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Abstract

Recurrent neural networks have achieved great success in many NLP tasks. However, they
have difficulty in parallelization because of the recurrent structure, so it takes much time to
train RNNs. In this paper, we introduce sliced recurrent neural networks (SRNNs), which
could be parallelized by slicing the sequences into many subsequences. SRNNs have the
ability to obtain high-level information through multiple layers with few extra parameters. We
prove that the standard RNN is a special case of the SRNN when we use linear activation
functions. Without changing the recurrent units, SRNNs are 136 times as fast as standard
RNNs and could be even faster when we train longer sequences. Experiments on six large-
scale sentiment analysis datasets show that SRNNs achieve better performance than standard
RNNs.

1 Introduction

Recurrent neural networks (RNNs) have been widely used in many NLP tasks, including machine
translation (Cho et al., 2014; Bahdanau et al., 2015; Luong et al., 2015; Bradbury and Socher, 2016),
question answering (Xiong et al., 2016; Chen et al., 2017), image caption (Xu et al., 2015; Karpathy
and Li, 2015), and document classification (Tang et al., 2015; Yang et al., 2016; Zhou et al., 2016).
RNNs have the ability to obtain the order information of the input sequences. The two most popular
recurrent units are long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated
recurrent unit (GRU) (Cho et al., 2014), both of which could store previous memory in hidden states
and use a gating mechanism to determine how much previous memory should be combined with the
current input. Unfortunately, because of the recurrent structure, RNNs cannot be computed in parallel.
Therefore, training RNNs takes much time, which limits academic research and industrial applications.

To solve this problem, several scholars try to use convolutional neural networks (CNNs) (Lecun et
al., 1998) instead of RNNs in the field of NLP (Kim, 2014; Kalchbrenner et al., 2014; Gehring et al.,
2017). However, CNNs may not obtain the order information of the sequences, which is very
important in NLP tasks.

Some scholars tried to increase the speed of RNNs by improving the recurrent units and they have
achieved good results. Quasi-recurrent neural networks (QRNNs) (Bradbury et al., 2017) got up to 16
times faster speeds by combining CNNs with RNNs. Lei et al. (2017) proposed the simple recurrent
unit (SRU), which is 5-10 times faster than LSTM. Similarly, strongly-typed recurrent neural networks
(T-RNN) (Balduzzi and Ghifary, 2016) and minimal gated unit (MGU) (Zhou et al., 2016) are also
methods that could change the recurrent units.

Although RNNs have achieved faster speeds in these researches with the recurrent units improved,
the recurrent structure among the entire sequence remains unchanged. As we still have to wait for the
output of previous step, the bottleneck of RNNs still exists. In this paper, we introduce sliced recurrent
neural networks (SRNNs), which are substantially faster than standard RNNs without changing the
recurrent units. We prove that when we use linear activation functions, the standard RNN is a special
case of the SRNN, and the SRNN has the ability to obtain high-level information of the sequences.
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In order to compare our model with the standard RNN, we choose GRU as the recurrent unit. Other
recurrent units could also be used in our structure, because we improve the overall RNN structure
among the whole sequence rather than just changing the recurrent units. We complete experiments on
six large-scale datasets and SRNNs perform better than standard RNNs on all the datasets. We open
source our implementation in Keras (Frangois et al, 2015).!

2 Model Structure

2.1 Gated Recurrent Unit

The GRU (Bahdanau et al., 2014) has the reset gate » and the update gate z. The reset gate decides how
much of the previous memory is combined with the new input, and the update gate determines how
much of the previous memory is retained.

f‘t = O-(Vert + Urht—l +br) (1)
zZ, = U(Vszz +Uzht—1 +bz) (2)

where x is the input and h is the hidden state.
hi = tanh(W,x, + U, (r. oh_)+b,) 3)

The candidate hidden state iz, is controlled by the reset gate. When the reset gate is 0, the previous
memory is ignored.

ho=zoh  +(1-z)oh )
When the update gate is 1, the hidden state could copy the previous memory to the current moment
and ignore the current input.

