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Abstract

A bottleneck problem with Chinese named entity recognition (NER) in new domains is the lack of
annotated data. One solution is to utilize the method of distant supervision, which has been wide-
ly used in relation extraction, to automatically populate annotated training data without human-
cost. The distant supervision assumption here is that if a string in text is included in a predefined
dictionary of entities, the string might be an entity. However, this kind of auto-generated data suf-
fers from two main problems: incomplete and noisy annotations, which affect the performance
of NER models. In this paper, we propose a novel approach which can partially solve the above
problems of distant supervision for NER. In our approach, to handle the incomplete problem,
we apply partial annotation learning to reduce the effect of unknown labels of characters. As for
noisy annotation, we design an instance selector based on reinforcement learning to distinguish
positive sentences from auto-generated annotations. In experiments, we create two datasets for
Chinese named entity recognition in two domains with the help of distant supervision. The exper-
imental results show that the proposed approach obtains better performance than the comparison
systems on both two datasets.

1 Introduction

In recent years, deep learning approaches have achieved great progress in the task of named entity recog-
nition (NER) (Collobert et al., 2011; Chiu and Nichols, 2015). The standardized approach is that using
BiLSTMs for encoding and then applying CRF for jointly label decoding (Huang et al., 2015; Lample et
al., 2016). In addition, BILSTMs and CNNs are employed to model character- or word-level representa-
tions (Ma and Hovy, 2016).

Most previous studies on NER focus on a certain set of predefined NER types, such as organization,
location, person, date, and so on, where a certain amount of labeled data is provided to train the models.
However, different applications require particular entity types, such as “Brand” and ‘“Product” in E-
commerce domain, and “Company” for finance industry. Considering the high cost of human annotation,
it may not be feasible to annotate large amounts of labeled data for each new NER type, but small-scale
data is available at some time.

As an alternative solution, distant supervision can automatically generate large-scale labeled data for
new-type NER without human-cost. The idea of distant supervision has widely used in the task of relation
extraction (Mintz et al., 2009; Riedel et al., 2010; Zeng et al., 2015). For relation extraction, at first we
have a knowledge base. If two entities e; and e have relation r according to the knowledge base, then
we populate this knowledge and assume the relation between e and es is r in the sentences that contain
the both entities. In this way, we can produce a lot of labeled data for model training.

Similarly, in our task, we first acquire a dictionary containing a list of the new-type entities. Then, we
automatically generate large-scale labeled data by assuming that each entity mention in a sentence is a
positive instance of the corresponding type according to the dictionary. Figure 1(a) shows an example
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Figure 1: Examples generated by distant supervision, where “PDT” means a product name tagged by the
distant supervision and one string with underline should be an entity of product.

that is regarded as a positive instance with two “Product” names are correctly matched by the distant
supervision method.

However, in practice we find that the automatically labeled NER data suffers from two problems, i.e.,
incomplete annotation and noisy annotation, which negatively affect the performance of NER systems.
The incomplete annotation problem means that not every entity has been labeled in the way of distant
supervision. For example, 7 #£(leather shoes)” is included in the dictionary, while “J 77 (leather belt)”
is not included. Thus in Figure 1(b), “J¥ ##(leather shoes)” is annotated as a PDT, but “J% 77 (leather
belt)” is not annotated. The noisy annotation problem means that the matched entity does not correspond
to entity definition, such as Figure 1(c), where “T.2%#(work shoes)” is a product, but only the first two
characters “I_2%(fatigue clothes)” are matched by the dictionary because “ I %% ¥ (work shoes)” is not
included in the dictionary. Obviously, such false labeled examples certainly provide wrong supervision
during model training if we directly use the automatically generated data.

In this paper, we propose an approach to handle the two problems of distantly supervised NER data. As
for the incomplete annotation problem, we treat the data as partially annotated data based on the extended
CRF-PA model that can directly learn from partial annotations (PA) (Tsuboi et al., 2008). The noisy
annotation problem is also ubiquitous in distantly supervised for relation extraction, and researchers try
to address this issue by using reinforcement learning (RL) technology to select positive instances (Feng et
al., 2018). Inspired of their work, we design an instance selector to obtain clean instances from distantly
supervised NER data.

