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Abstract

This paper introduces open-domain event detection, a new event detection paradigm to address
issues of prior work on restricted domains and event annotation. The goal is to detect all kinds
of events regardless of domains. Given the absence of training data, we propose a distant su-
pervision method that is able to generate high-quality training data. Using a manually annotated
event corpus as gold standard, our experiments show that despite no direct supervision, the model
outperforms supervised models. This result indicates that the distant supervision enables robust
event detection in various domains, while obviating the need for human annotation of events.

1 Introduction

Events are a key semantic component integral to natural language understanding. They are a ubiquitous
linguistic phenomenon appearing in various domains. For clarification, we use the term ‘domain’ to
refer to a specific genre of text, such as biology, finance, and so forth. Prior studies on automatic event
detection traditionally focus on limited types of events, mainly defined by several research initiatives and
shared tasks in a few domains:
• Newswire: TIPSTER (Onyshkevych et al., 1993) and MUC (Grishman and Sundheim, 1996)
• Multi-domain: ACE (Doddington et al., 2004) and TAC KBP (Mitamura et al., 2016).
• Biology: PASBio (Wattarujeekrit et al., 2004), GENIA (Kim et al., 2008), BioNLP (Kim et al.,

2009) and ProcessBank (Berant et al., 2014).
Although closed-domain event detection might be of practical use in some domain-specific scenarios,
it only contributes to partial understanding of events because it only addresses a subset of events by
definition. On the other hand, there is an established consensus that in order to advance natural language
applications such as open-domain question answering, we need automatic event identification techniques
with larger, wider, and more consistent coverage (Saurı́ et al., 2005; Pradhan et al., 2007).

There are several pieces of prior work on open-domain events, but they have some limitations with
respect to coverage of events. Lexical databases such as WordNet (Miller et al., 1990), FrameNet (Baker
et al., 1998) and PropBank (Palmer et al., 2005) can be viewed as a superset of events, and their subtax-
onomies seem to provide an extensional definition of events. However, these databases have a narrow
coverage of events because they are generally expected to cover basic terminology due to their dictionary
nature. For instance, none of WordNet, FrameNet and PropBank covers current terminology and proper
nouns such as ‘Hurricane Katrina’. OntoNotes (Weischedel et al., 2011) is aimed at covering an unre-
stricted set of events and entities, but its event annotation is limited to a small number of eventive nouns.
TimeML (Pustejovsky et al., 2003) annotates events and times in a domain-agnostic manner, focusing
on temporal aspects of events, but it does not deal with multi-word and generic events. ECB+ (Cybulska
and Vossen, 2014) augments the extended EventCorefBank corpus (Lee et al., 2012) by re-annotating
events and event coreference. Our initial analysis shows that it annotates events only in a portion of each
document, not all events in the text. Ritter et al. (2012) address open-domain event detection on Twit-
ter. Their annotation follows TimeML and thus is likely to have similar problems to TimeML. Richer
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Event Description (RED) (Palmer et al., 2016) defines events in a general manner, but its annotation was
performed only in the clinical domain (O’Gorman et al., 2016).

To address these issues, we introduce a new paradigm of open-domain event detection. Our goal is to
detect all kinds of events without a specific event type, while not limiting events to particular domains
and syntactic types. As compared to the traditional closed-domain event detection described above, our
target is more challenging because there is no unified definition of events with wider and more consistent
coverage, and there is no training data. Due to the ubiquity and ambiguities of events, human annotation
of events in the open domain is substantially expensive, ending up with a small dataset which does not
make supervised models generalize well. In this work, we propose a novel approach to circumvent the
data sparsity problem in open-domain event detection. At the core of the approach is distant supervision
from WordNet (Miller et al., 1990). Our main hypothesis is that the distant supervision allows us to build
models detecting events robustly in various domains, while obviating the need for human annotation of
events. We verify this hypothesis in both heuristics-based and classifier-based algorithms.

Our contribution is as follows:
1. We introduce a new paradigm of open-domain event detection, whose goal is to detect all kinds

of events. Specifically, the differences from prior work are events in unrestricted domains and with
wider coverage.

