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Abstract

Automatic image description systems typically produce generic sentences that only make use of
a small subset of the vocabulary available to them. In this paper, we consider the production
of generic descriptions as a lack of diversity in the output, which we quantify using established
metrics and two new metrics that frame image description as a word recall task. This framing
allows us to evaluate system performance on the head of the vocabulary, as well as on the long
tail, where system performance degrades. We use these metrics to examine the diversity of the
sentences generated by nine state-of-the-art systems on the MS COCO data set. We find that
the systems trained with maximum likelihood objectives produce less diverse output than those
trained with additional adversarial objectives. However, the adversarially-trained models only
produce more types from the head of the vocabulary and not the tail. Besides vocabulary-based
methods, we also look at the compositional capacity of the systems, specifically their ability to
create compound nouns and prepositional phrases of different lengths. We conclude that there
is still much room for improvement, and offer a toolkit to measure progress towards the goal of
generating more diverse image descriptions.

1 Introduction

Automatic image description is a challenging task because natural language and the visual world both
have an unbounded range of variation (Bernardi et al., 2016). Computational image description models
are trained to generalize over datasets of images with multiple human descriptions, however, much of the
variation present in these descriptions is lost in a trained model. Dai et al. (2017) note that the descriptions
generated by recurrent neural networks using a maximum-likelihood objective are “overly rigid and
lacking in variability.” This rigidity and lack of variability in the output of state-of-the-art models is
unfortunate because human descriptions are the exact opposite of this: Devlin et al. (2015) found that
humans typically produce unique descriptions, i.e. only 4.8% of the human-described evaluation data in
the MS COCO data set (Lin et al., 2014) also occur in the training data.

The lack of variability in machine-generated text is not limited to automatic image description; it is
a general problem in natural language generation. Simply put: automatically generated text quickly
becomes boring or repetitive. Recent efforts to address this problem include using maximum mutual
information as an objective function, rather than the likelihood of the output, to improve the variablity of
a neural conversation model (Li et al., 2016). Castro Ferreira et al. (2016) focused on the deterministic
nature of NLG systems, in the sense that they repeatedly use the same referential forms to refer to the
same entity in longer stretches of text. They addressed this problem by explicitly training their model to
mimic human variability for referring expression generation.

In the image description literature, there have been two recent approaches to generating diverse out-
puts: (i) learn different description distributions simultaneously to generate multiple different descrip-
tions for the same image (Wang et al., 2016); and (ii) augmenting a model with an additional (condi-
tional) Generative Adversarial Network objective (Goodfellow et al., ; Mirza and Osindero, 2014, GAN)
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to generate more natural and diverse descriptions. In this setting, the caption generator tries to fool a
discriminator that is trying to distinguish human image descriptions from machine-generated ones (Dai
et al., 2017; Shetty et al., 2017). From these papers, two definitions of diversity emerge:

Local diversity: The ability to generate many different descriptions for the same image.
Global diversity: The ability to use (many different combinations of) many different words.

The former is local because it can be evaluated for individual images. The latter is global, because
it is a property at the corpus level. This paper focuses on global diversity, which means that we will
study whether systems are able to produce as many different words and phrases as humans do in their
descriptions of images. We know that word frequencies follow a Zipfian (or power law) distribution (Zipf,
1949; Van Heuven et al., 2014; Corral et al., 2015), which means that a small subset of the vocabulary
accounts for the largest part of the data. Natural language processing systems trained on corpus data are
sensitive to this, and tend to overfit on the head of the distribution (e.g. Postma et al., 2016). We will
show that this also holds for the output of image description systems: all systems considered in this paper
mainly use the top 20% most frequent words.

In this paper, we consider the following question: How can we measure the diversity of the output
generated by an image description model? There is currently a lack of consensus about how to measure
the diversity of model output but the metrics used thus-far fall into four broad areas:

(i) Modified' type-token ratio: the number of distinct unigrams or bigrams, divided by the total number

of generated words (Li et al., 2016; Shetty et al., 2017).

(ii) mBLEU: compute the average BLEU score (Papineni et al., 2002) between each description and the
other descriptions generated for the same image. This metric can only be used to evaluate models
that produce multiple descriptions per image (Wang et al., 2016; Shetty et al., 2017).

