist for detecting negation scope. Morante and Daele-
mans (2009) is an example of a machine learning approach. Their system consists of two classification
tasks performed with supervised machine learning methods: finding negation tokens and classifying to-
kens as the first or last (or neither) token within the scope of negation. Morante and Daelemans (2009)
report high scores on the BioScope dataset (Vincze et al., 2008). However, machine learning approaches
like this one require sufficient annotated training data not always available for clinical tasks.

Sohn et al. (2012) use dependency parses in their rule-based system, noting that complex sentence
structure is difficult to learn automatically. A similar approach is taken by Mehrabi et al. (2015). In both
of these experiments, a set of rules was created specifically for the purposes of the project, and therefore
the systems cannot necessarily be directly extended to work on other datasets. Furthermore, ad hoc rules
are likely to be incomplete with respect to the variety of ways to express negation and the complexity of
syntactic structures over which negation can scope.

Packard et al. (2014) used the English Resource Grammar (ERG; Flickinger, 2000, 2011) for negation
scope detection in literary texts, to outperform the state-of-the-art at the time. In the biomedical domain,
the ERG was used by MacKinlay et al. (2012). In one task described in their paper (Task 3), MacKinlay
et al. (2012) constructed feature vectors for specific “events”, which were already identified by annota-
tions in their training data. They used the Minimal Recursion Semantics (MRS; Copestake et al., 2005)
and Robust Minimal Recursion Semantics (RMRS; Copestake, 2003) representations produced by the
ERG to identify speculation and negation over those events. Their results for negation performed best in
the BIONLP 2009 shared task.

Our study differs from MacKinlay et al. (2012) in one key way: whereas they look only at events of
interest (which they assume to be already identified in the data), we look at the entire text of a given
pathology report, without relying on sentence-level annotation of any kind. In other words, we hypoth-
esize that the usefulness of incorporating precise grammatical information about negation scope gener-
alizes to the document level. Other differences include that MacKinlay et al. (2012) looked at scientific
biomedical literature, while we use clinical reports as our data.

3 Experiment

The main contribution of the paper is the use of a broad coverage grammar (the ERG) for feature ex-
traction on the level of a complete pathology report. We describe the dataset in section 3.1. The feature
extraction technique is explained in detail in sections 3.3-3.5. To evaluate, we perform feature selection
(section 3.2) and use four popular ensemble classifiers (section 4.1).

3.1 Data
The dataset (Table 1) comes from the Surveillance, Epidemiology and End Results (SEER) Program6 and
is a subset of 4000 randomly selected, de-identified annotated pathology reports, representing 4 registries
and more than 70 pathology labs. This subset was used in a graduate level course7 on Natural Language
Processing in Cancer Informatics at the University of Washington .8 It is annotated for a variety of things,
including whether the primary tumor was found in the right or left part of the body (such as right vs. left
breast or lung). It is not annotated for negation. A small number of reports were classified to have both
right and left sites affected; we exclude them from the experiment in order to have a balanced dataset.

We relied primarily on the NLTK sentence tokenizer (Bird et al., 2009) to split pathology note sections
into individual sentence tokens. Subtopic headers (identified by their line-ending colon punctuation)
were extracted into separate sentence tokens, and mid-sentence line breaks were removed from sentence
tokens. The dataset was divided into training and test randomly, using a 66% / 33% split (two thirds used
for the training).

6https://seer.cancer.gov/
7LING575, Winter 2017
8Unfortunately, this particular dataset is not available for public use for reasons outside of authors’ control. Applying the

system to a public dataset remains part of future work.
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Total LAT RIGHT LEFT
Training 581 446 234 212
Test 293 233 122 111

Table 1: Dataset size. LAT are reports gold-annotated for right or left laterality.

The dataset partially motivated the choice of right vs. left laterality as our target annotation: On the
one hand, classifying documents for the location of the primary tumor is a useful task that could be
performed by a machine; on the other, it was one of the gold annotations occurring most often in the
reports. Filtering all reports for this annotation yielded a fairly large and balanced subset of documents
(Table 1).

