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Abstract

Incorporating syntactic information in Neural Machine Translation (NMT) can lead to better
reorderings, particularly useful when the language pairs are syntactically highly divergent or
when the training bitext is not large. Previous work on using syntactic information, provided by
top-1 parse trees generated by (inevitably error-prone) parsers, has been promising. In this paper,
we propose a forest-to-sequence NMT model to make use of exponentially many parse trees of
the source sentence to compensate for the parser errors. Our method represents the collection of
parse trees as a packed forest, and learns a neural transducer to translate from the input forest
to the target sentence. Experiments on English to German, Chinese and Farsi translation tasks
show the superiority of our approach over the sequence-to-sequence and tree-to-sequence neural
translation models.

1 Introduction

The neural approach is revolutionising machine translation (MT). The main neural approach to MT is
based on the encoder-decoder architecture (Cho et al., 2014; Sutskever et al., 2014), where an encoder
(e.g a recurrent neural network) reads the source sentences sequentially to produce a fixed-length vector
representation. Then, a decoder generates the translation from the encoded vector, which can dynami-
cally change using the attention mechanism.

One of the main premises about natural language is that words of a sentence are inter-related accord-
ing to a (latent) hierarchical structure, i.e. a syntactic tree. Therefore, it is expected that modeling the
syntactic structure should improve the performance of NMT, especially in low-resource or linguistically
divergent scenarios, such as English-Farsi. In this direction, (Li et al., 2017) uses a sequence-to-sequence
model, making use of linearised parse trees. (Chen et al., 2017b) has proposed a model which uses syntax
to constrain the dynamic encoding of the source sentence via structurally constrained attention. (Bastings
et al., 2017; Shuangzhi Wu, 2017) have incorporated syntactic information provided by the dependency
tree of the source sentence. (Marcheggiani et al., 2018) has proposed a model to inject semantic bias into
the encoder of NMT model.

Recently, (Eriguchi et al., 2016; Chen et al., 2017a) have proposed methods to incorporate the hierar-
chical syntactic constituency information of the source sentence. In addition to the embedding of words,
computed using the vanilla sequential encoder, they compute the embeddings of phrases recursively,
directed by the top-1 parse tree of the source sentence generated by a parser. Though the results are
promising, the top-1 trees are prone to parser error, and furthermore cannot capture semantic ambiguities
of the source sentence.

In this paper, we address the aforementioned issues by using exponentially many trees encoded in a
forest instead of a single top-1 parse tree. We capture the parser uncertainty by considering many parse
trees and their probabilities. The encoding of each source sentence is guided by the forest, and includes
the forest nodes whose representations are computed in a bottom-up fashion using our ForestLSTM
architecture (§3). Thus, in the encoding stage of this approach, different ways of constructing a phrase
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are taken into consideration along with the probability of rules in the corresponding trees. We evaluate
our approach on English to Chinese, Farsi and German translation tasks, showing that forests lead to
better performance compared to top-1 tree and sequential encoders (§4).

2 Neural Machine Translation
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Figure 1: (a) Attentional SEQ2SEQ model (b) Attentional TREE2SEQ model.

2.1 Attentional Sequence-to-Sequence model
This model is based on the attentional encoder-decoder architecture for SEQ2SEQ transduction. It con-
tains a sequential encoder to read the input sentence and a sequential decoder to generate the output. An
example is depicted in Figure 1(a).

Sequential Encoder The source sentence is encoded by a sequential LSTM:

hi = SeqLSTM(hi−1,Ex[xi])

whereEx[xi] is the embedding of the word xi in the embedding tableEx of the source language, and hi
is the context-dependent embedding of xi.

Sequential Decoder For the generation of each target word j, a dynamic context cj is produced to
summarise the relevant parts of the source sentence. Then, the decoder generates the j-th word as
follows:

gj = tanh(W ghgj−1 +W
giEy[yj−1] +W

gacj +W
guuj−1)

uj = tanh(W uccj +W
uiEy[yj−1] + gj)

yj |y<j ,x ∼ softmax(W ouuj + b
o)

whereEy[yj ] is the embedding of word yj looked-up from target language embedding tableEy, andW
matrices and bo are the parameters.

