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Abstract

Lack of data can be an issue when beginning a new study on historical handwritten documents.
In order to deal with this, we present the character-based decoder part of a multilingual approach
based on transductive transfer learning for a historical handwriting recognition task on Italian
Comedy Registers. The decoder must build a sequence of characters that corresponds to a word
from a vector of letter-ngrams. As learning data, we created a new dataset from untapped re-
sources that covers the same domain and period of our Italian Comedy data, as well as resources
from common domains, periods, or languages. We obtain a 97.42% Character Recognition Rate
and a 86.57% Word Recognition Rate on our Italian Comedy data, despite a lexical coverage of
67% between the Italian Comedy data and the training data. These results show that an efficient
system can be obtained by a carefully selecting the datasets used for the transfer learning.

1 Introduction

An increasing amount of handwritten historical documents is becoming digitally available, as a mean for
preserving this heritage and making it accessible to all. However, digitization is not sufficient to make
the documents usable: it is necessary to extract informations in order to index them. Researchers and
historians in the humanities and in the social sciences need to be able to query them and find answers
rapidly. Therefore, new projects involve the domains of language processing, document recognition, and
information retrieval for historical studies.

In the field of Natural Language Processing (NLP) for historical documents, the main challenge is cur-
rently to analyse and normalize the spelling of texts (Garrette and Alpert-Abrams, 2016; Bollmann et al.,
2017) whereas challenges of Computer Vision for historical documents are more diverse: they involve
segmentation into words, lines, or paragraphs, as well as keyword spotting, or handwriting recognition
(HWR). In recent years, the number of competitions regarding historical documents has increased (Clop-
pet et al., 2016; Pratikakis et al., 2016; Sanchez et al., 2017). Such systems have to deal with the com-
plexity of the task as well as the document medium, its level of deterioration, or even its written language.
All of these can have a strong impact on the system efficiency.

Lately, the trend in HWR is the use of deep neural networks and, more recently, the integration of
attention models in the networks (Bluche et al., 2017). The handwriting systems are built with a Mul-
tidimensional Long Short-Term Memory (MDLSTM) network or even with a Convolutional Recurrent
Neural Network (CRNN) stacked with a Bidirectional Long Short-Term Memory (BLSTM) (Granell et
al., 2018). The neural network training includes a Connectionist Temporal Classification (CTC) cost
function proposed by (Graves et al., 2006). Those approaches enable the use of all the available contexts.
To decode sequences, there are several strategies: a dictionary, a language model, or a Weighted Finite
State Transducer (WFST) including several dictionaries. Nevertheless, results are constrained by the
size of the vocabulary used. When too many words are out-of-vocabulary, the results are degraded. To
improve the results, methods can be employed to increase the size of the vocabulary by using Wikipedia
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or other available resources. Whether improving the results or training the networks, the HWR systems
require a lot of data.

We are now working on a new resource (the financial records of the Italian Comedy) with no ground-
truth. The changing layout of these documents, the multilingualism (French and Italian), and their special
writing make them more complex to study. Moreover, an annotation step would be time-consuming for
experts to create a ground-truth. Therefore, transductive transfer learning is an interesting approach when
no ground-truth is provided. Indeed, it uses different sources of data to train a system for a specific task
by applying various target data (Pan and Yang, 2010). It enables us to use available existing resources
to annotate unknown data. It is eagerly used to supply the lack of data for greedy systems such as word
spotting in historical documents (Lladds et al., 2012) or translation models with multimodal systems
such as (Nakayama and Nishida, 2017).

The standard of machine translation is an encoder-decoder system based on a recurrent neural net-
work (Cho et al., 2014). The first component encodes the source language into a fixed vector and the last
one decodes the sequence into the target language. Similarly, (Vinyals et al., 2015) proposed a neural
image caption generator that consists of two sub-networks: a pre-trained Convolutional Neural Network
(CNN) encoding an image into a fixed size vector, using the last hidden layer from GoogleNet, and a
LSTM model generating the corresponding description. We were inspired by this idea to split up our
handwriting recognition system into an encoder and a decoder. First, an image encoder takes a word im-
age as input and, thanks to a fully convolutional network (FCN), converts it into a vector of letter-ngrams
as in (Huang et al., 2013; Bengio and Heigold, 2014). Here, the transfer learning is performed during
the training step that uses available labelled image data. Then, the decoder is built with a recurrent layer
in order to generate a sequence of characters from the vector of letter-ngrams. Here, a second transfer
learning is independently made on the vocabulary. Contrary to the machine translation and description
generator works, the sub-networks are trained independently from each other.