(iii)) Model-internal: a Generative Adversarial evaluator network that judges whether descriptions are
more natural-sounding and semantically relevant than human descriptions (Dai et al., 2017); and

(iv) vocabulary size and the proportion of uniquely generated sentences (Shetty et al., 2017).

In addition to this lack of consensus about which metrics should be used to measure diversity, it is not
known how state-of-the-art systems differ in terms of output diversity because it has not been standard
practice to report this type of performance statistics. In this paper, we present an overview of metrics to
assess the diversity of automatically generated English image descriptions, and compare them using nine
state-of-the-art image description systems (Section 2). Besides covering existing metrics, like TTR and
average sentence length, we also propose two word recall metrics that provide more information about
the output vocabulary (Section 3). We also look at the compositional capacity of the different systems,
by examining how many different compound nouns and prepositional phrases they can produce. We use
these metrics to analyse how image description systems differ from human descriptions (Section 4). It is
not our goal to evaluate the quality of the descriptions, though future research may find that more diverse
descriptions are also more attractive for human readers (Section 5.2).

The main finding of our analysis is that recent GAN-based systems (Dai et al., 2017; Shetty et al.,
2017), designed to produce more human-like image descriptions, do indeed produce more diverse output
than the other MLE-based systems, but this increased diversity still mostly comes from the head of the
vocabulary. In order to support future analyses, we release a toolkit to assess the output of any system
and to compare the results with existing approaches.?

2 Existing metrics

This section discusses six general metrics to measure output diversity at the word level, along with a
method to visually inspect the differences between systems. All of these methods require tokenized
image descriptions — we use SpaCy 2.0.4 for this purpose and lowercase all of the tokens. The validation
data is different from the system output, in that it consists of 5 reference descriptions per image, while

!"This is similar to the type-token ratio (TTR; number of types divided by number of tokens), except that it is customary to

compute TTR over a fixed number of tokens, as TTR decreases with corpus size (Youmans, 1990).
2Toolkit: https://github.com/evanmiltenburg/MeasureDiversity
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Type  System BLEU Meteor ASL SDSL Types TTR; TTR> %Novel Cov Locs

Liu et al. 2017 323 258 103 1.32 598 0.17 0.38 50.1 0.05 0.70
Mun et al. 2017 32.6 25.7 9.4 1.12 1009 0.16 0.38 500 0.08 0.78
Shetty et al. 2016 31.9 252 9.0 1.03 1112 0.15 0.34 43.0 0.08 0.74
MLE  Tavakoli et al. 2017 28.7 23.5 9.2 1.03 917 0.15 0.33 388 0.07 0.66
Vinyals et al. 2017 32.1 257 10.1 1.28 953 0.21 0.43 90.5 0.07 0.69
Wu et al. 2016 31.0 25.0 9.1 1.03 849 0.14 0.32 445 0.06 072
Zhou et al. 2017 30.0 24.8 9.3 120 1334 0.22 0.51 60.1 0.10 0.80
GAN Dai et al. 2017 20.7 22.4 9.8 1.63 1922 0.23 0.55 87.7 0.15 0.76
Shetty et al. 2017 - 23.6 9.4 1.31 2611 0.24 0.54 80.5 020 0.71
Validation data - - 113 2.61 9200 0.32 0.72 95.3 - -

Table 1: System results: BLEU and Meteor scores; average sentence length; standard deviation of sen-
tence length; mean-segmented type-token ratio (TTR); bigram TTR; percentage novel descriptions; cov-
erage; and local recall with importance class 5. BLEU/Meteor scores are originally reported values,
except for (Dai et al., 2017) and (Vinyals et al., 2017), which we computed on the validation set.

the systems only produce one description per image. Hence, for the validation data, we compute each
score 5 times — once per reference description — and report the average.

1. The average sentence length (ASL) corresponds to the mean number of tokens per sentence.

2. The standard deviation of the sentence length (SDSL) is a measure of how much systems vary in
their description lengths.

3. The number of types measures the number of unique word types in the output vocabulary.

4. The mean segmented type-token ratio (TTR;) is the average number of types per 1000 tokens
(Johnson, 1944). It is not affected by sentence length because it is computed for a fixed number of
tokens. It is more difficult to artificially increase than the number of types because it is an average.