2.2 The Standard RNN Structure

The standard RNN structure is shown in Figure 1, where A denotes the recurrent units.
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Figure 1: The standard RNN structure. Each step waits for the output of its previous step, which is
computed by the recurrent unit A.

The length of the input sequence X is 7, and here we assume T =8 as Figure 1 shown. The standard
RNN uses the last hidden state as the representation of the whole sequence, and then add a softmax
classifier to predict the labels. In addition to GRU and LSTM, QRNN and SRU could be seen as one
form of recurrent unit A as well. However, the overall RNN structure has not been improved, at each
step we need to wait for the output of the previous step:

h=f(h_.x,) (5)

where / is the previous hidden state. This standard RNN structure in which every two adjacent cells
are connected causes the bottleneck: the longer the input sequence is, the longer it takes.

! https://github.com/zepingyu0512/srnn
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2.3 Sliced Recurrent Neural Networks

We construct a new RNN structure called sliced recurrent neural networks (SRNNs), which is shown
in Figure 2. In Figure 2 the recurrent unit is also referred to as A.
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Figure 2: The SRNN structure. It is constructed by slicing the input sequence into several minimum
subsequences with equal length. The recurrent units could work on each subsequence simultaneously
on each layer, and the information could be transmitted through multiple layers.

The length of input sequence X is 7, and the input sequence is:
X =[x,,%;,...,x;] (6)
where x is the input at each step and it may have multiple dimensions such as word embeddings. Then

we slice X into n subsequences of equal length, and the length of each subsequence N is:
T

= (7
where 7 is the slice number, and the sequence X could be represented as:
X =[N,,N,,...,N,] (®)
where each subsequence is:
N, = Xyt X potpr2rmes Xt ] ©)

Similarly, we slice each subsequence N into n subsequences of equal length again, and then repeat
this slice operation & times until we have an appropriate minimum subsequence length on the bottom
layer (we call it Oth layer, which is shown in Figure 2), and k+1 layers are obtained by slicing & times.
The minimum subsequence length of Oth layer is:

T
ly=—
n

(10)

and the number of the minimum subsequences on Oth layer is:
s, =n" (11)

Because every parent sequence on pth layer (p>0) is sliced into n parts, the number of the
subsequences on pth layer is:
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s, =n" (12)
and the subsequence length of pth layer is:
l,=n (13)

Take Figure 2 as an example. The sequence length 7 is 8, the slice operation times £ is 2, and the
slice number n of each pth layer is 2. After slicing the sequence twice, we get four minimum
subsequences on Oth layer, and the length of each minimum subsequence is 2. If the length of the
sequence or the length of its subsequences cannot be divided by #, we may exploit padding method or
choose different slice number on each layer. Different £ and » may be used on different tasks and
datasets.

The difference between the SRNN and the standard RNN is that the SRNN slices the input sequence
into many minimum subsequences and utilizes the recurrent units on each subsequence. In this way,
the subsequences could be easily parallelized. On Oth layer, the recurrent units are acted on each
minimum subsequence through the connection structure. Next, we obtain the last hidden states of each
minimum subsequence on Oth layer, which are used as the input of their parent sequences on 1st layer.
And then we use the last hidden state of each subsequence on (p-1)th layer as the input of their parent
sequence on pth layer and compute the last hidden states of the subsequences on pth layer.

h' = GRU® (mss(otf,omﬁ) (14)

hrp+1 =GRU” (ht[ill, ~h’) (15)
where 4/ is the number / hidden state on pth layer, mss denotes minimum subsequences on Oth layer,

and different GRUs could be used on different layers. This operation is repeated between each sub-
parent sequence on each layer until we get the final hidden state F' of the top layer (kth layer).