In summary, we make the following contributions:

e We propose a novel approach for new-type named entity recognition, which firstly combines the
advantages of both partial annotation learning and reinforcement learning, to handle the problems
of incomplete annotation and noisy annotation brought by distant supervision.

e We create two datasets for Chinese named entity recognition with the help of distant supervision in
e-commerce and news domains. The experimental results on the newly created datasets show that
the proposed approach performs better than the comparison systems.

2 Basic Settings
2.1 Distantly Supervised NER Data

Here we focus mainly on the Chinese NER, which is more difficult than NER for other languages such as
English for the lack of morphological variations such as capitalization and in particular the uncertainty
in word segmentation. To get a good tagger for new entity types in new domains, we perform distant
supervision to acquire labeled data for Chinese NER.

Initially, we have a small set of labeled seed data 7 for new entity types, and large-scale unlabeled
data pool U. We collect named entities to construct dictionary D, and use the entries of D to match the
strings of the sentences in ¢/ by the method of distant supervision. Then we obtain a set of sentences
containing at least one matched strings, and the set is denoted as .A. The purpose in this paper is that we
make full use of H and A to build a NER system.
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Figure 2: The framework of the proposed model, which consists of two parts. The right instance selector
is a policy network, which chooses sentences from candidate dataset to expand training data to improve
the left NE Tagger. The instance selector is trained based on the reward provided by NE Tagger.

In this paper, we treat Chinese NER task as a sequence labeling problem. We exploit the traditional
BIO schema to represent the tags of sentences. Concretely, we tag the beginning character of an entity
by “B-XX”, the other characters of this entity by “I-XX”, and the character as “O” if it is not inside an
entity, where “XX” is the type of entities.

2.2 The Baseline LSTM-CRF

Given a sentence * = cjico - - - Cy, the goal is to assign an unique tag y; for Chinese character c; in
the sentence. In general, the model predicts the entities in the sentence x by estimating the probability
p(y|z), where y is a possible label sequence for sentence x. The final output ¥, of the system for one
sentence is the label sequence with the maximum probability.

Here, we present a new NE tagger based on the LSTM-CRF model of Lample et al. (2016), which
achieves the state-of-the-art performance in the NER task. Following Peng and Dredze (2015a), we
represent Chinese characters as vectors and feed them into BiLSTM layer in the Chinese NER task. The
left part of Figure 2 shows the framework of our baseline LSTM-CRF based NE tagger.

The input layer. For each input sentence = cjcs - - - ¢, we map serialized characters into a list of
vectors XXz - - - X, with an embedding layer including a lookup table as its key parameter. Following
Lample et al. (2016), the lookup table is initialized with embeddings pre-trained on a large-scale raw
corpus and is further fine-tuned during our training process.

The BiLSTM layer. With vector sequence x1X3 - - - X, from input layer, we apply a bidirectional
LSTM layer to encode the semantic dependency which provides high level features. The LSTM in-
corporates a memory-cell to solve the exploding and diminishing gradients of basic RNNs (Graves and
Schmidhuber, 2005). For each character c; in the sentence, we can obtain the output features h; by
concatenating h; and h, which computed in turn and in reverse to represent its left and right context.
What’s more, dropout (Srivastava et al., 2014) is applied to the outputs of the BiLSTM layer to avoid
overfitting.

The MLP layer. Then, we employ a multi-layer perceptron (MLP), also known as feed-forward
neural networks, to compute the scores of all labels at each position ¢, denoted as oy,

h;nlpl — Wmlplht + bmlpl

Ip24. mlpl 1p2 (1)
0; = WPl L pmie2 e 1 )
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where WMIPI/mIp2 a4 pmIpl/mip2 are the parameters.
The CRF layer. Finally, we adopt a CRF layer to derive the conditional probability of a label sequence
y as follows:

escolre(aﬁ,y)
p(y|:c) = ZQEY escore(z,7)
n 2
score(x, y) = Z(Ot,yt + Tytfl,yt)

t=1

where T}, _, ,, represents the transmission score from y; 1 to ¢, and Y, are all candidate label sequences
of input sentence z.