5. The bigram TTR (TTRy) is the average number of bigram types per 1000 bigram tokens. This is
based on Li et al.’s (2016) diversity metric (looking at bigram diversity), and the MSTTR metric
(using a fixed size, averaging over multiple samples) so that it is not biased by description length.

6. The percentage novel descriptions (% Novel) refers to the generated descriptions that do not occur
in the training data. Note that there may be duplicates among the novel descriptions.

2.1 Systems

For any analysis of output diversity, it is essential to have the generated descriptions. Unfortunately,
this data is generally not available for most published systems. We contacted the authors of papers that
appeared in relevant conferences and journals between 2016-20173, and received nine responses with
descriptions generated for the MS COCO validation set. All these systems are listed in Table 1. With
the exception of the two GAN-based systems (Dai et al., 2017; Shetty et al., 2017), the other systems are
based on a conditioned recurrent neural network, trained using a Maximum Likelihood (MLE) objective.

2.2 Results

Table 1 presents the results for the metrics discussed above. We discuss each of them in turn.

Average sentence length. We observe that all models produce shorter sentences than humans, on
average, perhaps also conveying less information. It also means that the BLEU brevity penalty (Papineni
et al., 2002) and Meteor length penalty (Denkowski and Lavie, 2014) are affecting the metric scores.
However, producing shorter sentences does not necessarily mean producing worse descriptions.

Standard deviation of sentence length. We observe that the GAN-based systems vary more than
most other systems, but the systems by Liu et al. (2017) and Vinyals et al. (2017) have more variation than
other MLE-based systems. Humans vary much more than any model in the length of their descriptions.

Number of types. The model by Liu et al. (2017) produces the fewest distinct word types (598),
which severely limits the output diversity of the system. The two GAN-based models produce the most

3We surveyed AAAL ACL, BMVC, COLING, CVPR, EACL, EMNLP, ICCV, ICLR, ICPR, IJCAIL NAACL, and NIPS.
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Figure 1: Type-token curves for nine systems.
The validation data grows much faster than any of
the systems and the GAN-based systems clearly
outperform the other systems (shaded, with a line
plotting the average performance).

Figure 2: Absolute Spearman correlation between
the different diversity metrics, computed over the
results for the 9 different systems

distinct word types: 1,922 and 2,611. This is still much lower than the human type count, which averages
at 9,200. The total number of types in the validation set is much higher, at 17,557.

TTRy; ) We find that the GAN-based models again outperform the rest. But in terms of variation,
there is still much room for improvement before they reach human parity.

Percentage novel descriptions. We find that the model by Vinyals et al. (2017) outperforms the
rest (90.5% novel), with the GAN-based systems following close behind at 87.7% and 80.5% novel.
The remainder of the systems reproduce a sentence from the training data approximately 50% of the time.

We visualize the differences between the systems using a type-token curve (TTC), which shows
how the number of types develops as one reads more output tokens (Youmans, 1990). This curve was
originally proposed to compare different texts, which means that sentence order is fixed. With automatic
image description, we do not have this constraint. Rather than taking a single sample, and reading the
image descriptions in a single order, we randomized the order of the descriptions ten times, and computed
the average TTC for the validation data for each system. Figure 1 shows the type-token curves for the
validation data and all systems. We observe that the TTC for the validation data develops much more
rapidly than that of the systems. Moreover, we can clearly see how the two GAN-based systems stand
out from the others in producing more diverse output.

We now inspect how strongly the different existing metrics correlate with each other. Figure 2 shows
the correlation matrix between the different general metrics for measuring diversity. We observe that
TTR; and TTR; are almost perfectly correlated. We conclude from this that a single type-token ratio
measure is enough to capture differences between systems in their use of different types. The number of
novel descriptions is strongly correlated with the type-token ratio. An intuitive explanation for this is that
whenever a model produces more varied output, it is also more likely to produce novel output. In this
light, it is interesting to observe the lower correlation between the number of types and the percentage
of novel sentences. An explanation for this may be that producing more different types in total does not
necessarily mean more diverse output. A system has to consistently produce more different types to have
an impact.