2. Our distant supervision method is able to generate high-quality training data (see Section 5.1). The
method is not bounded to any particular datasets, offering a versatile solution for event detection.
Using a manually annotated corpus as gold standard, our experiments show that despite no direct
supervision, the distantly supervised model outperforms supervised models in both in-domain and
out-domain settings (see Section 5.3).

3. To facilitate future studies on event detection, we release the new corpus1 of human-annotated
events in 10 different domains such as geology and economics. The annotated events comprise
verbs, nouns, adjectives, and phrases which are continuous or discontinuous (see Section 2.2). De-
spite this relatively wide and flexible annotation of events, we achieved high inter-annotator agree-
ment (see Section 4).

2 Definition of Events

We give our definition of events from both semantic and syntactic perspective.

2.1 Semantic Perspective: Eventualities

Events are a highly ambiguous notion, and thus there are many ways to define them. In this work, we
use the notion of eventualities by Bach (1986) and define the three classes on the basis of durativity and
telicity (Moens and Steedman, 1988; Pulman, 1997):
• states: notions that are durative and changeless, e.g, want, own, love, resemble
• processes: notions that are durative and atelic, e.g., walking, sleeping, raining
• actions2: notions that are telic or momentaneous happenings, e.g., build, walk to Boston, recognize

We define expressions as events if they denote an eventuality, i.e., a state, a process, or an action.

2.2 Syntactic Perspective: Event Nuggets

From a syntactic perspective, we use the notion of event nugget (Mitamura et al., 2015), which is a
semantically meaningful unit that expresses an event. We give several examples below, where we use
boldface to highlight event nuggets and underlines to show units of multi-word ones.
(1) He opened fire at the teller in the bank.
(2) I cried when my grandpa kicked the bucket.
(3) Tom was happy when he received a present.
(4) Susan turned the TV on.
(5) She responded his email dismissively.

1https://bitbucket.org/junaraki/coling2018-event
2Bach (1986) uses the term ‘events’ to refer to this class. In this work, we use ‘actions’ instead for clarification.
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Event nuggets can be either a single word (verb, noun, or adjective) or a phrase which is continuous
or discontinuous. For example, ‘turned ... on’ in (2) is a discontinuous phrasal event nugget, excluding
‘the TV’. For more details, we refer readers to our annotation guidelines.3

3 Distantly Supervised Event Detection

This section describes our approach for open-domain event detection. Figure 1 shows a high-level
overview of the approach. As shown, the algorithm comprises two phases: training data generation
and event detection. At the core of the approach is distant supervision from WordNet4 in the former
phase to address ambiguities on eventiveness and generate high-quality training data automatically.

Figure 1: An overview of our distantly-supervised open-domain event detection.

3.1 Training Data Generation
The goal of training data generation is to generate high-quality training data automatically from unan-
notated text. We first disambiguate text using a WordNet-based word sense disambiguation tool. Given
sense-annotated text as input, we implement a rule-based algorithm, which we refer to as RULE. It is
our basis for generating training data. Looking at our annotation guidelines (see Section 4), we employ
several heuristics to identify event nuggets, according to syntactic types:

Verbs. We detect most of main verbs as eventive, excluding be-verbs and auxiliary verbs. However,
some exceptions exist. In the examples below, we use italic face to highlight non-eventives.
(6) That is what I meant.
(7) ‘Enormous’ means ‘very big’.

In (6), ‘meant’ is eventive because it indicates the action of “intend to say” whereas ‘means’ in (7) is not
because it merely shows equality, playing the almost same role as a be-verb. Thus, we define a set of
non-eventive verb senses and filter out verbs if their disambiguated sense is in the set.

Nouns. There are also ambiguous nouns:
(8) His payment was late.
(9) His payment was $10.