F =GRU"(h, ~h') (16)

2.4 Classification

Similar to the standard RNN, the softmax layer is added after the final hidden state F' to classify the
labels:

p =softmax(W.F +b,.) (17)

and the loss function is negative log-likelihood:
loss =—Zlogpdj (18)

where d is each document of the dataset with label ;.

2.5 Speed Advantage

The reason why SRNNs could be parallelized is that SRNNs improve the traditional connection
structure. In SRNNSs, not every current input is connected with its previous moment, but the entire
sequence is connected together by a sliced method. SRNNs could also obtain the sequence order by
the recurrent units in each subsequence, and transmit the information through multiple layers. We
assume that the time spent in each recurrent unit is 7, then the time spent in the standard RNN is:

Loy =T X1 (19)

where T is the input sequence length. In the SRNN, each minimum subsequence could be parallelized,
so the time spent on Oth layer is:

T
tO = (nT) Xr (20)
and similarly, the time spent on pth layer (not including Oth layer) is:
t,=nxr 1)
so the total time in the SRNN is:
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T
Lopay = (nxk+—)xr (22)
n

At last we could compute the speed advantage of the SRNN:
R= m = L + nxk
! pnn n* T
where R is how much faster the SRNN gets. We could choose different n and k to get different speed
advantage.

(23)

2.6 Relations between the SRNN and the Standard RNN
In this part we describe the relations between the SRNN and the standard RNN. In the standard RNN
structure, each step is related to the input and the previous step, which could be computed by:

h, = f(Ux, +Wh,_, +b) (24)
where x is the input and / is the hidden state. The function f could be a nonlinear activation function

such as sigmoid, or a linear activation function such as rectified linear units (Le et al., 2015). To
simplify the question, here we discuss the case when we use a linear function:

S(x)=x (25)
and we set the bias b and /, to be zero. When we use the standard RNN, we could get the last hidden
state:

h, =Ux, +Wh,_, =Ux, +W(Ux,_ +Wh,_)) =...= Ux, + WUx,_ + W?Ux,_, +..+ W 'Ux, (26)

where T is the sequence length. And then we construct the SRNN structure. When 7 =n*"", we
choose SRNN (7,k), which means slicing & times with the slice number n. The SRNN has £+1 layers,
on each layer the length of each subsequence is n. We could compute the last hidden state of each
minimum subsequence on Oth layer:

0 _ 2 n-1
h,=Uyx, +WUx,  +W;Uyx, ,+..+W; U,

0 2 n-1
hy =Uyx, +WUx,, +W;Uyx,, ,+..+W;/ Ux

n+l

h) =Uyx, +WUx,  + WU xp o, + .+ W)U x, (27)
where h? is the number / hidden state on pth layer. There are »* last hidden states on Oth layer.

Similarly, we could take the hidden states on (p-1)th layer as the input, and compute the last hidden
states of the subsequences on pth layer (p>0).

P _ p-1 p-1
ht. =U, b +W,U b

np+1 —n

2 -1 n-1 -1
+W,U b’ +o. WU B

p WP P

hY o =U B+ WU B+ WU B+ + W)U b

2n P 2nPop? P 2P 2p? P P p?

he =U W +W U b2 + W20 b2+ WU R (28)

P T—n? P T-2n? P T—(n-)n”

There are n*™ last hidden states on pth layer. And this operation is repeated from Oth layer to kth
layer. At last we get the final hidden state /” of kth layer.