3.2 Features
We represented each report as a feature vector as follows. Features were extracted sentence by sentence
and then aggregated into one set for the entire report. First we extracted all concepts for each report (as
described in section 3.2.1), and then selected 44 features using recursive feature elimination with Random
Forest9 on 33% of the training dataset set and supplementing that set symmetrically, e.g. adding ‘left
upper lobe’ where we only had ‘right upper lobe’. The resulting features were: ‘right breast’, ‘right lower
lobe’, ‘right lung’, ‘right upper lobe’,‘left breast’, ‘left lower lobe’, ‘left lung’, ‘left upper lobe’, ‘left’,
‘right’, ‘rul’, ‘lul’, ‘rll’, ‘lll’, ‘identified’, ‘carcinoma’, ‘adenocarcinoma’, ‘malignancy’, ‘malignant’,
‘tumor’, ‘in situ’, ‘invasive’, ‘infiltration’, ‘atypic’, ‘atypia’, ‘margin’, ‘rt breast’, ‘lt breast’, ‘rt lung’, ‘lt
lung’, ‘rt upper lobe’,‘lt upper lobe’, ‘rt lower lobe’, ‘lt lower lobe’, ‘metastasis’, ‘metastatic’, ‘found’,
‘suspicious’, ‘evidence’, ‘masses’, ‘tissue’, ‘specimen’, ‘determined’, ‘ruled out’. We supplement the
set manually because one third of the training set used to select features was not sufficient to produce a
list of features that robustly extended to the training set. For example, some of the training reports did
not have the feature right upper lobe but we noticed that they have left upper lobe instead and decided
to apply a symmetric manual extension to the feature set across the board. This way we hope to obtain
informative features while not overfitting to the training dataset.

3.2.1 Basic Features
We constructed basic feature vectors for each report by using MetaMap Lite to recognize concepts from
the UMLS term database (Aronson, 2001). Each sentence was parsed to find the longest matching UMLS
concepts and phrases, using the default MetaMap Lite setting for both stop words and POS tagging.
A report feature vector is the set of all the features listed above in section 3.2 that were extracted by
MetaMap for each sentence in this report. We only count each feature once per report.

3.3 Negation Scope and Negated Features
We compare two different methods of extracting negated features and their effect on classification:
NegEx (Chapman et al., 2001) which we consider our baseline, and the English Resource Grammar
(ERG; Flickinger, 2000, 2011).10 If a concept was marked as negated by the tool under consideration,
we remove the original feature from the feature list extracted from the sentence and replace it with the
negated feature (e.g. NEG:tumor, for a sentence like No tumor identified). Of course, if the same feature
was detected but not marked as negated in a different sentence in the same report, the report will still
have the non-negated version of the feature in its vector.

Table 2 shows the total number of feature tokens,11 for all sentences in the dataset, and separately the
number of feature tokens added by NegEx and the ERG. The ERG adds fewer features, which means it
detects negation in fewer occurrences than NegEx. Later in the paper, we discuss that while sometimes

9We took all the top scoring features which looked meaningful, namely stopping once we saw the word ‘Dr.’.
10Version 1214.
11We use the classic token/type distinction to talk about the features. For example, the sentence Signs of malignancy in left

upper lobe; no signs of malignancy in right upper lobe contains two tokens of the feature type lobe and just one token of the
feature type right upper lobe.
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total +NegEx +ERG
total 25159 3214 3002

Table 2: Feature tokens (features occurrences in each sentence).

it is detrimental to the evaluation results, other times features added by NegEx turn out to be noise, and
skipping them is actually more precise and beneficial.

3.4 NegEx
NegEx (Chapman et al., 2001) takes text (assuming that the whole text is one sentence) as input and
returns a list of concepts that it considers negated in that text. It attempts to determine what the scope
of negation is, but sometimes makes mistakes. For example, in the sentence No chest pain, no shortness
of breath, and no abdominal pain, the concept chest pain is affirmed (not negated) by NegEx.12 (We
will see a similar error hurting NegEx’s performance in section 4.3.3.) While any specific error can
be fixed, it can be difficult to fix such issues robustly and not cause regressions without relying on a
general set of linguistically motivated language rules. When this method of negation detection was
applied to feature extraction, the list of feature types was appended with NEG:in-situ, NEG:left breast,
NEG:left, NEG:identified, NEG:carcinoma, NEG:malignancy, NEG:margin, NEG:tumor, NEG:right,
NEG:invasive.