During evaluation, we adopt the minimum Bayes risk (MBR) decoding to find the optimal label se-
quence as follows:

n
y" = arg max ( Zp(yt\a:, t))

y
t=1 (3)
plyde,t) = > p(yl)
YEY o, Y=yt

where p(y:|x, t) is the marginal probability of tagging the ¢-th position in x as y;.
Training objective. In order to maximize the probability of the correct label sequence, we exploit a
negative log-likelihood objective as the loss function:

loss(0, z,y) = —log p(y|x) €
where O is the set of baseline model parameters.

3 Our Approach

This section describes our approach for new-type NER via distant supervision. To handle the problem of
incomplete and noisy annotations, we propose a novel model for NER task. As shown in Figure 2, the
framework of our model consists of two modules: the NE Tagger built on the idea of partial annotation
learning to reduce the effect of unknown-type characters, the instance selector which chooses positive
sentences from a candidate set and provides them to the NE Tagger.

3.1 LSTM-CREF-PA for Incomplete Annotation

It is inappropriate to regard those characters as non-entities, although they can not be matched according
to the dictionary. It is a common problem known as false negative instance which may misguide model
if we arbitrarily label them as “O”. Therefore, we consider that each non-matched character can be
annotated as any proper label. For example in Figure 3, except that “ 7 ¥ (leather shoes)” have definite
labels, all of the remaining characters can be labeled as “B-PDT”, “I-PDT” and so on. In other words, we
denote a set of label sequences z for every distantly supervised sentence, whose probability is naturally
the sum of probability of each possible label sequence y in z. We expand the original model for this
situation and apply softmax over all candidate output label sequences, thus the probability of a distantly
supervised instance is computed as follows:

Z~ez escore(z,@)
p(z]x) = Zp(g‘l') = Z,y escore(z,7) ©)

j€z JEY

We exploit a negative log-likelihood objective as the loss function. Therefore, the loss function of our
model with CRF-PA can be computed as follows:

loss(©, x,z) = —log p(z|x) (6)
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I-SPC 1-SPC I-SPC I-SPC  I-SPC

B-SPC B-SPC B-SPC B-SPC  B-SPC

I-PDT I-PDT I-PDT I-PDT  I-PDT

B-PDT B-PDT B-PDT B-PDT  B-PDT
0 0 0 B-PDT I-PDT 0 0

F () #H(want to) E(buy) K #% (leather shoes) K iir (leather belt)

Figure 3: An example instance which is partially annotated. “PDT” means product name and “SPC”
means specification name.

where O is the set of all NE tagger parameters.

In particular, if the sentence is annotated by hand and each character has definite label, the set z
includes only one label sequence. Thus the above objective function is also suitable for supervised
instances. We use standard back-propagation method to minimize the loss function of the NE tagger.

3.2 Instance Selector for Noisy Annotation

Our goal is to train an agent as an instance selector with reinforcement learning (RL) technology. Follow-
ing Feng et al. (2018), the agent interacts with the environment and makes a decision at the sentence-level.
We merge the initial hand-tagged seed set 7 and the distantly supervised set .4 into a candidate dataset
C. At each episode, we collect a random-size bag of instances B from C. All the supervised instances
in the current bag are default to be selected without decisions of agent. For each distantly supervised
instance in the current bag, the agent makes an action from set of {1, 0} to decide whether to select this
instance or not. The agent receives the reward when all the actions have been completed. The reward
represents the feedback of actions on this bag and will be used to update agent. The goal of agent is to
decide actions that enable to maximize the reward.

State representation. In our view, the state s; represents the current instance along with its label
sequences. We represent the state as a vector Sy, which consists of the following information: (1) The
serialized vector representations of current instance, which are observed from the BiLSTM layer of
baseline model. (2) The label scores calculated with output of the MLP layer from the shared encoder
(denoted as o; in Formula 1) and annotation of this instance, which means the tag-conditional noise of
the distantly supervised annotation. More specifically, if a character is a part of an entity and annotated as
a definite label (such as “i7” and “#£” in Figure 3), the score of this position is the corresponding value
in o;. Otherwise, we compute it by averaging the scores of all labels in o;. In this way, the dimension of
the label scores vector is equal to the uniform length of sentences and will be concatenated with the first
part.

Policy network. The agent decides an action a; € {0, 1} to indicate whether the selector will select
the ¢-th distantly supervised instance. The action value is sampled by the selector as Ag(s¢, a;) where @
is a multi-layer perceptron (MLP) with the parameter {W, b}. We adopt a logistic function as the policy
function:

Aog(st,ar) = ao(W xSy +b) + (1 —ar)(1 —o(W xS, + b)) 7

where S; is the state vector, and o (.) is the sigmoid function.

