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Abstract

In this reproduction paper, we replicate and extend several past studies on transfer learning for
entity recognition. In particular, we are interested in entity recognition problems where the class
labels in the source and target domains are different. Our work is the first direct comparison of
these previously published approaches in this problem setting. In addition, we perform experi-
ments on seven new source/target corpus pairs, nearly doubling the total number of corpus pairs
that have been studied in all past work combined. Our results empirically demonstrate when each
of the published approaches tends to do well. In particular, simpler approaches often work best
when there is very little labeled target data, while neural transfer approaches tend to do better
when there is more labeled target data.

1 Introduction

Transfer learning methods can play an important role in improving the performance of machine learning
algorithms in scenarios where in-domain data is scarce, such as entity extraction of protected health
information in electronic health records. These methods make use of data in a source domain to improve
performance in a target domain. Many transfer learning techniques have been developed for tasks such as
named entity recognition (Daumé III, 2007) and sentiment classification (Blitzer et al., 2007). A broad
taxonomy of transfer learning scenarios in machine learning (only some of which are applied to NLP
tasks) is given in (Zhang et al., 2017).

In this paper we focus on the entity recognition task1 in which both the source and target domains have
labeled data, but the class label sets are different. As is common in the literature, we frame entity recog-
nition as a sequential classification problem, and restrict ourselves to local (sentence-level) supervised
techniques.

Most transfer learning methods have been developed under the assumption that the source and target
domains have the same class labels (e.g., (Jiang and Zhai, 2007; Daumé III, 2007)), and many NER
corpora only annotate a small number of categories (e.g., 4 labels for the CoNLL 2003 corpus (Sang
and Meulder, 2003) and 7 labels for the MUC 6 corpus (Grishman and Sundheim, 1996)). In many
situations one would like to recognize categories that were not labeled in a given corpus, but that may
be semantically related. This includes, for instance, recognizing companies or sports teams (Ritter et al.,
2011), rather than organizations in general, or recognizing actors (Liu et al., 2013b), rather than people
in general.

In addition, techniques for transfer learning with different class labels may be useful even when the
class label set is the same across domains. As Florian et al. (2004) point out, the same labels may be used
in very different ways across corpora due to different annotation guidelines. For example, determiners
may or may not be annotated as part of an entity, and annotations may or may not include nominal as
well as named entities.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Although some researchers use the terms entity recognition and named entity recognition (NER) interchangeably, we shall
refer to the task of recognizing named and nominal entities as entity recognition.
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To the best of our knowledge, a direct comparison of existing transfer learning techniques for entity
recognition with different labels does not exist. The results in the literature are hard to compare di-
rectly for several reasons: in some cases the datasets used are not publicly available, different evaluation
measures are used for evaluation (macro-averaged vs micro-averaged scores, for instance), and in some
cases, crucial implementation details are missing.

In this paper we replicate and extend several transfer learning methods for recognizing novel entities,
using both standard corpora and datasets that have not been used for this task before. To the best of our
knowledge, this is the first direct comparison of these transfer learning methods. In addition, we perform
experiments on seven new source/target domain corpus pairs, nearly doubling the total number of corpus
pairs that have been studied in all past work combined. We also share our code2 so that others may verify
our results and compare future transfer learning techniques against our benchmarks.

2 Transfer Learning for Novel Classes

2.1 Transfer learning scenarios

It is helpful to distinguish between three different scenarios for the transfer learning problem with differ-
ent class labels:

1. The source domain entities are more fine-grained than the target domain entities and source domain
entities can be mapped to target domain entities.

2. The source domain entities are generally coarser than the target domain entities, yet it may not be
possible to map every target entity to a source entity.

3. There is no overlap in the labels in the source and target domains, and entities they correspond to
have little in common.

While these three scenarios do not exhaust the possibilities that may be encountered in practice, they
are helpful to categorize previous transfer learning experiments in the literature.