(10) Force equals mass times acceleration.
In (8), ‘payment’ is eventive because it means the action of his paying something while ‘payment’ in
(9) is not because it refers to specific money paid by him, which is $10. These examples also show that
eventive nouns cannot be simply approximated by verb nominalizations. ‘Force’ in (10) can be easily
disambiguated to its physical sense, but still deciding its eventiveness is difficult. To address the issue,
we make use of distant supervision from WordNet. Let wordi

n denote the i-th sense (synset) of noun
word in WordNet. For example, car1n is the first synset of noun ‘car’. Looking at textual definitions of
synsets called glosses, we assume that there is a semantic correspondence between the components of
eventualities described in Section 2.1 and the following WordNet synsets:
• state2

n: the way something is with respect to its main attributes

3We release the guidelines at https://bitbucket.org/junaraki/coling2018-event.
4We access WordNet 3.0 using NLTK (Bird et al., 2009).
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• process6
n: a sustained phenomenon or one marked by gradual changes through a series of states

• event1n: something that happens at a given place and time

We detect nouns as events if their disambiguated sense is subsumed by the three synsets above through
(instance-)hyponym relations.

Adjectives. Adjectives can also be ambiguous:
(11) Mary was talkative at the party.
(12) Mary is a talkative person.
In (11), ‘talkative’ is eventive because it implies that Mary talked a lot at the party, whereas ‘talkative’ in
(12) is not because it just indicates Mary’s personal attribute. As illustrated, major problems with adjec-
tives are to differentiate states from attributes and to figure out if they imply actual occurrences (Palmer
et al., 2016). Unlike nouns, no direct supervision is available from WordNet because it does not have
hyponym taxonomies for adjectives. Thus, we use simple and conservative heuristics to detect adjectives
as events if they are originated from present and past participles of verbs, illustrated as follows:
(13) There is a man-made river in the country.
(14) The tower has 20,000 sparkling lights.
We convert these adjectives to verbs in the infinitive form using pattern.en (De Smedt and Daelemans,
2012).

Adverbs. We develop heuristics using WordNet. We first convert adverbs to adjectives by looking up
pertainyms (relational adjectives) and seeking verbs derivationally related to the adjectives in WordNet.
Adverbs connect with their modifying verbs, forming a single event nugget, as illustrated in (5). Thus,
we combine eventive adverbs with such verbs to detect resulting verb phrases as events.

Phrases. Following Schneider et al. (2014), we define phrases to be lexicalized combinations of two
or more words that are exceptional enough to be considered as single units in the lexicon. We assume
that this definition is suitable to event detection because the exceptionality of multi-word units in the
phrase lexicon translates to the meaningfulness of textual units of (phrasal) event nuggets. From the
perspective of open-domain event detection, supervised phrase detection models are likely suboptimal
because they might be limited to particular domains or overfitting to small datasets. Therefore, we
explore a simple dictionary-lookup approach to detect WordNet phrasal verbs as events, inspired by Yin
and Schütze (2015). One enhancement to their approach is that we examine dependencies using Stanford
CoreNLP (Manning et al., 2014), illustrated as follows:
(15) Snipers were picking them off.
(16) He picked an apple off the tree.
In (15), ‘picking . . . off’ forms a discontinuous phrasal verb, whereas ‘picked’ in (16) does not. Depen-
dencies can be of help to resolve these two cases. In the former case, a dependency relation ‘picking
compound:prt−−−−−−−−→ off’ is a direct signal of the phrasal verb construction. As for noun phrases, we apply our
heuristics for nouns to head words of the phrases.

3.2 Enhancements with Wikipedia

This subsection describes two techniques to enhance our training data generation: heuristics-based en-
hancement (Section 3.2.1) and classifier-based enhancement (Section 3.2.2). One disadvantage of RULE
is the limited coverage of WordNet. As described in Section 1, WordNet does not cover many proper
nouns that we generally see in newspaper articles, such as the following:
(17) Property damage by Hurricane Katrina around $108 billion.
(18) The Cultural Revolution was ...

In order to achieve higher recall, we incorporate Wikipedia to capture proper nouns which are not in
WordNet, motivated by the fact that Wikipedia has a much broader coverage of concepts than WordNet
synsets.5 We use the Illinois Wikifier (Ratinov et al., 2011) to extract Wikipedia concepts from text.