F=Uh ™ + WU~ +WZU R +..+W U R (29)

When we compute equation (29) using each hidden state calculated by equation (27) and (28), we
could get:

F=UU,,.Ux, +UU, _ . WUyx, ,+UU, . .WUx ,+..+ W UW U _ . W "'Uyx — (30)

When we compare equation (30) with equation (26), we could find that the two equations compute
the same results when:
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W, =w" (31)

where [ is the identity matrix, U and W are the parameters in equation (26). This means that SRNNs
could have the same output as standard RNNs when equation (31) is satisfied. For example, when
T=4, k=1 and n=2, we get a SRNN (2,1) with two layers and compare it with the standard RNN.
The last hidden state of the standard RNN is:

h, =Usx, + WUx, + W?*Ux, + W>Ux,
In SRNN (2,1), the hidden states on Oth layer are:
hg =Uyx, +WUyx,
B =U,x, +W,U,x,
and the final hidden state of 1st layer is:
F= Ulhz(t) + VVlUlhg =UUyx, +UWUx; + WU Ux, + WU WU x,
When we use equation (31) to set W, =W, W, = w2, U,=U and U, =1, we could get:
F =Ux, + WUx, + W?Ux, + W*Ux,

which is equal to %, above.

We have proved that when the function f'is linear, the output of the SRNN is equal to the output of
the standard RNN when the parameters satisfy equation (31), so the standard RNN is a special case of
the SRNN. Furthermore, the SRNN may get high-level information when they have different
parameters on different layers, so the SRNN is able to obtain more information from the input
sequences than the standard RNN.

3 Experiments

3.1 Datasets

We evaluate SRNNSs on six large-scale sentiment analysis datasets. Table 1 shows the information of
the datasets. We choose 80% data for training, 10% for validation and 10% for testing.

Dataset Classes Documents | Max words | Average words Vocabulary
Yelp 2013 5 468,608 1060 129.2 202,058
Yelp 2014 5 670,440 1053 116.1 210,353
Yelp 2015 5 897,835 1092 108.3 228,715
Yelp P 2 598,000 1073 139.7 308,028
Amazon F 5 3,650,000 441 82.7 1,274,916
Amazon P 2 4,000,000 257 80.9 1,348,126

Table 1: Dataset information. Max words denotes the max sequence length, and Average words
denotes the average length of the sentences in each dataset.

Yelp reviews: The Yelp reviews datasets are obtained from the Yelp Dataset Challenge, which has 5
sentiment labels (the higher, the better). This dataset consists of 4,736,892 documents, and we extract
three subsets Yelp 2013, 2014, 2015 containing 468,608, 670,440 and 897,835 documents separately.
Zhang et al. (2015) created the polarity dataset including 598,000 documents with two sentiment
labels, and we obtain the polarity dataset from them.

Amazon reviews: The Amazon reviews dataset is a commentary dataset containing 34,686,770
reviews on 2,441,053 products from 6,643,669 users (He and McAuley, 2016). One review has a
review title, a review content and a sentiment label, and we combine the title and content into one
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document. The dataset is also constructed into a full dataset with 3,650,000 documents and a polarity
dataset with 4,000,000 documents, which is also obtained from Zhang et al. (2015).

3.2 Baseline

We compare SRNNs with standard RNNs and take GRU as the recurrent unit. The output of the last
hidden state is the representation of each document, and then we add a softmax layer on it to predict
the sentiment labels. In order to compare SRNNs with convolutional structures, we also build a stack
of dilated casual convolutional layers as a baseline, which is proposed in wavenet (Oord et al., 2016).
The dilated casual convolutional structure could maintain the order information of the sequences. The
dilation is 1, 2, 4, ..., 256 for Yelp datasets, and 1, 2, 4, ... , 128 for Amazon datasets. The number of
filters is 50, and the activation function after each layer is rectified linear units.

3.3 Training

We use the sequence preprocessing tool of Keras (Frangois et al, 2015) to pad sequences into the same
length T. Sequences shorter than 7 are padded with zero at the end, and sequences longer than 7T are
truncated. In this work, 7 is set to be 512 on Yelp datasets, and 256 on Amazon datasets. Different n
and k values, which separately denotes the slice number and the slice times, are used on the
experiments. For each dataset, we retain the top 30,000 words of the vocabulary. The pre-trained
GloVe embeddings (Pennington et al., 2014) are utilized to initialize the word embeddings.