In this paper, we investigate the robustness of the decoder part to infer rules on the order of characters
from the letter-ngrams vector only. Within this context, we present three contributions:

1. we propose a character-based decoder and evaluate it on the historical vocabulary of the Italian

Comedy;

2. we show that historical resources are more appropriate than Wikipedia to complement the vocabu-

lary of historical documents;

3. we also show that the transfer learning across languages and periods of time works based on a bag

of letter-ngrams.

This paper is organized as follows. We describe our transfer model within the encoder and decoder
components in Section 2. Section 3 presents the datasets used and their preprocessing. The experimental
setups are presented in Section 4 which is followed by the report of our experiments and results in
Section 5.

2 Transfer Models

In this section, we present the architecture of our system. We aim to build a handwriting recognition sys-
tem for multilingual historical documents using multiple resources with different languages and different
creation periods.

2.1 Prior Work

Our first approach was based on a BLSTM-CTC network intergrating the transfer learning (Granet et al.,
2018b). Firstly, an image is provided to a fully convolutional neural network to automatically extract
features. Then, the extracted features were given to a BLSTM network. The cost was computed by
the CTC activation function. The CTC enables the use of an unsegmented input image at a word or
a character level and provides a sequence of characters as output. We implemented and evaluated this
system with a training and test data from the same resource and, then, used the system on unknown data.
The model did not use a dictionary nor a language model during the decoding. The resources were in
French, Spanish, and English for the training set and in French, and Italian for the target datatest. The
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Figure 1: Overview of our encoder-decoder using transfer learning on new historical documents. On
the left, the yellow component corresponds to the image encoder from which the features are extracted
thanks to a FCN and two connected layers with 1,024 units each and a vector of letter-ngrams is built.
On the right, the pink component corresponds to the sequence generation decoder that provides the word,
character by character, corresponding to the input vector.

results of this system showed that a language model was learned implicitly to generate the sequence
of characters and that the correctly recognized words were words close from one language to the other.
Therefore, without a specialized training on a small part of the data to be transcribed, the transfer learning
did not work well. The model allowed to reach only 10% of characters which are correctly recognized.
From these results, we concluded that a BLSTM-CTC network was unsuitable for the transfer learning
case.

Word classification could have been a solution. Nevertheless, in the field of transfer learning, this
strategy quickly reaches its limits when working on target data with a closed vocabulary with many
named entities, and a significant number of out-of-vocabulary words. Therefore, classification could not
be applied to our data.

2.2 Encoder-Decoder for Transfer Learning

Based on the work on image description generation, we define a new system that is divided into two
complementary components: an image encoder and a character decoder, as shown in Figure 1. The first
one encodes a word image into a vector and the second one decodes the vector into a character sequence
or word. The interface vector that links these two parts is a bag of characters or letter n-grams. We
estimated the set of letter-ngrams on all resources used for both the training data and the transfer target
data. The originality in using a letter-ngrams vector as a pivot is that we encode the input into a non-latent
space which is transferable as long as the training data and transfer target data share the same alphabet.
In this paper, we focus on the character-based decoder to generate corresponding words. Nonetheless, it
is interesting to give informations on the whole system to understand the overall approach.

Image Encoder We define our encoder as shown on the left part of Figure 1:
e a fully convolutional network;
o 2 fully connected layers with a ReLU activation function (Nair and Hinton, 2010) and 1,024 hidden
units each;
e one last fully connected layer with a sigmoid and L+1 units where L is the number of estimated
letter-ngrams and the additional unitias a joker if the letter-ngram is unknown.
The last layer with the sigmoid activation function allows us to have a probability for each letter-ngram
independently of the others.
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Character-Based Decoder We turned to neural encoder-decoder architectures in NLP as it enables us
to map one sequence to another one without having them to have the same length or word order such
as in machine translation (Bahdanau et al., 2014) and description generation (Vinyals et al., 2015). We
define the architecture for the character-based decoder as shown on the right part of Figure 1:

e one fully connected layer with a ReL.U activation function;

e one Gated Recurrent Unit layer (GRU) (Cho et al., 2014);

e one fully connected layer with a softmax activation function.