3 Image description as word recall

Image description can be simplified to a word recall problem, where the goal is simply to produce a bag
of words that should overlap with the reference data. By ignoring sentence structure, we can focus on the
richness of the vocabulary, and study system performance for different classes of words. We distinguish
between global recall, looking at the corpus as a whole, and local recall, looking at the corpus image-by-
image. We also introduce ranking measures based on these concepts.
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Figure 5: Local recall scores for all systems for
each word importance class. Systems have low re-
call for words that occur only once in the refer-
ence descriptions, but their recall grows to 65-80%
when all five references mention the same word.

Figure 4: Coverage (equation 3) for different sub-
sets of the learnable words. Recall for all systems
is best for the top 10% most frequent words, but
immediately drops for the next 10% of most fre-
quent words.

3.1 Global recall

We formally define the global recall metrics in Figure 3. The sets TRAIN, EVAL, GEN correspond to
the words that are in the training set, evaluation set, or those generated by the model. Any word type
that is both in TRAIN and EVAL is learnable from the training data (Eq. 1).* Recalled words are those
that are both learnable and generated by the model (Eq. 2). We quantify the success of a system as the
percentage of learnable words it can recall, i.e. coverage (Eq. 3). Since the set of learnable word types
is a subset of the word types in EVAL (this follows from (Eq. 1)), systems that are trained on the training
data alone cannot recall all word types in EVAL. We define this limit in (Eq. 4). Intuitively, a model that
has a higher coverage (Eq. 3) can recall more types from the learnable set (Eq. 1), therefore the model is
producing a more globally diverse output.

Using the coverage metric to evaluate the nine systems,
we find that the GAN-based systems of Shetty et al. (2017)
and Dai et al. (2017) once again achieve the highest scores,
achieving 15-20% coverage. This still leaves much room

Learnable = TRAIN N EVAL (D
Recalled = GEN N Learnable (2)

for improvement. We further explore coverage for 10 dif- Coverage = [Recalled| 3)
ferent subsets of the learnable word types, ranging from the |Learnable|

10% most to the 10% least frequent types in the validation Limit — |Learnable| @
data (based on the counts in the validation set). |Eval|

Figure 4 shows the results. We see that the two GAN-
based systems achieve almost 90% coverage of the most
frequent types, but this score quickly degrades. Other sys-
tems only achieve about 60% coverage of the head, and degrade even more quickly than the GAN-based
systems. Furthermore, we observe that the GAN-based systems only achieve better coverage than the
other systems on the head of the distribution. Dai et al.’s system is only better for the 0—20% most
frequent terms (part A), and Shetty et al.’s (2017) system still shows higher coverage than the others up
to the 60% mark (part B), but there is no difference for the rest of the lexicon (part C). We emphasize
that, for global recall, a system only has to use a type once for it to be counted. The Limit for the MS
COCO validation set is 0.75. This means that the other 25% (4356 words) in the validation set cannot be
learned on the basis of the training set.

Figure 3: Definitions for global recall.

*We ignore zero-shot learning approaches that could learn to describe images using words outside the training data.
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ASL SDSL Types TTR1 TTR2 Novel
Cov 0.10 0.33 1.00 0.68 0.78
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Figure 6: Spearman correlations between our coverage and local recall metric and the existing metrics.
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3.2 Local recall

Local recall considers each image in the evaluation data as a separate word recall problem. We define
the local target set as the union of the descriptions (sets of words, D) for an image I; (Eq. 5). The goal
is to recall the content words that are important to describe the image. We used SpaCy 2.0.4 to tag the
descriptions and we only use adjectives, verbs, nouns, and adverbs as content words for the analysis.

Recalled words are those that are generated for a specific image I; and occur in the local target set (Eq.
6). We define the importance of a word w for an image I in terms of the number of descriptions D that
the word w occurs in (Eq. 7), resulting in a value between 1 and N (here N=35, as there are 5 descriptions
per image). We use the importance metric to measure how well a system recalls the essential (with a
score of 5) or the majority (3 or higher) words.