Under scenario 1, it is possible to map source domain labels to target domain labels without losing
much information, to insure that both domains have the same label set. For example, if transferring from
ACE 2005 (Walker et al., 2006) to CoNLL 2003, one could map the GEOPOLITICAL and FACILITY
entities to LOCATION. This is often done manually (Daumé III, 2007; Augenstein et al., 2017), though
Kim et al. (2015) introduced a method to automate this mapping: labels from both domains are embedded
in a common vector space using Canonical Correlation Analysis (CCA), and k-nearest neighbors are used
to find the target label closest to each source label. In their experiments the appropriate label mappings
were not obvious and the CCA label embedding approach outperformed manual mappings. CCA is a
dimensionality reduction technique (Hotelling, 1936) that will be described in Section 2.2.

One expects that transfer learning would be hardest in scenario 3, given that the source and target
entities have little in common. For example, Qu et al. (2016) show that transfer from CoNLL 2003
(news) to CADEC (a biomedical corpus) is very difficult.

In this paper we focus on scenario 2, which is more challenging than scenario 1 and also of great
practical importance. Many corpora have been published with coarse-grained entities, and it would be
advantageous to harness this data to recognize other kinds of entities in other domains.

Figure 1 shows the combinations of datasets that have been used in previous transfer learning exper-
iments relevant to the problem of disparate label sets, together with the additional experiments in this
paper. We were unable to access TAC-KBP 2015 (Ji et al., 2015), i2b2 2016 (Stubbs et al., 2017) or
MIMIC (Dernoncourt et al., 2017b). The TAC-KBP 2015 corpus consists mainly of news text, so we
used MUC 6 and NIST IE-ER (NIST, 1999) as substitutes to see if we could obtain results consistent with
those of (Obeidat et al., 2016). MIMIC is a manually corrected subset of the MIMIC-III dataset (John-
son et al., 2016). It was unclear how to replicate the manual corrections, so we leave experiments with

2https://github.com/ciads-ut/transfer-learning-ner
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MIMIC to future work. We decided not to use ACE 2005; the annotated entities in this corpus are nested,
and it was unclear which entities should be selected to fit the sequential classification framework.3

Figure 1: Source and target domains used in transfer learning experiments

Of the datasets shown in Figure 1, only CoNLL 2003, MIMIC and BBN (Weischedel and Brunstein,
2005) have been used as the source domain. Most past experiments use CoNLL 2003 as the source
corpus. We replicate most of these past experiments, and extend experiments using CoNLL 2003 as a
source corpus to seven additional target corpora that have not previously been used in transfer learning
with novel classes for entity recognition. In future work, we plan to extend our study to additional
source/target corpus pairs, particularly those that do not use CoNLL 2003 as the source corpus. Details
on the datasets that we used for experiments are provided in Section 3.1.

2.2 Transfer learning frameworks

Here we briefly describe the transfer learning frameworks which are able to handle the problem of novel
entity types. We use the term framework, rather than algorithm, because each of these can be imple-
mented with a variety of machine learning models. It is important to emphasize that most existing trans-
fer learning methods assume the label sets are the same across domains (Day and Khoshgoftaar, 2017;
Weiss et al., 2016; Zhang et al., 2017). In addition, most of the methods which can handle disparate la-
bels are designed for image and text classification rather than sequence classification problems (Day and
Khoshgoftaar, 2017); some examples include (Shi et al., 2009; Shi et al., 2010; Quadrianto et al., 2010;
Tommasi et al., 2010; Jie et al., 2011; Qi et al., 2011; Xiang et al., 2011; Patricia and Caputo, 2014;
Feuz and Cook, 2015; Bhatt et al., 2016; Moon and Carbonell, 2016). To the best of our knowledge, the
only two transfer learning approaches that have been proposed for entity recognition with different class
labels are:

• PRED: train one classifier on the source domain, and use its predictions on the target domain as
features for a second classifier.

• Pre-training: train a neural network on the source domain, use the trained weights to initialize a
new neural network, and fine-tune the weights on the target domain.