These components were designed to be the most minimalist. Moreover, they do not use an embedding
layer since it might interfer with the transfer learning that has to deal with different languages.

For the sequence generation task, we used a recurrent layer to add a temporality followed by a softmax
layer that gives one character at the time until the word end symbol ] is given. We chose not to include
a bidirectional recurrent layer contrary to encoder-decoder models that are used in machine translation.
Since our character-based decoder uses a vector without any order indication on characters from words,
all the information and context are included in the vector. Therefore, a bidirectional recurrent layer is
useless. Overall the system must infer sequences of characters from the vector content. If we analyse
the simple short word “are”, it consists of 3 unigrams, 4 bigrams, and 3 trigrams. This decomposition
includes the n-grams with the beginning and end symbols of the word. So the decoder needs to deduce
the order of characters from the letter-ngrams.

3 Dataset Collection and Statistics

In this section, we present the resources used in our experiments as well as their representation.

3.1 Target Data: Financial Records of the Italian Comedy

The studied documents consist of more than 28,000 pages of financial records of the Italian Comedy
from 1716 to 1791. These pages give the list of daily, monthly and annual receipts, with details on the
composition of the troupe of actors for each season. We noticed several evolutions over the years:
o the language switches from Italian (with several dialects) to French;
o the structure changes but keeps the same amount of information;
o the writing style is irregular at the beginning of the century but, after that, a cashier was nominated
so the style became stable.
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Figure 2: Example of a financial daily record of the Italian Comedy with fields identified.

Figure 2 shows all the information that can be found in a daily record such as the date, the titles of the
plays, the revenues and expenses, the actor names, and also some notes. Our study focuses on the title
field which contains the list of plays that were performed that day. This list can be extended by some
indications as if it was the first performance of the play, if the performance took place at the king’s court,
or if a new actor started to play. An example of this additional information is shown in Figure 2: the
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title field explains that it was a performance of “Sophie ou le mariage caché” (lit. “Sophie or the secret
marriage”) which was a comedy in three acts preceded by “Arlequin toujours Arlequin” (lit. “Arlequin
always Arlequin”). Moreover, a title can be written in many ways with the complete title or a shorter title.
Titles were mostly constituted by named entities such as “Raton and Rosette* or "Zemire and Azor*.

The language and writing style are essential for the decoder part. We explained above that the lan-
guage can be either Italian or French. Compared to the modern writing of these languages, we note some
differences such as special characters like the long form of ‘s’, the evolution of the ‘y’ spelling to ‘i’ or
using ’i’ and j’ indiscriminately, or some weak and strong abbreviations. We define as weak abbrevia-
tion, a symbol that replaces few characters of a word, while a strong abbreviation reduces a long title to
only two or three words.

Thanks to recent works and a participative annotation website (Granet et al., 2018a), we collected and
validated 971 annotated title lines. We used all of these annotations to test our decoder system: this
dataset is thereafter called Italian Comedy Registers (ICR).

3.2 Training Datasets

In order to build an efficient decoder, we must carefully select the training datasets. Table 1 presents the
vocabulary size for each dataset that are used to train the decoder. We choose to create a new dataset from
available digitized historical books, as well as to use three existing image resources (RIMES, George
Washington, and Los Esposalles) and the French version of Wikipedia since it is a widely used resource
in NLP tasks.

Google IC | RIMES Espf)gzues wfset?ilf;in Wikipedia Fr | IC Registers
Train 26,573 | 4477 2,565 660 24,456 0
Validation 2,953 | 1,578 629 521 3,843 0
Test 0| 1,627 629 431 1.928 1,431

Table 1: Vocabulary size of the training, validation, and test sets of each dataset.

New Dataset (Frinken et al., 2013) built a very large vocabulary gathered from a Google N-grams
project and an edition of a manually transcribed book from the 16! century. We had a similar approach
to this work as we built a new dataset from digitized books of the same century of our data, with a similar
closed vocabulary. To preserve the cultural heritage for future generations, copies of books have been
digitized, automatically OCRized, and distributed via Google Book, for example. We selected 23 books
dealing with the Italian Comedy from (and published in) the 18" century. These books include bilingual
scripts of plays (French and Italian), collections of plays, and anecdotal stories of the Italian theater. The
extracted texts were cleaned to remove the noise such as the structure of the texts and special characters.
This new resource, called Google Italian Comedy (GIC), has the advantage of having the same closed
vocabulary with specific writings as in the records of the Italian Comedy.