3.5 ERG
3.5.1 Overview
The English Resource Grammar (ERG; Flickinger, 2000, 2011) is a large, broad-coverage precision
grammar of English.13 The term ‘precision’ means that it encodes syntactic and lexical rules in a form
that aims for linguistic adequacy and generality, in this case using the Head Driven Phrase Structure
Grammar theory of syntax (HPSG; Pollard and Sag, 1994). The grammar maps surface strings to syn-
tactic as well as semantic representations which are licensed by lexical and phrase structure rules. The
ERG is supported by the DELPH-IN research consortium, along with a variety of tools for parsing, gen-
eration, and representing syntactic and semantic structures.14 It is the largest HPSG-based grammar, but
grammars of different sizes exist for other languages.15

3.5.2 Minimal Recursion Semantics
The ERG produces semantic representations compositionally in the format of Minimal Recursion Seman-
tics (Copestake et al., 2005), which we then use to extract negated features. Figure 1 shows a syntactic
structure (left) and an MRS (right) for the fragment sentence No evidence of malignancy. The syntactic
representation is a familiar constituency tree. The flat MRS representation is a bag of quantifiers, re-
lations, and predicates associated with handles (such as h13), which can be identified with each other
or not, allowing for scope underspecification.16 In this example, evidence is analyzed is being in the
scope of the no quantifier. The word malignancy is analyzed as the first argument of evidence (through
the indefinite quantifier, unexpressed on the surface level). The predicate of this sentence is unknown,
reflecting that it is a fragment.

A dependency MRS for the sentence A tumor was not identified is shown in Figure 2. DMRS repre-
sentations (Copestake, 2009; Copestake et al., 2016) are essentially a simplified version of MRS where
variables and their relationships are expressed as links. DMRS representations consist of elementary
predications (EPs) corresponding to surface tokens, such as the EP for negation, as well as abstract EPs
contributed by grammatical rules. The EPs are connected by links, forming a semantic dependency

12We used the version downloaded from https://github.com/chapmanbe/negex.
13Demo: http://erg.delph-in.net/logon.
14To follow up on the earlier example of NegEx making a mistake with the sentence No chest pain, no shortness of breath,

and no abdominal pain, we verified that the ERG returns a syntactic structure which has all three nouns in scope of negation.
15See e.g. http://www.delph-in.net/wiki/index.php/Grammars.
16See Copestake et al. (2005) for a discussion and examples of scope underspecification and other issues related to MRS.
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graph.17 DMRS representations are related to MRS (a DMRS can be created from an MRS deter-
ministically) but are easier to look at and to work with, and for our experiment we used the DMRS
representations.

One advantage of semantic representations like MRS or DMRS is that they abstract away from the
syntactic notions of subjects and objects, normalizing active/passive pairs to the same representation.
This is illustrated in Figure 2, where tumor is the ARG2 (the theme) of identify, despite being the gram-
matical subject of a passive sentence. Another advantage is a systematic treatment of scope, which is
discussed in the next section.

Figure 1: The ERG’s syntactic parse and the MRS of the fragment sentence: No evidence of malignancy

3.5.3 Extracting Features with the ERG
We parsed every sentence in each report with the ERG loaded into the ACE parser (Crysmann and
Packard, 2012).18 ACE has a default parse ranking procedure trained on a treebank (Toutanova et al.,
2005), and we selected the top ranked parse. The coverage of the parser was 22858/28788 sentences
(79%). It is not surprising that not all sentences are parsed, given the highly fragmented nature of the
reports, where newlines are often used to separate different parts of the same sentence. Statistical parsers
always return a parse; however, we will show that when striving for precision, no parse can be better
than a nonsensical parse.19 Once we parsed each sentence using the ERG, we crawled the dependency
(DMRS) representations to extract negated concepts. We extracted two types of negation: predicate
negation (the negation of events) and quantifier negation (the negation of entities).

_a_q _tumor_n_1 neg _identify_v_1 parg_d

TOP

RSTR/H

ARG1/H
ARG2/NEQ

ARG2/NEQ

ARG1/EQ

Figure 2: A semantic dependency graph (DMRS) produced by the ERG for: A tumor was not identified.