Reward. The reward is used to evaluate the ability of current NE tagger to predict labels of each
character. The model receives a delayed average reward when it finishes all the selections in current
bag, and before that the reward of each action is zero. The current bag B consists of two subsets: hand-
tagged sentences # and distantly supervised instances .A. Now that the NE tagger calculates conditional
probability for every sentence of bag B, the reward can be computed on the set of selected distantly
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supervised instances A, and all the hand-tagged sentences:

1
r A+ 7 ( Z~ og p(z|r;) + Z og p(y|zy)) ®

x;,2€As oy, y€H

Different from the work of Feng et al. (2018), we have a set of supervised data. Our selector can
be trained along the guidance of these prior knowledge about which sentences are labeled correctly.
Therefore, the reward will become dependable and oriented, and it can guide the selector to maximize
likelihood of all the instances in training dataset.

Selector Training. We use policy gradient method (Sutton et al., 2000) to optimize the policy network
to maximize the reward of selections. For each random-sized bag 13, the feedback of every action r(a;)
is same as average reward r. We compute the gradient and update the selector as follows:

|A|
O=0+a«a Z r(a;)Velog Ao (s, ar) 9)
t=1

3.3 Joint Training

The parameters of the NE tagger and instance selector are learned iteratively. In each round, the selector
first selects A, from A and merges them with supervised sentences for the tagger. Meanwhile, the
parameters of the NE tagger are learned from the newly training data and the tagger provides feedback
reward to the selector to optimize its policy function.

4 Experiment

4.1 Datasets

We use two datasets in the experiments: one is from e-commerce domain and another is from news
domain.

EC: In e-commerce domain (EC), we have five types of entities: Brand, Product, Model, Material, and
Specification on user queries. This data contains 2,400 sentences tagged by annotators. We split the data
into three sets: 1,200 sentences for training, 400 for dev, and 800 for testing. We collect a list of entities
to construct dictionary from the training data. To reduce the effect of ambiguities, we remove the entry
that belongs to more than one type, or it is a number or single character. Finally, the dictionary has 927
entries (included as EC.dic in supplementary materials). We perform distant supervision on raw data to
obtain 2,500 sentences.

NEWS: For news domain, we use a NER data from MSRA, which was used in Sighan-bakeoff (Levow,
2006). We only test our systems on the type of PERSON. We randomly select 3,000 sentences as training
dataset, 3,328 as dev data, and 3,186 as testing data. The rest set is used as raw data, having 36,602
sentences. We collect a list of person names from the training data. To increase the coverage, we add an
additional names to the list. Finally, the list has 71,664 entries (included as NEWS.dic in supplementary
materials). We perform distant supervision on raw data to obtain 3,722 sentences.

Embedding: In our approach, we need to map Chinese characters into vector representations by the
lookup table, which can be initialized either by random or pre-trained. Many previous works (Lample
et al., 2016; Peng and Dredze, 2015b) have shown that pre-trained embeddings on large-scale unlabeled
corpus enable to initialize the table and observe efficiently improvements. Therefore, we collect one
million sentences from the user-generated text in Internet, and pre-trained embeddings with the tool
word2vec!. We set the embedding dimension as 100, the minimum frequency of occurrence as 5, and
the window size of 5.

'https://code.google.com/archive/p/word2vec
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.. Dev Test
Model Training Data P R F P R F

Dict-based / 74.21 29.68 42.41|75.60 31.05 44.02
LSTM-CRF H 63.78 61.26 62.49/59.93 58.46 59.19
LSTM-CRF H+ A 67.75 52.91 59.42|62.36 48.54 54.59
LSTM-CRF+SL H+ A 67.56 55.04 60.66|62.86 50.87 56.23
LSTM-CRF-PA H+ A 60.34 64.49 62.35(59.36 60.82 60.08
LSTM-CRF-PA+SL H+ A 62.31 63.79 63.04/61.57 61.33 61.45

Table 1: Main results on the EC dataset.