Existing Datasets For our transfer learning approach, we carried out experiments with four available
datasets of images, sharing at least one common feature with our target data, as well as Wikipedia to
compare the effect of a modern and general resource on the Italian Comedy data:

o RIMES (RM) stands for Recognition and Indexing of Handwritten Documents and Faxes) and is a
French database developed to evaluate automatic systems that recognizes and indexes handwritten
letters (Grosicki and El-Abed, 2011);

o George Washington (GW) is an English database created from the George Washington Papers at the
Library of Congress (Fischer et al., 2012);

e Los Esposalles (ESP) is a Spanish database compiled from a marriage licence book collection from
the 15°h and 17'h centuries (Fischer et al., 2012);

e Wikipedia Fr data (Wiki), as used and distributed by (Bojanowski et al., 2017), provides all words
whose frequency is greater than 5 in Wikipedia. From this dataset, we randomly selected 30 000
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words.

To our knowledge, no other experiments dedicated to the construction of a decoder use the resources
RM and ESP which are initially image resources. However, we found it interesting to observe the impact
of trained models because ESP is mainly composed of named entities, and RM is a contemporary base
with an administrative vocabulary. Therefore, they are far from our Italian Comedy data.

3.3 Representation

Preprocessing of the Training Datasets In all the datasets, we replaced the diacritical marks by their
simple form, such as {é, &} are e characters, and the typical long form of s from the 18" as a short form
for the decoder input and also the target data. All words are case sensitive. For GIC only, text lines were
split on whitespaces and punctuation marks. In contrast, ICR title lines were only split on whitespaces
and we kept with the punctuations in the data.

Letter-Ngrams As suggested by (Bengio and Heigold, 2014; Vania and Lopez, 2017), we use letter-
ngrams as a pivot in our multimodal encoder-decoder. Initially, the authors selected the 50 000 most
popular letter-ngrams to represent words. Adding [ and ] to symbolize the beginning and end of a word,
respectively, we computed all the possible letter-ngrams with a maximum length of 3 on all the datasets.
Therefore, we selected around 12,500 letter-ngrams. The large difference in the number of ngrams
comes from the choice of keeping only letter-ngrams appearing in at least 2 different datasets: a joker
was created to replace the non-selected letter-ngrams. With our example in Figure 1, the name Sophie is
thus decomposed as {S,0,p,[S,So,0p,[So ... . .iel.e]}.

Regarding the choice of having at most 3-grams, this allows to give the system an idea on the order in
which the characters are arranged in the word. In the case where there are only unigrams, the learning
process is longer and tends towards over-learning to be able to have sequences of characters forming
words. Including 4-grams into the vector would dramatically increase its length and would make it more
difficult to select the ngrams recognized in a word by the optical model.

Decoder Input and Output The input of the decoder input consists of the normalized frequencies of
the n-grams in the input word. The frequencies are normalized by the length of the word to provide a
vector with values between 0 and 1, corresponding to probabilities for each n-gram. Using frequencies
enables us to hold information about the word length and to compensate the lost temporality. For the
sequence generation, we have 79 output units for all the upper and lower characters, the digits, the
punctuation symbols including the space, the start and the end of word. The last added symbol is a blank
label that allows the system to provide an out-of-character answer after the end of a word.

4 Experimental Setup

This section presents the experimental setup of our decoder as well as the evaluation metrics we used.

4.1 Decoder Training

The size of the datasets varies from 660k to 25k words. For this reason, we trained the system with either
one dataset or several datasets, except for GW. Its size is too small so we always combined it with other
datasets.

To avoid overfitting, we used the classical technique of early stopping. The training process was
stopped after five epochs if the validation loss did not decrease anymore. For the sequence generation,
we used the loss defined by Equation (1) that computes the multi-classification with a normalization
through all the output units.