The attention mechanism provides relevant information from the source sentence with respect to the
current state of the decoder. In each decoding step, the dynamic context is computed as follows:

aij = v> tanh(W aehi +W
aggj−1)

ai′j = v> tanh(W aehphri′ +W aggj−1)

αj = softmax(aj)
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cj =
n∑
i=1

αjihi

where aij and ai′j are the attention scores, and hi refers to embedding of words. n is the length of the
input sentence, and np is the number of forest nodes.

2.2 Attentional Tree-to-Sequence model
The majority of NMT models are based on sequential encoding of the source sentence. An exception is
the TREE2SEQ model in (Eriguchi et al., 2016), where the encoding of the source sentence is directed
by the top-1 parse tree. This model computes the embeddings of phrases in addition to the words, then
attend on both words and phrases in the decoder. An example is depicted in Figure 1(b).

Tree Encoder It consists of sequential and recursive parts. The sequential part is the vanilla sequence
encoder discussed in Section 2.1, which computes the embeddings of words. Then, the embeddings of
phrases are computed using the embeddings of their constituent words in a recursive bottom-up fashion:

h
(phr)
k = TreeLSTM(hlk,h

r
k).

where hlk and hrk are hidden states of left and right children respectively. This method uses TreeLSTM
units (Tai et al., 2015) to calculate the embedding of a parent node using its two two children units as
follow:

i = σ(U
(i)
l h

l +U (i)
r h

r + b(i))

f l = σ(U
(fl)
l hl +U (fl)

r hr + b(fl))

f r = σ(U
(fr)
l hr +U (fr)

r hr + b(fr))

o = σ(U
(o)
l hl +U (o)

r hr + b(o))

c̃ = tanh(U
(c̃)
l hl +U (c̃)

r hr + b(c̃))

c(phr) = i� c̃+ f l � cl + f r � cr

h(phr) = o� tanh(c(phr))

where i, f l, f r, oj ,c̃j are the input gate, left and right forget gates, output gate, and a state for updating
memory cell; cr and cl are memory cells of the right and left units.

Sequential Decoder Eriguchi et al. set the initial state of the decoder by combining the final state of
the sequential and tree encoders as follow:

g0 = TreeLSTM(hn,h
(phr)
root ),

The rest of the decoder is similar to the vanilla attentional decoder discussed in Section 2.1. The differ-
ence is that, in this model, the attention mechanism makes use of phrases as well as words. Thus, the
dynamic context is computed as follows:

cj =
n∑
i=1

αjihi +
2n−1∑
i′=n+1

αji′h
phr
i′

3 Neural Forest-to-Sequence Translation

The TREE2SEQ model uses the top-1 parse tree generated by a parser. Mistakes and uncertainty in pars-
ing eventually affect the performance of the translation. To address these issues, we propose a method
to consider exponentially many parse trees along with their corresponding probabilities. It consists of a
forest encoder to encode a collection of packed parse trees, in order to reduce error propagation due to
using only the top-1 parse tree. Our forest encoder computes representations for words and phrases of
the source sentence with respect to its parse forest. A sequential decoder, then, generates output words
one-by-one from left-to-right by attending to both words and phrases (i.e. forest nodes).
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Figure 2: An example of generating a phrase from two different parse trees

3.1 Forest Encoder
The representation of words are computed using sequential encoder (Section 2.1). Then, the embeddings
of phrases are computed with respect to the source sentence parse forest in a recursive bottom-up fashion.