Local; = U {w:w e D;} ®)

D]'Gli
Recalled; = Gen; N Local; (6)
Importance(w,I) = {D :weD AN Del}| (7)

Local recall score;, =

1 Z |{w : w € Recalled; A Importance(w, I;) = k}| ®)
|

|Val| S {w : w € Local; A Importance(w, I;) = k}|

The local recall score for words of k importance is computed by dividing the total number of recalled
words with an importance of k by the total number of words with an importance of k (Eq. 8). Figure 5
shows the scores for all 9 systems. All models achieve local recall scores between 65% and 80% for
types that are mentioned in all five references. This time, the GAN-based models do not outperform the
rest, although they still have recalls around 75%. Although local recall is not strictly about diversity in
output vocabulary, it does test each system’s ability to use the right words at the right time (even if those
words are rare).

Figure 6 shows the correlations between coverage (Eq. 3) and the local recall metric with the existing
measures of diversity that were discussed earlier. We find that coverage and the number of types are
perfectly correlated. Future work may find that these two measures do not always correlate perfectly,
since coverage is based on the word types in the evaluation set. If future systems start producing more
word types that are not in the evaluation set, we would see a divergence between coverage and number
of types. Local recall (Locs in the table), does not correlate as strongly with the other metrics.

3.3 Global ranking of omitted words

Instead of using local and global recall to produce scores summarizing model performance, we can use
these metrics to construct a ranking of words typically produced by a model, or that a model typically fails
to produce. We refer to ranking on the basis of global recall as global ranking. The most straightforward
way to use global ranking is to construct a frequency table for all words in the evaluation set that are not
recalled by a model. This gives us a list of the most common omissions for that model. Table 2 presents
the 15 most frequent words that all systems failed to produce. The first ranking is based on the frequency
in the training set; the second ranking on the basis of the validation set frequency. The advantage of the
former is that we see which words are omitted even though there is sufficient evidence. The advantage
of the latter is that we see which words are omitted, even though there are sufficient contexts in which
those words could have been used.

Two types that immediately stand out are ’s and n’t. One possible reason that both these types were
never produced by any system is that they are (cognitively) complex. The possessive ’s indicates abstract
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Global ranking Local ranking

Train Validation Absolute  Relative Relativeig
’s ’s man pillow door
elderly elderly dog kitten paper
toast toast woman flag van

we we people turkey pink
whole thrown cat milk head
laughing  whole umbrella ice doll
displays  ham dogs chips hair
meadow  located sign rainbow pool
located driver pizza potatoes fork
ham mat ball map tray
nicely n’t cake eggs carrot
n’t heading bear cream girls
almost displays bed butter apple
more amongst table strawberries ~ women
picking simple elephant  pregnant rice

Table 2: Global and local rankings of omitted words. These rankings show the most frequent words that
are not produced at all (Global ranking), or that are most commonly omitted by the 9 image description
systems (Local ranking).

relations between animate entities and objects that vary from scene to scene, making it difficult to learn
how to use this type on the basis of visual information alone. The use of negations like n’t typically
requires the speaker to reason about whether or not an image conforms with their expectations (van
Miltenburg et al., 2016). Another difficult case is thrown, which refers to a throwing action taking place
before the picture was taken. Completing the top-3 in both rankings are elderly (253 occurrences in
the training data, 140 in the validation data) and foast (237 and 124). These are less complex than the
examples mentioned above, and could be determined on the basis of visual information alone. Further
research is needed to determine why these words could not be produced by any system.

3.4 Local ranking of omitted words

We refer to rankings produced on the basis of local recall as local ranking. With local ranking, we can
look at the words that models failed to produce most often. For reasons of space, we will only look at
the words with importance class k£ = 5. Table 2 presents three local rankings:

1. An absolute ranking, where we look at the aggregate number of times each word was missed by the
models under investigation.

2. A relative ranking, where we look at the rate at which each word was missed (Eq. 9). In the case of
a tie, the most frequent word ‘wins’, so that words with the largest impact on model performance
are ranked higher.

missed(w)

MissRatio(w) = )

missed(w) + recalled(w)

3. A relative ranking with an occurrence threshold, where each word with importance class k£ = 5 has
to occur at least n = 10 times for each system. This eliminates words from the ranking that occur
only a few times, but that are missed by all systems (so MissRatio(w)= 1).