Li=—=> t;;log(pi;) (M
J

4.2 Decoder Parameters

We defined the structure of the decoder part with 1,024 units in the fully connected layer to extract
features, 500 hidden units in the GRU layer, and 79 units with the Softmax activation function on the last
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layer. To be sure to stay in the same configuration, we used the Adam function that controls the learning
rate which is initialized at 0.0001 for the stochastic optimization. As we have less data than the others
experiments of the state-of-the-art, our rate is lower. In the scope of sequence generation, we padded the
length of the sequence with blank labels up to 50 characters. Therefore, the network is free to define any
sequence without any constraints.

4.3 Evaluation Metrics
To evaluate the performance of our system, we used the recognition rate at the character level (CRR) and

at the word level (WRR). The Character Recognition Rate is defined as:

N — (Ins + Subs + Dels)

RR =
¢ N

with N the number of characters of the reference words, Subs the number of character substitutions,
Dels the number of character deletions, and Ins the number of character insertions. The Word Recogni-
tion Rate corresponds to the Word Accuracy and is defined as the number of correctly recognized words
divided by the total number of words to recognize. The WRR is computed with and without using the
Levenshtein edit distance to correct the output sequence with a multilingual dictionary. The dictionary
was built from the training and the validation parts of the vocabulary of all the datasets, except Wikipedia.
The dictionary contains 39,051 words.

We also computed the lexical coverage of a training set with respect to the test set. It is defined as
the number of words shared between the training set and the test set, normalized by the size of the test
vocabulary. This metric defines a high boundary for the word recognition using a dictionary. Since the
dictionary is built on the training and the validation sets, out-of-vocabulary words of the test set could
not be correctly recognized.

4.4 Baseline Approach

As a baseline approach we used a vector of unigrams to represent each word in the decoder input. We
added the symbols for the beginning and the end of words so each word is represented by 2 bigrams and
several unigrams.

5 Results and Analysis

In this section, we present the results of our experiments for the sequence generation decoder, in Table 2
which is divided into 3 parts following the test resources. We performed three types of experiments
corresponding to the sub-parts of the table, for each validation and test data:

1. the same resource for the training and the test parts (training domain = target domain);

2. adding other resources during the training part (training domain > target domain);

3. different resources for the training and the test parts, i.e. transductive transfer learning (training

domain # target domain).

The experiments are done with the artificial true n-gram vectors so the input is not noisy. Overall, the
results in Table 2 prove that using letter-ngrams is a better choice than only using unigrams and the use
of a dictionary degrades the results. In all the experiments, the models provide a CRR greater than 75%
on the validation sets and greater that 85% on the test sets, even if the lexical coverage is less than 25%.
Furthermore, WRR also exceed the lexical coverage. To decode the ICR vocabulary, the model must be
trained with at least GIC as a resource. All following analyses are presented on the validation sets to
evaluate the best ressources to train the model. The last analysis relates to the test sets.

Baseline Whether experimenting with RM on RM (validation and test set) or with GIC on GIC (vali-
dation set) and ICR (test set), we found that the results obtained with letter-ngrams are better than with
unigrams. On GIC, letter-ngrams dramatically outperformed unigrams with a 70% relative increase of
WRR without the dictionary. It should also be noted that only 5% of the characters were incorrectly
recognized with letter-ngrams. These results corroborate other studies using trigrams such as (Vania and
Lopez, 2017).
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Expe.  Letter Lexical Validation Test

Test  Train Id ngrams Coverage

WRR WRR

(%) CRR WRR dict. CRR WRR dict.

GIC 1 1 65.57 69.11 13.05 14.65 69.27 1454 10.83

GIC 2 1,23 ’ 95.85 7783 6647 97.10 86.22 39.30
GIC+RM 3 1,2,3 67.53 9597 7878 66.17 97.27 8657 39.23

ICR  GIC+ESP 4 1,23 65.83 9649 8587 6722 9696 81.46  39.09
GIC+ESP+GW+RM 5 1,2,3 67.65 9599 7786 6637 9585 79.65 3825

RM 6 1,23 14.52 74.69 1949 2332 79.70 3042 17.27
RM+ESP+GW 7 1,2,3 23.39 78.11 2536 2844 83.68 40.21 23.99

Wiki 8 1,2,3 0.0 83.67 41.18 4275 8732 4140 25.24

RM 9 1 75.09 82.66 37.83 27.58 8397 43.07 28.49

RM 10 1,23 ’ 9395 7993 3745 9472 7950 37.78
GIC+RM 11 1,23 83.83 97.32 89.04 3994 98.25 92.0 40.49

RM  GIC+ESP+GW+RM 12 1,23 83.95 96.8 86.18 3943 9622 80.73 39.14
GIC 13 1,23 58.55 93.93 7548 36.56 95.51 81.53 38.58
GIC+ESP 14 1,23 59.04 93.89 7433 36.05 9546 80.61 38.15