Embedding of Phrases. We compute the embedding of the forest nodes (phrases) in a bottom-up fash-
ion. For each hyperedge, we compute the embedding of the head with respect to its tails using a TreeL-
STM unit (Tai et al., 2015). In a forest, however, a phrase can be constructed in multiple ways using the
incoming hyperedges to a forest node, with different probabilities (see Figure 2). Our ForestLSTM com-
bines the phrase embeddings resulted from these hyperedges, and takes into account their probabilities
in order to obtain a unified embedding for the forest node and its corresponding phrase:

γl = tanh

(
Uγ

N∑
l′=1

1l 6=l′h
l′ +W γhl + vγpl + bγ

)

f l = σ

(
U f

N∑
l′=1

1l 6=l′ [h
l′ ;γl

′
] +W f [hl;γl] + bl

)

i = σ

(
U i

N∑
l=1

[hl;γl] + bi

)

o = σ

(
U o

N∑
l=1

[hl;γl] + bo

)

where N is the number of incoming hyperedges, hl is the embedding for the head of the l-th incoming
hyperedge and pl is its probability and vγ is the learned weight for the probablity. γl is a probability-
sensitive intermediate representation for the l-th incoming hyperedge, which is then used in the compu-
tations of the forget gate f l, the input gate i, and the output gate o. The representation of the phrase
hphr is then computed as

c̃ = tanh

(
U c̃

N∑
l=1

[hl;γl] + bc̃

)

cphr = i� c̃+
N∑
l=1

f l � cl

hphr = o� tanh(cphr)
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where cl is the memory cell of the TreeLSTM unit used to compute the representation of the head for the
l-th hyperedge from its tail nodes.

3.2 Sequential Decoder
We use a sequential attentional decoder similar to that of the TREE2SEQ model, where the attention
mechanism attends to both words and phrases in the forest:

cj =
n∑
i=1

αjihi +

np+n∑
i′=1+n

αji′h
phr
i′

where n is the length of the input sentence, and np is the number of forest nodes.
We initialize the decoder’s first state by combining the embeddings of the last word in the source

sentence and the root of the forest:

g0 = TreeLSTM(hn,h
phr
root).

This provides a summary of phrases and words in the source sentence to the decoder.

3.3 Training
Training is done end-to-end by minimising the cross entropy objective:

J(θ) =
∑

(x,y,Fx)∈D

− log p(y|x,Fx)

where D is the set of triples consists of the bilingual training sentences (x,y) paired with the parse
forests of the source sentences Fx.

4 Computational Complexity Analysis

We now analyse the computational complexity of inference for SEQ2SEQ, TREE2SEQ and FOR-
EST2SEQ models. We show that, interestingly, our method process exponentially many trees with only
a small linear overhead.

Let |x| denotes the length of the source sentence andO(Ws) andO(Wr) are computational complexity
of forward-pass for the sequential and Tree/Forest LSTM units, respectively. Having N nodes in the
tree/forest, the computational complexity of the encoding phase would be:

O(2Ws|x|+WrN)

where the first term shows the computational complexity of a bidirectional sequential encoder to compute
the embeddings of words, and the latter one is the time for computing the embeddings of phrases with
respect to the corresponding tree/forest.

For generating each word in the target sentence, the attention mechanism performs soft attention on
words and phrases of the source sentence. If O(Wt) be the time for updating the decoder state and
generating the next target word, for a target sentence with length |y| the decoding phase computational
complexity would be:

O(Wt|y|+ |y|(N + |x|))

Hence, the total inference time for a sentence pair is:

O(2Ws|x|+WrN +Wt|y|+ |y|(N + x))

The difference among the three methods is N . For the SEQ2SEQ model N is 0. For the TREE2SEQ

model the number of nodes in the tree is a constant function of the input size: N = |x| − 1. Since
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Sentence Length Avg. tree nodes Avg. forest nodes Avg. # of trees in forests
<10 7.94 9.77 6.13E+4

10-19 12.3 18.99 2.62E+16
20-29 21.18 41.79 2.76E+22
>30 31 78.72 2.21E+15
all 10.33 14.84 1.41E+20

Table 1: The average number of nodes in trees and forests along with average number of trees in forests
for En→Fa bucketed dataset.

we used pruned forests obtained from the parser in (Huang, 2008), the number of nodes in the forest is
variable. Table 1 shows the average value ofN for trees/forests for different source lengths for one of the
datasets we used in experiments. As seen, while forests contain exponentially many trees, on average,
the number of nodes in parse forests is less than twice the number of nodes in the corresponding top-1
parse trees. It shows that our method considers exponentially many trees instead of top-1 tree using only
a small linear overhead.