. Dev Test
Model Training Data P R Fl P R Fl

Dict-based / 95.40 35.87 52.14|96.08 31.77 47.75
LSTM-CRF H 85.21 78.91 81.94|78.50 74.50 76.45
LSTM-CRF H+A 87.00 65.20 74.54(83.41 58.96 69.09
LSTM-CRF+SL H+A 86.33 72.34 78.72|81.99 66.10 73.19
LSTM-CRF-PA H+A 83.78 81.79 82.77|79.19 77.59 78.38
LSTM-CRF-PA+SL H+A 86.94 80.12 83.40(81.63 76.95 79.22

Table 2: Main results on the NEWS dataset.

4.2 Settings

For evaluation, we use the entity-level metrics of Precision (P), Recall (R), and their F1 values in our
experiments, treating one tagged entity as correct only when it matches the gold entity exactly.

There are several hyper-parameters in our models. We set them empirically by the development per-
formances. The instance selector is a multi-layer perceptron with 100 units in each hidden layer. We
use Adam (Kingma and Ba, 2014) to train the instance selector with the learning rate 0.001. For the pa-
rameters of the tagger, we set the character embedding dimension as 100, the dimension sizes of hidden
features as 200. We exploit online training with a mini-batch size 128 to learn model parameters. The
max-epoch iteration is set by 800, and the best-epoch model is chosen according to the development per-
formances. We use RMSprop (Tieleman and Hinton, 2012) with a learning rate 0.001 to update model
parameters. We adopt the dropout technique to avoid overfitting by a drop value of 0.2 at the training
stage.

4.3 Baselines

We build four systems based on our proposed approach and a dictionary-based baseline system, listed as
follows:

e Dict-based: The collected entity dictionary is directly used to match the strings in the testing data.
e LSTM-CREF: the baseline model described in Section 3.2.

o LSTM-CRF-PA: the system trained on H and A with CRF-PA learning, but without instance selec-
tor.

e LSTM-CRF+SL: the system trained on H and .A with instance selector, but without CRF-PA learn-
ing.

e LSTM-CRF-PA+SL: our final system trained on # and .A with CRF-PA learning and instance se-
lector.
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. Dev Test
Model Training Data P R Fl P R Fl
LSTM-CRF 25%H 43.35 46.18 44.72140.36 40.78 40.57
LSTM-CRF-PA+SL| 25%H + 25%.A |45.63 50.95 48.14|44.08 46.57 45.29
LSTM-CRF S50%H 54.73 52.77 53.73|49.88 47.64 48.73
LSTM-CRF-PA+SL| 50%H + 50%.A |53.25 56.84 54.99/50.48 51.96 51.21
LSTM-CRF 100%H 63.78 61.26 62.49|59.93 58.46 59.19
LSTM-CRF-PA+SL |100%H + 100%.4|62.31 63.79 63.04|61.57 61.33 61.45

Table 3: Results for varing percent of training data on the EC dataset.

4.4 Results

In this section, we show the model performances of our proposed systems and the other systems men-
tioned above. Table 1 shows the experimental results on the EC data and Table 2 shows the results on the
NEWS data, respectively.

The low recall scores of Dict-based systems show that the coverage of the dictionaries is low even
we have more than 70K person-names for the NEWS data. Compared with LSTM-CRF trained on H,
LSTM-CREF system trained on # and A provides much lower performance on two datasets. These facts
indicate that the data generated by distant supervision contains many noises that affect the performance
of the models. LSTM-CRF-PA yields better performance than LSTM-CREF trained on 4, showing +0.89
F1 improvement on EC and +1.93 F1 on NEWS. This indicates that CRF-PA learning can reduce the
effect of incomplete annotation.

From the tables, we find that compared with LSTM-CRF-PA, LSTM-CRF-PA+SL obtains absolute
improvements of +1.37 and +0.84 F1 points on EC and NEWS, respectively. Overall, our final system
(LSTM-CRF-PA+SL) achieves better improvement with +2.26 and +2.77 F1 on EC and NEWS respec-
tively over our baseline system LSTM-CRF. These facts show that the RL-based instance selector can
provide additional help to CRF-PA learning.