We set GRU as the recurrent unit of the SRNN. We have discussed the relations between the SRNN
and the standard RNN in section 2.6 and have proved that the standard RNN is a special case of the
SRNN when we use linear activation function between the recurrent units. However, it does not mean
only linear activation function could be used in the SRNN. Both linear activation function such as hard
sigmoid, and nonlinear activation function such as hyperbolic tangent could be used in or after each
layer in the SRNN. In this paper, the recurrent activation function in GRU is sigmoid, and the
activation function after each layer is linear function f(x)=ux.

The dimension of GRU on each layer is set to be 50 and the word embedding dimension is 200. In
SRNN:Ss, the final state F" also has 50 dimensions. We set the mini-batch size to be 100 for training and
use Adam (Kingma and Ba, 2014) with & =0.001, 8 =0.9, £,=0.999 and ¢= 10® . We tune the
hyper parameters on the validation set and select the best model to predict the sentiment labels on the

test set. We train the models with an NVIDIA GTX 1080 GPU, and record the training time per epoch
on each dataset.

3.4 Results and Analysis

The results on each dataset are shown on Table 2. We choose different » and & values and get different
SRNNSs. For example, SRNN (16,1) means #n=16 and k=1, which could get a 32-length minimum
subsequence when 7 is 512 or a 16-length minimum subsequence when 7" is 256. We compare four
SRNNs with the standard RNN. For each dataset, we use bold words to label the highest-performing
model and the fastest model.

Dataset Model Parameters Validation Test | Time/Epoch
Yelp 2013 GRU 5.76M 66.56 66.12 3172s
SRNN (16,1) 5.77TM 67.18 67.03 270s
SRNN (8,2) 5.79M 67.11 66.80 145s
SRNN (4,3) 5.80M 67.26 66.72 164s
SRNN (2,8) 5.85M 66.30 66.41 204s
DCCNN 5.78M 64.91 64.79 67s
Yelp 2014 GRU 5.76M 70.37 70.63 4142s
SRNN (16,1) 5.77TM 70.53 70.70 388s
SRNN (8,2) 5.79M 70.35 70.76 201s
SRNN (4,3) 5.80M 70.25 70.48 238s
SRNN (2,8) 5.85M 69.50 69.70 284s
DCCNN 5.78M 68.46 68.66 96s
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Yelp 2015 GRU 5.76M 72.52 72.89 4434s
SRNN (16,1) 5.77M 73.09 73.50 510s
SRNN (8,2) 5.79M 72.84 73.30 319s
SRNN (4,3) 5.80M 72.98 73.29 309s
SRNN (2,8) 5.85M 72.37 72.75 367s
DCCNN 5.78M 70.69 70.94 1315
Yelp_P GRU 5.76M 96.02 95.96 3170s
SRNN (16,1) 5.77M 95.83 95.92 401s
SRNN (8,2) 5.79M 95.87 95.99 205s
SRNN (4,3) 5.80M 95.90 96.04 236s
SRNN (2,8) 5.85M 95.69 95.88 2975
DCCNN 5.78M 95.03 95.26 98s
Amazon F | GRU 5.76M 61.54 61.36 89535
SRNN (16,1) 5.77M 61.65 61.65 1584s
SRNN (8,2) 5.79M 61.58 61.41 1147s
SRNN (4,3) 5.80M 61.50 61.40 11665
SRNN (2,7) 5.85M 61.04 60.88 1344s
DCCNN 5.78M 59.64 59.60 401s
Amazon P | GRU 5.76M 95.27 95.22 11062s
SRNN (16,1) 5.77M 95.29 95.26 2144s
SRNN (8,2) 5.79M 9521 95.18 1309s
SRNN (4,3) 5.80M 95.12 95.12 1567s
SRNN (2,7) 5.85M 94.98 95.02 1886s
DCCNN 5.78M 94.72 94.69 448s

Table 2: The accuracy and training time on validation and test sets of the models on each dataset. Four
different structures of SRNNs are constructed. DCCNN is dilated casual convolutional neural network,
which is described in section 3.2.