In this paper we shall compare two variants of PRED against the Pre-training approach.
We note that transfer learning is closely related to work in multi-task learning. Multi-task learning

consists in simultaneously training a classifier (e.g., a neural network with shared weights) to solve more
than one task. In multi-task learning, however, the goal is to improve performance across all domains,
rather than to optimize performance on the target domain. (Yang et al., 2017) is the only work we are
aware of that uses multi-task learning on NER tasks with different label sets. For the sake of restricting
the scope of this paper, in our experiments we restrict ourselves to approaches that train on the source
and target data separately. A comparison to multi-task learning techniques that train simultaneously on
source and target data is planned in future work.

3From a practical perspective, using the largest entity span is not always desirable.
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PRED and PRED-CCA
It is common in NLP to use the outputs of one classifier as inputs to another one, but usually this is done
for different tasks (e.g., using part-of-speech tags as features for NER), rather than for the same task with
different class labels. Sutton and McCallum (2005) refer to this as “cascaded transfer”; we shall denote it
PRED, following (Daumé III, 2007). A few researchers have used this approach for the entity recognition
task with different class labels. Florian et al. (2004) use the output of entity taggers trained on corpora
with different label types as features for a second classifier to tag entities in the ACE 2003 evaluation.
They report an increase of 2% in F1 score over a baseline using lexical features with a Maximum Entropy
classifier. Sutton and McCallum (2005) use PRED to transfer from CoNLL 2003 to ACE 2005, and
show an improvement in F1 scores for several classes (e.g., an increase of 5.9% for person names and
an increase of 1.2% for person nominals). Daumé III (2007) uses PRED to transfer from ACE 2005
to CoNLL 2003 (though source entities are mapped to target entities before the transfer4), and obtain a
0.82% increase in accuracy.

PRED-CCA5 was introduced by Obeidat et al. (2016) as a variant of PRED. In PRED-CCA label
embeddings rather than the predicted entities themselves are used as features for the second classifier.
Label embeddings are obtained through CCA as in (Kim et al., 2015). CCA is a dimensionality reduction
technique for paired data. In this case, every word is paired with its label. CCA is used to obtain label
embeddings by finding a sequence of projections of the words and labels such that the correlations
between the projections are maximized.

Obeidat et al. (2016) shows an improvement of 9% in micro-averaged F1 score of PRED-CCA over
CCA when transferring from CoNLL 2003 to TAC-KBP 2015.

Pre-training
Fine tuning pre-trained neural networks has been used successfully in computer vision tasks, but seems
comparatively less common in NLP. Mou et al. (2016) use pre-training to improve the performance
of sentence and sentence-pair classification; two of their experiments transfer between corpora with
different label sets. Kim et al. (2015) also experiment with pre-training for slot tagging, but only after
the source domain labels have been mapped to target domain labels.

The only works we are aware of that apply pre-training to the entity recognition task are (Lee et al.,
2017) and (Qu et al., 2016). Lee et al. (2017) use pre-trained neural networks to improve the performance
of de-identification of protected health information in medical records, though they use two datasets
with the same label set.6 Qu et al. (2016) use pre-training in experiments with novel entities, using two
conditional random fields (CRFs) rather than two neural networks. Unfortunately, we were not able to
obtain the code used in Qu et al.’s experiments or to replicate their approach using new code.

Lee et al. (2017) use a bidirectional LSTM CRF (BiLSTM-CRF) neural network for their transfer
learning experiments. Their network architecture is described in (Dernoncourt et al., 2017b), and is
similar to the BiLSTM-CRF in (Lample et al., 2016). They experiment with transferring successive
layers of the network: character embeddings, word embeddings, the character BiLSTM layer, the word
BiLSTM layer, the fully connected layer, and the CRF layer. They experiment with transferring from
MIMIC to i2b2 2014 and from MIMIC to i2b2 2016, and show that transferring weights of a pre-trained
network boosts performance, with better results as more layers are transferred. While transferring the
last (most task-specific) layers does not help as much as transferring the lower layers, it also does not
hurt performance.