All three rankings provide a starting point to explore system performance. For example, in the first
ranking, we observe that some of the most common terms in the MS COCO dataset overall (rnan and
woman) are often missed by image description systems, when all annotators do use those terms. Since
these words are ranked high, they have a big impact on the quality of the descriptions. For reasons of
space, we cannot discuss this example in depth, but a natural next step would be to look at example
descriptions where systems fail to produce man or woman and identify potential causes of this behavior
(e.g. an inability to determine people’s gender using only visual information).
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Figure 7: Histograms showing the number of tokens with compound length 2, 3, and 4, and the number
of tokens with PP-depth 1-5, for all 9 systems and the MS COCO validation data. The validation data
and the two GAN-based systems (Dai et al., 2017; Shetty et al., 2017) clearly have more compound
tokens than the other systems. We do not observe this difference with PP depth.

4 Compound nouns and prepositional phrases

Beyond the word level, we can look at how words are combined to form new phrases (i.e. composition-
ality (Szabo, 2017)). We detect compound nouns using a part-of-speech tagger (SpaCy 2.0.4), assuming
that any sequence of nouns is a nominal compound. We also compute the compound ratio: the average
number of compounds per description. Figure 7 and Table 3 show the results. We observe that the val-
idation data has a larger number of compound nouns, resulting in a higher compound ratio. When we
separate the compounds by length, we see that humans produce most compounds in any category, and
the GAN-based systems (Dai et al., 2017; Shetty et al., 2017) produce more compounds of length 3 and
4 than the other systems. The system by Vinyals et al. (2017) also stands out in this regard. Finally, we
see that the GAN-based systems produce more compound types of length 2 than any other system, but
there is still a big gap between the GAN-based systems and human performance.
We detect prepositional phrases (PPs), such

as in the kitchen, using SpaCy’s part-of-speech Compound stats PP stats
tagger and dependency parser. First, we iden-
tify each preposition in the description (e.g. in,

Ratio Types-2 Ratio Types-1

. Liu et al. 2017 0.33 122 1.86 1145

with, on). Then we inspect the subtree headed Mun et al. 2017 0.33 300 1.74 2423
by those prepositions. For each of those sub- Shetty et al. 2016 0.30 319 1.65 2426
: . Tavakoli et al. 2017 0.33 259 1.72 1888

trees,' we count their depth in terms of PP em- Vinyals etal. 2017 039 275 174 1678
beddings, e.g. on top of a pan on a table (1) has Wu et al. 2016 0.34 237  1.69 1732
a depth of 3. Zhou et al. 2017 0.34 472 171 3451
Dai et al. 2017 0.37 2576 1.78 11709

(1) [on top [of a pan [on a table]]] Shetty et al. 2017 0.42 1446 1.58 8439
Validation data 0.47 6089 1.74 22237

We also compute the preposition ratio, which
is the average number of prepositions per de-
scription. Table 3 shows the results. We do not
see a big difference between the validation data
and the systems. The only difference is that hu-
mans produce more types of PPs with depth 1:
twice as many as the System by Dai et al. (2017).
We conclude that image description systems still
have much to gain in terms of compositionality.
For further discussion of this topic, also see re-
cent work by Lake and Baroni (2017).

Table 3: Statistics for nominal compounds and
prepositional phrases. Compound ratio corresponds
to the number of compounds per description. Types-
2 refers to the number of compound types of length
2. Preposition ratio corresponds to the number of
prepositional phrases per description. Types-1 refers
to the number of PP types of depth 1.
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5 Discussion and Future Research

5.1 Other metrics

In addition to the metrics proposed in this paper, there are other options that could be explored in future
work. For reasons of space, we were also not able to cover metrics based on the frequency distribution
of words in the training and validation data. We already mentioned Shetty et al.’s (2017) use of frequency
ratios in the introduction. Their approach could be extended (perhaps also using log-likelihood (Rayson
and Garside, 2000)) to produce a ranking of words that are over- or underused by a particular system.
Overused words could be further analyzed by computing a ‘local precision’ metric, measuring how often
a generated word is also used in at least one reference description. Ferraro et al. (2015) present other
metrics in their survey of datasets for vision and language research, including:

Yngve and Frazier measurements of syntactic complexity (Yngve, 1960; Frazier, 1985). Ferraro et al.
(2015) found that the MS COCO and Flickr30K datasets have the most complex sentences, compared
to other vision & language datasets. It is still an open question whether machine-generated descriptions
are of equal complexity and, if not, what are the differences.