Wiki 15 1,23 0.0 87.04 6599 3331 9036 67.57 3520
GIC+ESP 16 1,2,3 85.94 98.25 91.61 6292 98.57 91.11 56.51
GIC+ESP+GW+RM 17 1,23 86.10 98.14 90.48 6194 9840 90.79 57.62

ESP GIC 18 1,2,3 15.96 88.18 5435 4548 91.68 65.87 44.76
RM 19 1,2,3 7.27 67.82 14.03 887 7283 1825 12.70
GIC+RM 20 1,2,3 17.37 874 41777 51.61 92.05 64.13 46.51
GIC+RM+GW 21 1,23 17.69 88.77 571 4435 91.68 64.60 44.60

Wiki 22 1,2,3 0.0 78.89 2726 2452 8452 3428 3238

Table 2: Sequence generation results. CRR and WRR with/without the dictionary on the Italian Comedy
Records (ICR), Rimes (RM), and Los Esposalles (ESP) validation and test datasets. Several experiments
are presented: evaluation of the baseline, combination of the resources, and transductive transfer learning
with all the resources. The lexical coverage is computed between the training and the test datasets.

Use of a Dictionary Using the dictionary drops performances except for Expe. 1d 6, 7, 8, and 20. We
notice that when the lexicon coverage is greater than 20%, WRR always remains lower. We notice that
a dictionary misleads the decoder when it generates a correct sequence but there is only another form
(e.g., plural) of this word, in the dictionary. However, the dictionary sometimes helps to get closer to
the original word even if this word does not exist in the dictionary and if the training and the test data
are from different periods or different languages. Nevertheless, these cases are too rare to improve CRR
with the dictionary.

Results on ICR (our Target Data) We focus on the central part of the ICR experiments, where GIC is
combined with other resources. The CRR and WRR results are very similar to those of the training step
with only GIC (Expe. Id 2 vs. Expe. Id 3, 4, and 5). Therefore, the increase in the number of resources
does not always have a great impact on the performance. Nonetheless, training on GIC and ESP achieved
better than GIC and RM despite the fact that languages are mixed.

For the transfer learning process with an out-of-domain vocabulary (Expe. Id 6, 7, and 8), the lexical
coverage is extremely low (around 15%). Nevertheless, the system reaches a maximum of 19.49 % WRR
using only RM and 41.18 % WRR using Wikipedia, which are the two modern French resources.

Results on Rimes (RM) These results are impressive because Rimes is the only modern image base
we used. For transductive transfer learning, without RM during the training step, CRR and WRR reach
the same results obtained with only RM as a training data. Moreover, they exceed the lexical coverage
of 15%. When we work with historical training data applied to modern data but with the same language,
the lexical coverage is greater than using a modern training data and testing on ICR. It seems that the
historical spelling is easier to extend to the modern spelling for the decoder. The results obtained with
Wikipedia show a CRR 6.89% lower and a WRR 9.49% lower than with GIC, despite the fact that the
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vocabulary used in RM and Wikipedia is modern French.

Results on Los Esposalles (ESP) The vocabulary of Los Esposalles is built primarily with named
entities as it is extracted from 18" century Spanish wedding registers. This explains the low lexical
coverage for the transductive transfer learning. Nevertheless, CRR is greater than 90% except with RM
(Expe. Id 19) and WRR outperforms the lexical coverage. We did not experiment the decoding with
unigrams on this resource because there are too few words. Expe. Id 21 using GIC, GW, and RM shows
that this decoder enables to learn a representation from one language (mainly in French) to another.