The results in (Lee et al., 2017) were produced with the NeuroNER program7 (Dernoncourt et al.,
2017a). Unfortunately, NeuroNER requires both source and target corpora to have the same label set, so
we were not able to use it for our experiments. To run experiments similar to those in (Lee et al., 2017),

4(Daumé III, 2007) does not explicitly describe this preprocessing step, but we infer it based on the other methods that
PRED is compared against.

5Obeidat et al. (2016) refer to it as “AugmntTr”; we call it PRED-CCA in order to emphasize its relation to PRED.
6The label sets were slightly different, but in the few cases where entities were different they were mapped to a common

type.
7Available at https://github.com/Franck-Dernoncourt/NeuroNER/
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but with different label sets, we implemented a variant of their neural network architecture. Since our
goal is to replicate the transfer learning approach, not the exact network architecture, we made one sim-
plification: we replaced the character-level embeddings with casing embeddings following (Reimers and
Gurevych, 2017). This has two advantages: it makes the neural network experiments more comparable
to the CRF experiments with PRED and PRED-CCA (which use simple token features), and it reduces
the number of layers that can be transferred. In our experiments the only layers that can be transferred
are the word embedding layer and the word BiLSTM layer, since the last two layers depend on the tar-
get domain’s label set. Details of our implementation and our choice of hyperparameters are listed in
Section 3.2.

3 Experimental Setup

Our experiments compare the performance of the transfer learning methods in different settings: we vary
both the target corpus and the size of the target training set. We run every experiment 5 times, using
different subsets of the target data to train with, and average results.

3.1 Datasets

We used CoNLL 2003 with the standard train/test split as the source corpus for our experiments . CoNLL
2003 is annotated with Person, Location, Organization and Miscellaneous entities. Table 1 shows the
corpora that we used as the target, together with their entity types. The entities which overlap with the
CoNLL 2003 entities are italicized; we refer to the others as “novel entities” 8.

Corpus Domain Annotated entities
Ritter Twitter Person, geo-loc, facility, company, sportsteam, band, product, tv-

show, movie, other
i2b2 2006 Medical Date, doctor, hospital, ID, location, patient, phone
i2b2 2014 Medical Age, username, ID, patient, doctor, profession, hospital, street,

state, zip, city, country, organization, date, medical record, phone
CADEC Medical Adverse reaction, disease, drug, finding, symptom
MUC 6 News Person, location, organization, date, percent, money
NIST IE-ER News Person, location, organization, date, duration, percent, money,

cardinal
GUM Wikinews

wikihow
wikivoyage

Abstract, animal, event, object, organization, person, place,
plant, quantity, substance, time

MIT Movie Spoken
queries

Actor, character, director, genre, plot, year, soundtrack, opinion,
award, origin, quote, relationship

MIT
Restaurant

Spoken
queries

Amenity, cuisine, dish, hours, location, price, rating, restaurant
name

re3d Defense and
security

Document reference, location, military platform, money, nation-
ality, organization, person, quantity, temporal, weapon

Table 1: Corpora used as the target domain in our experiments

Entities which occured less than 20 times in a corpus were removed9. We used the standard train/test
splits for the i2b2 2006 (Uzuner et al., 2007), i2b2 2014 (Stubbs and Uzuner, 2015), MIT Movie (Liu
et al., 2013b) and MIT Restaurant (Liu et al., 2013a) corpora. For the Ritter corpus (Ritter et al., 2011)

8We consider subtypes of CoNLL 2003 entities such as “doctor” and “hospital” to be novel. Although “geo-loc” and “place”
are used in slightly different ways, we identify them with “location”, so do not consider them to be novel.