We further investigate the effect of different sizes of human-annotated data. We randomly select 25%
and 50% sentences from human-annotated data 7 as training data and build new dictionaries of entities
based on them respectively. The new dictionaries are used to generate distantly supervised annotated da-
ta. Table 3 shows the results on the EC dataset, where the first two lines are for 25%, the third and fourth
lines are for 50%, and the last two are for 100%. From the table, LSTM-CRF-PA+SL performs better
performance than the baseline system, showing +4.72 F1 improvement on 25% and +2.48 improvement
on 50%, respectively. This indicates that with smaller human-annotated data, our proposed approach can
provide relatively larger improvement.

5 Related Work

Our approach is to utilize partial annotation learning and reinforcement learning to perform new-type
named entity recognition in new domains. Several previous studies relevant to our approach have been
conducted.

NER. Most early studies treated NER task as the sequence labeling problem based on a large annotated
corpus with supervised methods, such as HMM, MEMM (Hai and Ng, 2002) and CRF (Lafferty et al.,
2001). Recently, neural networks have been explored by researchers (Collobert et al., 2011; Lample et
al., 2016), and applied to reduce the weakness of feature sparsity problem and heavy feature engineering
(Cai and Zhao, 2016). Those models have the similar architecture for decoding and feature extraction,
which is chosen as our baseline model. In order to overcome the challenge of data deficient, some
approaches based on weakly supervised learning (Nadeau et al., 2006; Riloff and Jones, 1999) have been
proposed and successfully expand training data and feature space. However, it is difficult to implement
these methods on Chinese tasks because of the lack of morphological variations such as capitalization
and in particular the uncertainty in word segmentation, and it may cause large number of matching errors.
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Under reasonable assumptions, OOV features should not be forced into certain tag. What’s more, joint
models have also obtained great performance (Qian and Liu, 2013; Finkel and Manning, 2009).

Learning from PAs. Learning from PAs has always been an attractive idea, since it usually requires
much less or even none human annotation effort to obtain partially annotated data than fully annotated
data, especially for complex tasks like sequence labeling. Li et al. (2012) propose to only manually anno-
tate the most uncertain word boundaries in a sentence for Chinese word segmentation in order to reduce
annotation cost. Tsuboi et al. (2008) extend the standard CRF to directly learn from incomplete annota-
tions for sequence labeling tasks. This work refers to their model as CRF-PA. Jiang et al. (2013) propose
to derive segmentation boundaries from implicit information encoded in web texts, such as anchor texts
and punctuation marks, and use them as partially labeled training data in Chinese word segmentation.
Liu et al. (2014) and Yang and Vozila (2014) further improve the work of Jiang et al. (2013) by employ-
ing the more sophisticated CRF-PA model. Marcheggiani and Articres (2014) systematically compare
a dozen uncertainty metrics in token-wise active learning with CRF-PA for several sequence labeling
tasks. Li et al. (2016b) propose a coupled sequence labeling approach for exploiting heterogeneous data
by treating the single-sided annotations as PAs for the task of joint word segmentation and POS tagging.
In this work, we for the first time apply the CRF-PA model to NER, and employ distance supervision to
produce partially annotated NE data.

Reinforcement Learning. In recent years, reinforcement learning has become an issue in research,
and applied successfully to many tasks. In text generation community, a deep Q-learning is served by
Guo (2015) as generative model to improve the seq2seq model, which completes the process of decoding
by Iteration. Li et al. (2016a) show how to apply deep reinforcement learning to model future reward
in chatbot dialogue and capture the impact of this conversation in the future. Dethlefs (2010) aim to
optimize the integration of NLG tasks that are inherently different in nature by learning a generation
policy with reinforcement learning. For computer vision, Yeung et al. (2017) propose a reinforcement
learning-based formulation select the right examples for training a classifier from noisy web search re-
sults. To more fine-grainedly select high-quality training sentences from noisy data, Feng et al. (2018)
train an instance selector based on a policy function with reinforcement learning, which is inspirational
to our model.

6 Conclusion

This paper presents a new approach to utilize the data generated by distant supervision to perform new-
type named entity recognition in new domains. We adopt partial annotation learning to address the
problem of incomplete annotation and design the instance selector to choose positive sentences to reduce
the effect of noisy annotation. The instance selector is based on reinforcement learning and obtains
the feedback reward from the NE tagger. When tested on two newly created datasets, our systems
provide better performance than the comparison systems. The data and code is available at https:
//github.com/rainarch/DSNER.
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