Predicate negation is represented with the EP neg (the semantic contribution of not) which scopes
over the predications contributed by the verb (neg’s ARG1) and the verb’s own arguments. From the
DMRS we extract the verb as well as its argument labeled ARG2. This label refers to the argument
receiving the action of the verb, or the semantic theme. For example, in Skin: invasive carcinoma does
not invade dermis or epidermis, we extract the verb invade and its ARG2 which is the the coordinated

17The DMRS graphs were produced using https://github.com/delph-in/delphin-viz.
18Version 0.9.24.
19That said, a more sophisticated tokenization technique, which would reconstruct more full sentences, would improve ACE’s

coverage.
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noun phrase dermis or epidermis.20 Extracting the ARG2 yields the same result in passive sentences,
such as Additional distinct breast masses or lesions are not grossly identified, where the ‘things not
identified’ are the additional distinct breast masses or lesions.

udef_q _carcinoma/nn_u_unknown neg _invade_v_1 udef_q udef_q _dermis/nns_u_unknown _or_c udef_q _epidermis/nn_u_unknown

TOP

RSTR/H

ARG1/H
ARG1/NEQ

ARG2/NEQ

RSTR/H

RSTR/H

L-INDEX/NEQ
R-INDEX/NEQ

RSTR/H

Figure 3: DMRS for the sentence Carcinoma does not invade dermis or epidermis

Quantifier negation is the negation of a noun phrase by the quantifier no, as in There is no evidence
of vasculitis, granulomatous inflammation, or neoplasm. First we identify the predications restricted by
the quantifier no. Here the restricted predication is the noun phrase headed by evidence, which itself
contains a prepositional phrase with coordinated noun phrases. We identify each concept in the noun
phrase and mark it as negated.

_be_v_there _no_q _evidence_n_of udef_q udef_q _vasculitis/nns_u_unknown _or_c udef_q _neoplasm/nn_u_unknown

TOP

ARG1/NEQ

RSTR/H

ARG1/NEQ

RSTR/H

RSTR/H

L-INDEX/NEQ
R-INDEX/NEQ

RSTR/H

Figure 4: DMRS for the sentence There is no evidence of vasculitis or neoplasm

When this negation detection method is applied to feature extraction, the original list of features is
appended by NEG:tumor, NEG:identified, NEG:carcinoma, NEG:malignancy, NEG:margin, NEG:in
situ, NEG:evidence. Compared to NegEx, this is fewer feature types as well as fewer feature tokens
added. As we will see, this may lead to higher precision in classification. On the other hand, the lack
of highly informative concepts related directly to left and right (such as left lung) indicates we could get
better results if we supplied the ERG with more data that it can successfully parse. There are certainly
sentences in the data in which the concepts like this are within the scope of negation. As we will see,
NegEx sometimes gets it right and other times it does not. The reason the ERG does not detect them is
usually that it was not supplied a well-formed sentence due to tokenization issues.

4 Results and Error Analysis

4.1 Evaluation by Classification
To test our feature extraction technique, we used four popular ensemble algorithms which generally
perform well on small datasets, taking advantage of the scikit-learn Python library (Pedregosa et al.,
2011). The parameters were chosen by cross-validation on a small development set.

classifier code cite # estimators learn. rate max. depth other
AdaBoost AB Freund and Schapire (1995) 50 1 - SAMME.R
Random Forest RF Breiman (2001) 100 - 20 -
Gradient Boost GB Friedman (2001) 100 0.1 1 -
Voting classifier VC Pedregosa et al. (2011) - - - hard, no weights

Table 3: Classifiers used for evaluation

4.2 Numeric Results
Table 4 shows the results. The first column is the ensemble classifier code (4.1); right and left are
laterality classes. Incorporating information about negated concepts is beneficial in many cases; the

20An additional trivial step is required to extract dermis and epidermins as separate concepts
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CL NE ERG
precision recall micro-avg F1 precision recall micro-avg F1

right left right left right left right left
AB 0.9754 0.9459 0.9520 0.9722 0.9614 0.9917 0.9554 0.9600 0.9907 0.9742
RF 0.9760 0.9722 0.9760 0.9722 0.9742 0.9835 0.9464 0.9520 0.9815 0.9657
GB 0.9835 0.9464 0.9520 0.9815 0.9657 0.9836 0.9550 0.9600 0.9815 0.9700
VC 0.9756 0.9600 0.9545 0.9722 0.9657 0.9917 0.9600 0.9554 0.9907 0.9742

Table 4: Classification results with four different classification algorithms; NegEx vs. ERG.

improvement is small but fairly robust across different ensemble algorithms. The only algorithm where
NegEx-detected negation was better than the ERG is Random Forest, and even for Random Forest, the
precision is higher with the ERG for one of the classes and the recall is higher for the other.