5 Experiments

5.1 The Setup
Datasets. We make use of three different language pairs: English (En) to Farsi (Fa), Chinese (Ch),
and German (De). Our research focus is to tackle NMT issues for bilingually low-resource scenarios
and En→Fa is intrinsically a low-resource language. Moreover, we used small datasets for En→Ch and
En→De language pairs to simulate low-resource scenarios, where the source and target languages are
linguistically divergent and close, respectively. For En→Fa, we use the TEP corpus (Tiedemann, 2009)
which is extracted from movie subtitles. It has about 341K sentence pairs, where we split into 337K
for training, 2K for development, and 2K for test. For En→Ch, we use BTEC where ‘devset1 2’ and
‘devset 3’ are used as the development and test sets, and training consists of 44,016 sentence pairs. For
En→De, we use the first 100K sentences of Europarl1 for training, ‘newstest2013’ for development, and
‘newstest2014’ for test.

We lowercase and tokenise the corpora using Moses scripts (Koehn et al., 2007). Sentences longer
than 50 words are removed, and words with frequency less than 5 are replaced with <UNK>. Compact
forests and trees for source English sentences are obtained from the parser in (Huang, 2008), where the
forests are binarised, i.e. hyperedges with more than two tail nodes are converted to multiple hyperedges
with two tail nodes. This is to ensure a fair comparison between our model and the TREE2SEQ model
(Eriguchi et al., 2016) where they use binary HPSG parse trees. Furthermore, we prune the forests by
removing low probability hyperedges, which significantly reduces the size of the forests. In all experi-
ments, we use the development sets for setting the hyper-parameters, and the test sets for evaluation.

Implementation Details. We use Mantis implementation of attentional NMT (Cohn et al., 2016) to
develop our code for FOREST2SEQ and TREE2SEQ with DyNet (Neubig et al., 2017). All neural models
are trained end-to-end using Stochastic Gradient Descent, where the mini-batch size is set to 128. The
maximum training epochs is set to 20, and we use early stopping on the development set as a stopping
condition. We generate the translations using greedy decoding. The BLEU score is computed using
’multi-bleu.perl’ script in Moses.

5.2 Results
The perplexity and BLEU scores of different models for all translation tasks are presented in Table 2.
In all translation tasks, FOREST2SEQ outperforms TREE2SEQ as it reduces syntactic errors by using
forests instead of top-1 parse trees. Our results confirm those in (Eriguchi et al., 2016), and show that
using syntactic trees in TREE2SEQ improve the translation quality compared to the vanilla SEQ2SEQ.

1http://www.statmt.org/wmt14/translation-task.html
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En→ De En→ Ch En→ Fa
Method H Perplexity BLEU Perplexity BLEU Perplexity BLEU

SEQ2SEQ 256 33.07 11.98 6.48 25.43 19.21 10.17
(Luong et al., 2015) 512 32.61 12.21 6.12 26.77 18.4 10.93

TREE2SEQ 256 30.13 13 6.17 26.85 17.94 11.32
(Eriguchi et al., 2016) 512 31.86 13.05 5.71 28 16.28 11.71

our 256 30.83 13.54 6.16 27.08 17.62 11.91
FOREST2SEQ 512 29.25 13.43 5.49 28.39 16.66 12.38

Table 2: Comparison of the methods together with different hidden dimension size (H) for all datasets.

(a) (b)

Figure 3: (a) BLEU scores for bucketed En→Ch dataset. (b) Percentage of more correct n-grams gener-
ated by the TREE2SEQ and FOREST2SEQ models compared to SEQ2SEQ model for En→Ch dataset.