9In particular, “time” was removed from both MUC 6 and NIST IE-ER; “age” was removed from i2b2 2006; “healthplan”,
“URL”, “fax”, “email”, “device”, “location-other” and “bioID” were removed from i2b2 2014; “commsIdentifier”, “frequency”
and “vehicle” were removed from re3d.
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we used the same train/test split as in (Yang et al., 2017)10. We used stratified random sampling at the
sentence level to create suitable test sets for CADEC (Karimi et al., 2015), GUM (Zeldes, 2017), NIST
IE-ER (NIST, 1999), re3d (DSTL, 2017) and MUC 6 (Grishman and Sundheim, 1996)11. Unlike i2b2
2006, the i2b2 2014 corpus is not tokenized. To stay consistent with (Lee et al., 2017), we used the scripts
included with NeuroNER with the spacy tokenizer to convert i2b2 2014 to the CoNLL 2003 format.

CoNLL 2003, Ritter, and i2b2 2014 also have default train/test/dev splits. In order to have more
control over the sizes of the training and development sets (in particular, to have the same train/dev ratio
over increasing sizes of the training set), we decided not to use the standard train/dev splits.

The available target training data is randomly shuffled, and for every shuffle we use increasing subsets
of the target corpus (with 20, 50, 100, 250, 500, 1000, 1500 and 2000 sentences) as target training data.
In order not to give the neural network methods an unfair advantage over PRED and PRED-CCA, we
do not use a hold-out development set for them, and instead use 20% of the available training data for
validation.

3.2 Implementation Details

We used the IOB2 tagging scheme for all our experiments. For every experiment we compute the micro
and macro-averaged chunk-based precision, recall and F1 scores, as well as micro and macro-averaged
scores over novel classes, as was done in (Qu et al., 2016). Due to space limitations we only include
the micro-averaged scores in this paper, but our full results (including scores for specific labels) will be
available online.

PRED and PRED-CCA

Obeidat et al.’s experiments comparing PRED and PRED-CCA were performed using Stanford NER,
which is an implementation of a second-order linear CRF. Since we are replicating the PRED and
PRED-CCA approaches rather than Obeidat’s exact setup, we perform our experiments with CRFSuite.
Although Stanford NER has an extensive set of built-in features, it is harder to modify them than it is for
CRFSuite. We use the following features when evaluating PRED and PRED-CCA: (1) the current token
xi and tokens in a window of size 2, (2) initial capitalization of tokens in a window of size 2, (3) word
shape information for xi (uppercase, alphanumeric, or all digits), and (4) token prefixes of lengths 3 and
4, and token suffixes of lengths 1 through 4.

These features were used in (Zhang and Johnson, 2003)12, and were also used as baseline features in
(Turian et al., 2010). Augenstein et al. (2017) also evaluate CRFSuite on NER across a variety of datasets
with features similar to these. Due to limitations of CRFSuite, we did not include second-order label
transitions or features of the form Itagi∧xi . We also opted against using gazeteer, word embedding, part-
of-speech or chunking features, since the goal of this paper is to compare transfer learning approaches
and not achieve state-of-the-art results.

While Kim et al. (2015) and Obeidat et al. (2016) use the predicted entities without the IOB prefix
as features, we experimented with using the IOB-prefixed entities for both PRED and PRED-CCA.
Preliminary experiments suggested the differences were minimal, so we ran all our experiments with
entity labels without the IOB prefix as features. In addition, Obeidat et al. (2016) do not specify whether
they included the “O” entity label when computing the CCA label embeddings. If “O” is not included
in the calculation, one must find a suitable label embedding for “O” separately. We experimented with
excluding “O” from the computation and mapping “O” to the zero vector. The difference was minimal,
so we ran our full experiments with the “O” label included in the CCA computation.

We use the same embedding dimension as (Obeidat et al., 2016), k=5, for all our experiments.