4.3 Improvement and Error Analysis
Below we will look at specific improvements and regressions, per record. The record ID has been
changed for anonymity concerns. We primarily see differences in classification with respect to 7 records;
we will call them Records 1-7.

4.3.1 AdaBoost
Improvement: Records 1,2,3. The feature vectors for Records 1 and 3 do not differ between the ERG
and NegEx; Record 1 does not contain any negated features in either case, while Record 3 contains a
feature negated by both the ERG and NegEx. This means the improvement is probably due to chance
(a tie broken by the classifier in such a way that it shows as an improvement). Record 2, however,
shows some differences. The features identified and metastatic were negated by NegEx but not by the
ERG. These features and their negated counterparts may have a lot of weight and so an incorrect decision
about negation can have impact. It turns out, NegEx uses a fairly big chunk of text with no sentence-final
punctuation which happens to start from Not indentified to produce multiple negated features. The ERG
is not able to parse that chunk of text as a sentence (since it really is not one). In this case, better precision
leads to a better result.
Regression: None.

4.3.2 Random Forest
Improvement: Record 1, again can be attributed to chance.
Regression: Records 4, 5, 6. In Record 4, the feature identified is correctly negated by NegEx but
not by the ERG. The source sentence has the form No X or Y is identified. The ERG only succeeds in
negating X and Y but not the predicate identified. We discuss this issue in section 4.4. Record 5 contains
a phrase negative for malignancy, for which NegEx has a suitable heuristic. Our ERG algorithm is not
sensitive to the word negative. We purposefully did not enhance our algorithm with any heuristics since
we wanted our approach to be as domain-independent as possible. It makes sense that NegEx beats us
here, however one direction for improvement is to map some of NegEx’s heuristics to the ERG’s semantic
relations. NegEx negates multiple features in Record 6, including both right and left, left breast, (but
not right breast) identified, carcinoma, tumor. The ERG does not negate any of them in this case. The
correct label for this record’s laterality is right, so NegEx probably wins by negating many of the features
associated with left. However, it is hard to say why it chooses to do so; for example, it negates left breast
in the sentence: Left breast: According to the ultrasound core biopsy protocol data sheet, mammogram
demonstrates a 2.0 cm irregular mass, and correlates as palpated. This Record does not provide us with
any insight with respect to the two systems’ different behavior.

4.3.3 Gradient Boosting
Improvement: Record 7. For this record, the difference is that the ERG negates the features evidence
and tumor while NegEx does not. In this case, this leads to a better result. The relevant text in the record
is no evidence of ductal carcinoma in situ. NegEx detects negation for ductal carcinoma in situ, but not
for evidence.
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unknown _no_q _evidence_n_of udef_q _ductal/jj_u_unknown _carcinoma/nn_u_unknown _in+situ_a_1

TOP

ARG/NEQ

RSTR/H

ARG1/NEQ

RSTR/H
ARG1/EQ ARG1/EQ

Figure 5: DMRS for No evidence of ductal carcinoma in situ

Regression: None.

4.3.4 Voting Classifier
Improvement: Records 1, 2, already analyzed for AdaBoost.
Regression: None.

4.4 Summary
The Improvement and error analysis revealed the following differences between the NegEx and the ERG
approaches to feature extraction.

1. The two systems are not equally sensitive to tokenization issues. Clinical notes contain lots of tabs
in place of sentence-final punctuation; that may lead to imprecise tokenization. NegEx does not
care about whether its input actually is a sentence, while the ERG does; our ERG algorithm thus
produces higher precision results in some cases where NegEx can negate a feature based on a trigger
which does not actually belong to the sentence that contains this feature.