The results show that SRNNs achieve better performance and attain much faster speeds than
standard RNNs on all the datasets with few extra parameters. Different SRNNs have achieved the best
performance on different datasets. SRNN (16,1) gets the highest accuracy on Yelp 2013, Yelp 2015,
Amazon F and Amazon P; SRNN (8,2) performs best on Yelp 2014; SRNN (4,3) is the best on
Yelp P. SRNNs with £ more than 1 could get nearly 15 times faster than standard RNNs on the Yelp
datasets, and the speed advantage depends on k, n and T. In this work, SRNN (4,3) has the fastest
speed on Yelp 2015, while SRNN (8,2) is the fastest on the rest (except DCCNN).

When we focus on the results of SRNN (2,8) on Yelp datasets and SRNN (2,7) on Amazon datasets,
we could find that even if they did not achieve the best performance, they did not lose much accuracy.
This means that SRNNs are able to transmit information through multiple layers, and because of this,
SRNNs may achieve remarkable results when we train very long sequences. When 7 is 2, SRNN has
the same number of layers as DCCNN, and it has much higher accuracy than DCCNN. So it means
that the recurrent structure in SRNN is better than the dilated casual convolutional structure.

When we go back to equation (23), we may find that when » and & are not set to be too small, we
could get much faster. In this work, we set n=8, k=¢g—1 when T'=87. We use an NVIDIA GTX

1080 GPU to train the models on 5120 documents, since the standard RNN would take too much time
if we use more data. The training time is shown on Table 3.

We could get the amazing results from Table 3: the longer the sequence length is, the bigger speed
advantage the SRNN achieves. When the sequence length is 32768, SRNN would take only 52s while
the standard RNN would take nearly 2 hours. The SRNN is 136 times as fast as the standard RNN, and
the speed advantage may be even bigger when longer sequences are used. Therefore, SRNNs may
achieve much faster speeds on long-sequence tasks such as speech recognition, character-level text
classification and language modeling.
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Model Sequence length
8’ =512 8" =4096 8’ =32768
SRNN (8,2) 4s - -
SRNN (8,3) - 9s -
SRNN (8.,4) - - 52s
GRU 54s 476s 7074s
Speed advantage 13.5x 52.9x 136.0x

Table 3: The training time and speed advantage on different sequence length. For each sequence length
we choose a different SRNN structure.

3.5 Why SRNN

In this part we will discuss the advantages and importance of the SRNN. With the success of RNNs in
many NLP tasks, many scholars have proposed different structures to increase the speed of RNNS.
Most of the researches get faster by improving the recurrent units. However, the traditional connection
structure has scarcely been questioned, in which each step is connected to its previous step. It is this
connection structure that limits the speed of RNNs. The SRNN has improved the traditional
connection method. Instead, a sliced structure is constructed to implement the parallelization of RNNs.
The experimental results on six large-scale sentiment analysis datasets show that SRNNs achieve
better performance than the standard RNN. The reasons are as follows:

(1) When we use the standard RNN connection structure, recurrent units with gated structures such
as GRU and LSTM are useful, but they are not able to store all the important information when the
sequences are very long. The SRNN, however, could divide the long sequence into many short
subsequences and obtain the important information in short sequences. SRNNs are able to transmit the
important information through the multiple-layers structure from Oth layer to the top layer.

(2) SRNNs have the ability to obtain high-level information from the sequences, instead of just the
word-level information. When we use SRNN (8,2) in a document with 512 words, Oth layer may get
the sentence-level information from the word embeddings, 1st layer may gain the paragraph-level
information from the sentence-level information and 2nd layer could generate the final document-level
representation from the paragraph-level information. The standard RNN, however, could only get the
word-level information. Although it is impossible to have 8 paragraphs in each document, 8 sentences
in each paragraph and 8 words in each sentence, the overall order information and structure
information is uniform. Take the paragraph information as an example. People always express their
opinions at the beginning or end of an article, and show examples in the middle of the article to
explain their views. Compared to standard RNN, it is much easier for SRNNs to gain this information
on the top layer.