Analysis on Test Sets Finally, creating and using a new dataset in the field of the Italian Comedy is an
interesting approach to decode ICR. This enables a better word reconstruction since the lexical coverage
is increased by more than 20%. Among the unknown but well-recognized words can be found light
abbreviations such as “arleq.” instead of "Arlequin”. Contrary to the validation results, the best results
are obtained thanks to the combination with RM dataset (Expe. Id 3 versus 4). This can be explain by
the difference of the vocabulary, the validation set is composed of GIC while the test set is composed
of ICR. For the transductive transfer learning process, the results with Wikipedia are similar (4+1.20%)
to using mixed resources with less data (Expe. Id 7 versus Expe. Id 8) contrary to the results on the
validation set, where there is a significant difference around 15% on WRR with and without dictionary.

Error Analysis Table 3 shows some mistakes made by the decoder. For words with a repeated charac-
ter such as “cavalcade” and “clemence”, it is common for the system to fail to generate the characters
inserted between each repetition. Common mistakes are a permutation between two consecutive charac-
ters such as ”suitte” and one doubled character to replace another one. In the last example, "Soldat”,
the decoder predicts two start symbols: the second one replaces the first letter of the word. This happens
when small resources are used to train the system.

Table 4 shows the distribution of the different types of errors presented in Table 3 for 3 selected
experimentations (Expe. Id 2, 5, and 8). The most common mistake is a simple switch between two
characters: this represents 65.14% to 88.32% of the errors, depending on the considered experiments.
For the experiments including GIC in the training step, the redundant character errors and wrong starting
character are similar. They represent only 10% and 20% of all the identified errors. Expe. 1d 8 has a high
rate of wrong starting characters that can be explained by the lack of lexical coverage between Wiki and
ICR. Despite the equivalent quantity of words used for the training step with Wiki than with GIC, the
system has difficulties finding out the start of words. Indeed, Wiki has been preprocessed and normalized
by removing capitalization so the information seems to be important for the system.

To conclude, we can see that, in Expe. Id 2, there is on average 1.14 character error by word while, in
Expe. Id 8, there is on average 1.73 character error by word: that can be explained by the 45.8% drop of
WRR between these two experiments.

E‘Zﬁi Expe. Id  Correct Word Retrieved Word Expe. % Error o g 7% Error
Redundant . Starting
- Id Switch
Multiple 4 cavalcade cacaadade Character Char.
Char. 3 clemence ccceeene 9 9.13 81.22 9.65
Swich 6 suitte usitte 5 4.81 88.32 6.87
Char. 5 belle blll 8 8.44 65.14 26.42
Starting 5 [diverstissemens]  ddevvestissemens]
Char. 6 Soldat [ollat

Table 4: Quantitative analysis of the

Table 3: Examples of mistakes made by our decoder. different error types on 3 ICR results.

6 Conclusion and Future Work

In this paper, we presented a transfer learning approach dealing with the lack of ground truth of our Italian
Comedy data, for sequence generation. We selected some available resources with the same domain and
from the same time period to achieve the transfer learning. We chose an approach that did not use
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an indication of the order of characters in words rather than usual sequence-to-sequence approaches to
facilitate the transfer learning.

Our results show that a character-based decoder can infer a word from a letter-ngrams vector. More-
over, the lexical coverage between the training and test data is reached by the word recognition rate and
mostly exceeded without the dictionary. The dictionary misleads the decoder rather than helping it be-
cause only some forms of a word are included in the dictionary. We demonstrated that transfer learning
is more efficient from historical spelling to modern vocabulary than the opposite. The difference in lan-
guages implies a low coverage of the words but it still enables a correct decoding of the words as long as
the resources come from the same time period. Therefore, the letter-ngrams models are efficient across
languages sharing the same alphabet. Nevertheless, the decoder encounters some difficulties with spe-
cific words. We might be wondering whether the letter-ngram size limit of 3 is large enough, or whether
a higher amount of training data could solve this issue. Despite this, our simple decoder built with only
4 layers obtained good results. This strengthens our idea of looking for new untapped resources instead
of relying on resources traditionally used such as Wikipedia.

Currently, we are carrying out experiments with this approach at the word-level only and without punc-
tuation marks. The next step for the decoder would be to extend it to the sentence-level, more specifically
to deal with the space character. Initially, we aim at implementing a new handwriting recognition system
with an encoder-decoder model. We consider that the decoder presented in this article is operational.
Our future work is going to look at the encoder components independently. The main difficulty could
be to handle the errors by encoding them in the vector of letter-ngrams. Indeed, unlike the experiments
carried out in this paper, the input data of the decoder will be noisy.
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