Abstract-to-concrete ratio The authors also compare the proportion of abstract words that each corpus
contains. They count abstract words by using a list of abstract words compiled in earlier work. In the
literature, there are two definitions of abstractness and concreteness. Concrete words are either said
to be (1) more closely tied to perception, or (2) more specific (Spreen and Schulz, 1966; Theijssen et
al., 2011). It is unclear which is meant by Ferraro et al., but it would be interesting to see whether
machine-generated descriptions are more closely tied to perception than human descriptions, who also
speculate about the context of the images (van Miltenburg, 2016).

Part-of-speech distribution Ferraro et al. (2015) compared the distribution of nouns, verbs, adjectives,
and other parts of speech. Our work on detecting prepositional phrases and compound nouns (Section 4)
suggests that differences in the distribution of parts of speech between human- and machine-generated
descriptions could be an interesting avenue to explore.

Besides the measures discussed above, it may also be interesting to study some types of linguistic
phenomena in more detail. For example, van Miltenburg et al. (2016) provide a thorough overview of
the uses of negations in human-generated image descriptions. Even though this is a low-frequent (or
long-tail) phenomenon, studying a subset of the image descriptions informs us about the human image
description process, and the cognitive requirements to produce a description containing a negation. It
remains to be seen whether image description systems could produce similar descriptions.

5.2 Limitations and human validation

Earlier work has shown that automated evaluation metrics do not correlate well with human judgments
(Elliott and Keller, 2014; Kilickaya et al., 2017). For this reason, we should not blindly trust evaluation
metrics in their assessment of system performance. Still, this paper only includes automatic, intrinsic
metrics. This is by design: we want to gain insight into the descriptions, not to evaluate their quality.

While you cannot evaluate a system using only automated metrics, they do tell us something about
how a system behaves. Future researchers could try to improve the diversity metrics while maintaining
or improving the quality of the descriptions (ideally measured by human judgments). At that point, we
should determine if more diverse descriptions (as measured by the metrics covered in this paper) are
perceived by humans as more interesting to read. One issue is that it is unclear how human judgments
could be used to rate the diversity of the generated descriptions, because diversity is a global property of
the data. In other words: you cannot judge the diversity of a single description, because that is not what
diversity is about. You can only judge the diversity of a larger collection of descriptions. One way to
do this might be to generate descriptions for sets of very similar images, and have participants rate the
diversity of different batches of descriptions.
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6 Conclusion

We explored several metrics to analyze the richness of computer-generated image descriptions, most of
which focus on diversity at the word level. In our analysis of the output of nine state-of-the-art sys-
tems, we found that there are clear differences between human and system output: humans produce
more word types; more different types when averaged over multiple 1000-token samples; more com-
pound nouns per description; more long compound nouns; and more compound noun types than image
description systems. Not all of these observations hold for prepositional phrases: humans don’t produce
more prepositional phrases per description, and neither do they produce more embedded prepositional
phrases, however, they do produce a larger number of different prepositional phrases than the systems.
At the sentence level, we found that humans produce longer descriptions, vary more in their description
length, and produce more novel descriptions. We also found that GAN-based systems produce more
diverse descriptions than MLE-based systems. However, we caution that the GAN-based systems are the
only ones in our evaluation that are designed with diversity in mind. Further research is needed to find
out what kind of approach is best for producing diverse descriptions.

We also proposed to frame image description as a word recall task to further explore the differences
highlighted above. Global recall looks at the types from all the validation data that are learnable from
the training data. Local recall measures whether systems are able to produce content words that are
mentioned in n reference descriptions for a single image. These metrics show that there is plenty of
room for improvement, both in terms of vocabulary size, as well as using the right words at the right
time. One way to approach this challenge is by ranking terms that are often missed by a system, and
looking for ways to learn when to use these words.

We provide all the code and data to to apply the metrics discussed in this paper and compare systems.
We encourage readers to use this overview to start exploring the output of their own image description
systems, but note that the metrics covered here are just the tip of the iceberg. As more researchers focus
on producing more diverse descriptions, we will hopefully also develop a better understanding of what
makes a description human-like. Formalizing these notions enables us to measure our progress towards
richer and more diverse descriptions.
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