2. NegEx employs a variety of domain-specific heuristics while our ERG algorithm does not. We
would like our approach to not include dataset or domain-specific heuristics, but some of the heuris-
tics could be mapped to the ERG’s existing semantic relations such as specific English quantifiers.
We could take advantage of using a robust and precise domain-independent resource and apply a
heuristic at a higher level, such as parse selection.

3. ACE parse selection. The treebanks used to train the ACE parse ranker are not necessarily repre-
sentative of the data found in pathology reports. Therefore, it was possible for the desired parse to
be produced by the ERG, but not be selected. In some cases, the top ranked parse did not exhibit
the widest scope interpretation. For example, the top ranked parse for no masses or previous biopsy
sites are identified only scoped no over masses, and not the entire coordinated phrase. We also find

_no_a_1 udef_q udef_q _mass_n_of _or_c udef_q _previous_a_1 compound udef_q _biopsy_n_1 _site_n_1 _identify_v_1 parg_d

TOP

ARG1/H

RSTR/H

RSTR/H

L-INDEX/NEQ

R-INDEX/NEQ

RSTR/H
ARG1/EQ

ARG2/NEQ

ARG1/EQ

RSTR/H

ARG2/NEQ
ARG2/NEQ

ARG1/EQ

Figure 6: DMRS showing the desired negation scope for No masses or previous biopsy sites are identi-
fied; this DMRS was not the top-ranked parse

some inconsistency in the top ranked parse for constructions like associated ductal carcinoma in
situ: not identified. This ‘subject: adjective’ construction was probably not common in the dataset
used to train the parse selection model distributed with the ERG, version 1214, but is frequent in
our dataset. In some sentences like the one above (illustrated also by Figure 8), not is parsed as a
conjunction, or the phrase after the colon is treated as a modifier (effectively treating identified as a
post-head adjective) rather than as a predicate (negated verb). In these cases, our algorithm, which
looks for a neg predication and a verb with a theme, fails to negate identified. Customized parse
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implicit_conj unknown udef_q _carcinoma/nn_u_unknown _colon_p_namely unknown _not_c _identify_v_1 parg_d

TOP

L-HNDL/H

R-INDEX/NEQ

ARG/NEQ

RSTR/H ARG1/EQ MOD/EQ

R-INDEX/NEQ

ARG1/EQ

Figure 7: Abridged DMRS showing modifier analysis for not associated with some top-ranked parses

unknown udef_q _carcinoma/nn_u_unknown _colon_p_namely neg _identify_v_1 parg_d

TOP

ARG/NEQ

RSTR/H ARG1/EQ
MOD/EQ

ARG1/H

ARG2/NEQ
ARG2/NEQ

ARG1/EQ

Figure 8: DMRS showing desired, predicate negation analysis for not

selection that prefers verbal predicates over modifiers and prefers the widest scope may help extract
the features even better and further improve classification.

4. Finally, in some cases it is simply not clear why one approach wins over the other. This includes
situations where there is a tie or when there is some difference between the feature vectors produced
by the two approaches, but the difference seems to be due to a bug in NegEx (nonetheless leading to
NegEx producing a better feature vector). We hope that we will gain more insight once we switch
to a larger dataset.

5 Conclusion

We show as a proof of concept that a precision grammar can help extract potentially informative negated
features for a pathology reports classification task, outperforming NegEx across several ensemble clas-
sification algorithms. Improvement and error analysis reveals that the ERG, being a precision grammar,
tends to incorporate fewer noisy features compared to NegEx. Because it looks for a meaningful structure
in what it expects to be a well-formed sentence, it will make fewer mistakes in terms of negation scope.
At the same time, at this stage we did not go beyond simple predicate negation and did not customize
parse selection, which causes our system to make some mistakes that NegEx, which includes multiple
heuristics specialized for the domain, does not make. In future work, we will experiment with ways to
customize parse selection so that it is better suited for the clinical notes domain, while not needing to
change anything in the grammar itself. We will also explore which relations in the ERG may correspond
to some of NegEx’s heuristics, and this should give us further improvement. Furthermore, in any next
stages we will be applying our system to a public dataset such as BioScope (Vincze et al., 2008).
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