Comparing BLEU scores of the forest-based and tree-based models, the largest increase is observed for
En→Fa. This can be attributed to the syntactic divergence between English and Farsi (SVO vs SOV) as
well as the reduction of significant errors in the top-1 parser trees for this translation task, resulted from
the domain mismatch between the parser’s training data (i.e. Penn Tree Bank) and the English source
(i.e. informal movie subtitles).

5.3 Analysis
The effect of sequential part in the forest encoder The forest encoder consists of sequential and re-
cursive parts, where the former is the vanilla sequence encoder. We investigate the effect of the sequential
part in the proposed forest encoder. Table 3 shows the results on the test set of En → Fa dataset. The
results show that the sequential part in the forest encoder lead to improvement in results. Speculatively,
the sequential part helps the forest encoder by providing the context-aware embeddings for words which
then be used to construct phrase embeddings.

For which sentence lengths the forest-based model is more helpful? To investigate the effect of
source sentence length, we divide En→Ch dataset into three buckets with respect to the length of source
sentences. Figure 3(a) depicts the BLEU scores resulted from the models for different buckets. The
FOREST2SEQ model performs better than vanilla SEQ2SEQ model on all buckets. Interestingly, while
TREE2SEQ model has a lower BLEU compared to SEQ2SEQ model for the sentences whose lengths are
between 10 and 20, the FOREST2SEQ model has a better BLEU possibly due to reducing parsing errors.

Perplexity BLEU
Forest encoder W/ sequential part 16.66 12.38
Forest encoder W/O sequential part 17.48 11.97

Table 3: The Effect of the sequential part in our proposed forest encoder on the En→ Fa test set.
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(a) (b)

Figure 4: (a) Attention ratios for En→Fa bucketed dataset.(b) Inference time (seconds) required for the
test set of En→Fa dataset using trained models.

The forest-based model results in correct larger n-grams in translations We further analyse the
effect of the incorporated syntactic knowledge on improving the number of generated gold n-grams
in translations. For each sentence, we compute the number of n-grams in the generated translations
which are common with those in the gold translation. Then, after aggregating the results over the entire
test set, we compute the percentage of additional gold n-grams generated by syntax aware models, i.e.
TREE2SEQ and FOREST2SEQ, compared to the SEQ2SEQ model. The results are depicted in Figure
3(b). Generating correct high order n-grams is hard, and results show that incorporating syntax is bene-
ficial. As n increases, the FOREST2SEQ model performs significantly better than the TREE2SEQ model
in generating gold n-grams, possibly due to better reorderings between the source and target.

How much attention the forest-based and tree-based models pay to the syntactic information? We
next analyse the extent by which the syntactic information is used by the TREE2SEQ and FOREST2SEQ

models. We compute the ratio of attention on phrases to words for both of the syntax-aware models
in En→Fa translation task, where the source and target languages are highly syntactically divergent.
For each triple in the test set, we calculate the sum of attention on words and phrases during decoding.
Then, the ratio of attention on phrases to words are computed and is averaged for all triples. Figure
4(a) shows these attention ratios for bucketed En→Fa dataset. It shows that for all sentence lengths, the
FOREST2SEQ model provides richer phrase embeddings compared to the TREE2SEQ model, leading to
a more usage of the syntactic information.

Investigating the effect of using trees/forests on inference time We measured the inference time
required for the test set of EN→FA dataset using the trained models. The results are depicted in Fig-
ure 4(b). As seen, while using one parse tree increases the inference time linearly, interestingly, our
FOREST2SEQ model considers exponentially many trees also with a small linear overhead.

6 Conclusion

We have proposed a forest-to-sequence attentional NMT model, which uses a packed forest instead of
the top-1 parse tree in the encoder.

Using a forest of parse trees, our method efficiently considers exponentially many constituency trees
in order to take into account parser uncertainties and errors. Experimental results show our method is
superior to the attentional tree-to-sequence model, which is more prone to the parsing errors.
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