10Available at http://kimi.ml.cmu.edu/transfer/data.tar.gz
11We used 1000 sentences for the test sets of CADEC, GUM, and MUC6; for NIST IE-ER and re3d we used 690 and 200

sentences, respectively.
12Specifically the combination B+D+E+F, listed in their Table 1.
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Pre-training
We used the same network architecture and hyperparameters as in (Lee et al., 2017) 13, with the follow-
ing exceptions: (1) we replaced the character embedding layer with a casing layer as in (Reimers and
Gurevych, 2017), (2) we used the IOB2 tagging scheme rather than the BIOES tagging scheme, and (3)
we used RMSprop rather than stochastic gradient descent (SGD) for fine-tuning on the target dataset.
Preliminary experiments showed that SGD with a learning rate of 0.005 and 100 epochs (the defaults in
(Lee et al., 2017)) failed to converge for many of our datasets. We experimented with learning rates of
0.05 and 0.5, as well as with optimizers with adaptive learning rates (Adam, Adagrad, and RMSprop).
Since RMSprop tended to have the highest F1 scores, and in order not to have to tune the learning rate
of SGD for each dataset, we ran our final fine-tuning experiments with RMSprop, with a learning rate of
0.001.

We ran experiments with three settings: no transfer (training the network from scratch on the target
corpus), transferring the word embedding layer, and transferring both the word embedding layer and the
BiLSTM layer. We observed that the difference between not transferring any layers and transferring one
layer was often small; this was also noted in (Lee et al., 2017). We therefore only include the results with
transferring both layers and when discussing pretraining below we are referring to this case.

4 Results

We are particularly interested in comparing the behavior of the transfer learning methods as the size of the
target dataset varies. This can help practitioners decide which approach is best suited to their situation.
Plots of micro-averaged precision, recall and F1 scores with error bars for a few target domain datasets
are shown in Figures 2, 3 and 4 14. We denote the no-transfer (training on the target only) baselines for
the CRF and the BiLSTM-CRF as CRF-TGT and BiLSTM-TGT, respectively.

4.1 Comparing PRED/PRED-CCA and neural network approaches
The PRED/PRED-CCA approaches have greater precision than the neural network approaches in most
cases (the only exceptions being GUM, with 1500 and 2000 sentences), with the greatest difference
occurring when the number of target training sentences is small. For recall, the situation is not so clear.
For MIT Restaurant, MIT Movie, CADEC, i2b2 2014 and i2b2 2006 (Figure 2), the neural network
approaches have better recall than PRED and PRED-CCA across all dataset sizes; this results in the
neural network approaches having a greater F1 score for these datasets in most cases (the exceptions
being MIT Restaurant with under 500 sentences, and CADEC with 500 sentences).

On the other hand, for GUM, re3d, NIST IE-ER, MUC 6 (Figure 4) and Ritter (Figure 3), we observe
that initially PRED and PRED-CCA have higher recall than the neural network approaches, but the
neural networks’ recall surpasses them once the target domain dataset is large enough. This occurs at
500 sentences for Ritter, NIST IE-ER and MUC 6, and at 250 sentences for re3d and GUM; it leads to
a similar pattern in F1 scores: for Ritter, GUM, MUC 6 and NIST IE-ER, PRED and PRED-CCA have
higher F1 scores than either of the neural network approaches for smaller target training sets, but the
situation is reversed once the target domain dataset is large enough.

4.2 Comparing PRED and PRED-CCA
For most corpora, the PRED/PRED-CCA approaches improved the F1 score over the “target-only”
(CRF-TGT) baseline. MIT Restaurant and MIT Movie were the only corpora where the F1 scores for
CRF-TGT, PRED, and PRED-CCA were about the same. For CADEC the F1 scores for the 20 and 50
sentence settings decreased.

PRED-CCA outperformed PRED in most cases, but not always by very much. MUC 6, NIST IE-ER
and Ritter show the greatest increase in F1 score, due to an increase in recall. The improvements in F1

13The hyperparameters can be found in the parameters.ini file in NeuroNER; they include using dropout of 0.5 after
the word embedding layer, using the 100-dimensional Glove 6B word embeddings, and using 100 LSTM hidden units. Training
on the source corpus is done using SGD with 100 epochs and patience of 10, with a learning rate of 0.005 and a gradient clipping
value of 5.0.