(3) In terms of handling sequences, the SRNN is akin to the human brain mechanism. For example,
if we, as humans, are given an article and asked to answer some questions about it, we usually do not
need to read the whole article intensively. To answer the questions correctly, we try to locate the
paragraph which mentions the specific information, and then find sentences and words in this
paragraph that can answer the question. The SRNN could easily do this through multiple layers.

In addition to the improvement of accuracy, the most significant advantage of SRNNs is that
SRNNs can be computed in parallel and achieve much faster speeds. Equation (23) computes the
speed advantage of SRNN, and experiments of different sequence length also show that SRNNs could
run much faster than standard RNNs. SRNNs could be even faster on longer sequences. As the Internet
develops, hundreds of millions of data are generated every day, and SRNNs have devised new ways
for us to handle these data.

4 Related Work

In order to increase the speed of RNNs, many scholars tried to improve the traditional RNN and
achieved great results. Kim (2014), Kalchbrenner et al. (2014), and Gehring et al. (2017) tried to use
CNNs in NLP tasks, which are usually used in computer vision (Lecun et al., 1998). Several structures
get faster with the recurrent units changed (Greff et al., 2015; Balduzzi and Ghifary, 2016; Bradbury et
al., 2017; Lei et al., 2017). As an overall structure improvement, the SRNN are related to these models,
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because different types of recurrent units could be used in SRNNS. In this work we choose GRU (Cho
et al., 2014), but other recurrent units are able to work in SRNNs as well.

The SRNN is related to the hierarchical structure proposed by Tang et al. (2015) and Yang et al.
(2016). Tang et al. (2015) use CNN or LSTM to obtain the sentence representations, and then exploit
gated RNN to generate the document representations. Yang et al. (2016) build a hierarchical network
on both word-level and sentence-level, then use attention mechanism on both level. The difference
between the SRNN and the hierarchical structure is that the documents do not need to be split into
sentences when we use the SRNN, and the SRNN could have multiple layers. The hierarchical
structure could be viewed as a special case of the SRNN, where k is 1 and all the sentences have equal
length.

Several other architectures have been proposed to improve the connection structure of RNNs
(Sutskever and Hinton, 2010; Koutnik et al., 2014; Chang et al., 2017). The SRNN is different from
those architectures in the connection structure. The SRNN could be computed in parallel by slicing the
sequences into many subsequences, but these models may still limit parallelization.

Also, the SRNN structure is similar to the overall structure of wavenet (Oord et al., 2016), which is
used for audio generation. The difference between the SRNN and wavenet, which is also the most
important innovation of the SRNN, is that we use recurrent units on each layer. For sequences,
recurrent structure has its inherent advantages than convolutional structure.

5 Conclusion

In this paper we present the sliced recurrent neural network (SRNN), which is an overall structure
improvement of RNN. The SRNN could reach a remarkably faster speed than the standard RNN and
achieve better performance on six large-scale sentiment datasets.

6 Future Work

The SRNN has been successful in text classification. In future work, we hope to promote it to other
NLP applications, such as question answering, text summarization, and machine translation. In
sequence to sequence model, the SRNN can be used as the encoder, and the decoder may be improved
by using an inverse SRNN structure. Also, we hope to use the SRNN in several long sequence tasks,
such as language model, music generation and audio generation. And we want to explore more about
variants of the SRNN. For example, bidirectional structure and attention mechanism could be added.

In section 2.6, we have discussed the relations between the SRNN and the standard RNN when
choosing the linear activation function. In future work, we will try to research the situation of using
nonlinear recurrent activation functions by mathematics, though it may be harder.
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