14We only include three due to space limitations; the plots for the other transfer learning experiments will be available online.
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Figure 2: Micro-averaged scores for the i2b2 2006 corpus

Figure 3: Micro-averaged scores for the Ritter corpus

score are highest for smaller target training datasets, and rapidly decrease with increasing dataset size.
Figure 5 shows the change in F1 score between PRED and PRED-CCA for the MUC 6 and Ritter corpora.
NIST IE-ER displayed a pattern similar to MUC 6, so it was omitted. re3d showed an improvement of
2% under the 20 sentence setting; the improvement for the other datasets was under 1%.

We note that in most cases, using PRED-CCA rather than PRED results in a small drop in precision;
this is consistent with the results in (Obeidat et al., 2016), who observe a drop of 1% between PRED and
PRED-CCA for the TAC-KBP 2015 corpus. The large increase in F1 score for MUC 6 and NIST IE-ER
are consistent with the 9% increase for TAC-KBP 2015 reported in (Obeidat et al., 2016). Although the
label sets are different in each case, MUC 6, NIST IE-ER and TAC-KBP 2015 are all news corpora, as
is CoNLL 2003. We hypothesize that the reason PRED-CCA does so much better than PRED in these
cases is that there is more of an overlap in the source and target domains’ vocabularies. This would lead
to more semantically similar source and target labels being mapped closer together.15

15We did not lowercase the tokens before computing the label embeddings. We expect to obtain higher F1 scores in this case,
particularly for the MIT Movie and MIT Restaurant corpora, but leave this for future work.
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Figure 4: Micro-averaged scores for the MUC 6 corpus

Figure 5: Difference in F1 score between PRED and PRED-CCA

4.3 Comparing the BiLSTM-CRFs with and without pre-training

The results for the pre-trained neural network were less clear. On i2b2 2006, i2b2 2014, and MIT
Movie, using pre-training generally led to an improvement in F1 scores over the BiLSTM-TGT baseline.
When these datasets had over 500 sentences the improvement was minimal (under 1%); for less than 500
sentences the improvement varied, but was often between 2% and 3%. In these scenarios pre-training also
performed better than PRED and PRED-CCA as well. The improvement in F1 score of i2b2 2014 with
1500 sentences was 0.7%. For comparison, Lee et al. (2017) report an increase of 3% when transferring
from MIMIC to i2b2 2014, when using 5% of their target set (roughly 1600 sentences) and reusing all
layers up to the token layer.

For MUC 6, NIST IE-ER, re3d, Ritter, MIT Restaurant, and GUM, pre-training often achieved a higher
F1 score than training from scratch; this mostly occurred when there were 500 target training sentences
or less. The increase in F1 score was highest for MUC 6 (2%-5%) and for re3d (2-3%). However, in
nearly all of these cases pre-training was outperformed by PRED-CCA.

5 Summary and Conclusion

In this reproduction paper, we have compared three existing methods that can be applied to the setting of
transfer learning with novel entities in the target domain. These methods have not been compared against
each other before in the literature.

In summary, our results show that in some situations (particularly when there is less labeled target
data), PRED and PRED-CCA outperform pre-training neural networks for the entity recognition task.16

16This may not generalize to other neural network architectures, hyperparameter choices, or domain pairs.
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With sufficient labeled data, the neural transfer approaches tend to do well, but of course, these corre-
spond to cases with less data scarcity.

Thus, we encourage researchers to compare neural network approaches with simpler baselines such
as PRED and PRED-CCA, rather than only comparing against the “no tranfer” option, and to report not
only F1 scores, but also precision and recall, which may be useful when deciding which transfer learning
approach to use.

A number of extensions to our study are possible in future work. For example, we hope to run similar
comparisons with multi-task and few-shot learning approaches. In particular, we believe methods for
few-shot learning in image classification could potentially be adapted to sequential classification prob-
lems such as entity recognition. A more thorough study of hyperparameter tuning (versus replicating
previously published hyperparameters) would also be interesting future work, particularly for the neural
network approaches, which are known to be sensitive to choices in hyperparameters.
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