5WordNet 3.0 has 120K synsets, and English Wikipedia has 5.5M articles as of October 2017, as shown at https://
stats.wikimedia.org/EN/TablesWikipediaEN.htm.
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3.2.1 Heuristics-based Enhancement
For our first enhancement, we make two assumptions: (1) the first sentence of a Wikipedia article pro-
vides a high-quality gloss of its corresponding concept, and (2) the syntactic head of a gloss represents a
high-level concept carrying significant information to decide eventiveness. The first assumption is sup-
ported by Wikipedia’s style manual on how to write the first sentence of an article.6 The manual says “If
an article’s title is a formal or widely accepted name for the subject, display it . . . as early as possible in
the first sentence.” For instance, the first sentence of entry Electron is:
(19) The electron is a subatomic particle with a negative elementary electric charge.
The gloss of Electron is the underlined text above. Our analysis shows that most Wikipedia articles
follow the first-sentence format.

The second assumption is illustrated by the syntactic head of the Electron gloss, which is ‘particle’.
Based on the assumptions, we develop head-based heuristics, which we call HeadLookup. We find the
syntactic head of a gloss using dependencies and disambiguate the head using a state-of-the-art word
sense disambiguation tool IMS (It Makes Sense) (Zhong and Ng, 2010). We then check if the head’s
sense is subsumed by the three synsets of state2

n, process6n, and event1n. In the case of Electron,
the head’s sense atom2

n is not under the synsets. Thus, the model concludes that Electron is non-
eventive. Note that HeadLookup itself is a general technique which can be applied to any gloss. Our first
enhancement applies it to Wikipedia glosses, and we refer to the enhanced model as RULE-WP-HL.

3.2.2 Classifier-based Enhancement
Our second enhancement leverages a binary gloss classifier to decide the eventiveness of proper nouns.
We refer to this enhanced model as RULE-WP-GC. We use WordNet glosses to train the classifier.
Our assumption is that although WordNet and Wikipedia are maintained by different people for different
purposes, the classifier trained on WordNet glosses generalizes well against unseen Wikipedia concepts
because glosses of the two resources have comparable quality.

Data Collection from WordNet. We collect our gloss datasets automatically from WordNet. The
goal of data collection is to create a large amount of datasetD = D+∪D− whereD+ is a set of eventive
(positive) glosses, D− is a set of non-eventive (negative) ones, and D+ ∩ D− = ∅. Since WordNet
provides a gloss for each synset, the goal reduces to creating a set of positive synsets S+ and a set of
negative ones S−. Given root synset s, we collect a subset of synsets Ss (including s) by traversing the
WordNet taxonomy under s through hyponym and instance-hyponym relations. Using the three synsets
introduced in Section 3.1, we have S+ = Sevent1n

∪ Sstate2
n
∪ Sprocess6n . With respect to S−, we simply

take all the WordNet synsets that are not in S+. Table 1 gives several examples of glosses in D+ and
D−. As shown, the ambiguous word ‘payment’ has positive and negative synsets. The sizes of D+ and
D− are |D+| = 13, 415 and |D−| = 68, 700.

Synset Gloss
riding2

n travel by being carried on horseback
shower3n a brief period of precipitation
payment2n the act of paying money
pork1

n meat from a domestic hog or pig
year1n a period of time containing 365 (or 366) days
payment1n a sum of money paid or a claim discharged

Table 1: Examples of WordNet glosses in D.
The examples above and below the dashed line
are from D+ and D−, respectively.

Figure 2: The bidirectional LSTM model with
a self-attention mechanism.

6https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section\#First_
sentence
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Learning. We train the binary classifier on D using a bidirectional long short-term memory
(BLSTM) (Graves and Schmidhuber, 2005). We call the classifier GC-BLSTM. Given an input vec-
tor xt at time step t, let us denote the forward hidden state as

−→
ht and the backward one as

←−
ht. We obtain

the hidden state of a BLSTM using concatenation: ht = [
−→
ht;
←−
ht]. We then use a linear projection of hT

into two classes: y = 1 (eventive) and y = 0 (non-eventive). Finally, we add a softmax layer on top of
the linear projection, and train the model using the binary cross-entropy loss.

Attention. Neural networks with attention mechanisms have achieved great success in a wide variety
of natural language tasks. The basic idea is to enable the model to attend to all past hidden vectors
and put higher weights on important parts so that the model can encode the sequence information more
effectively. This idea intuitively makes sense for gloss classification as well, because syntactic heads
are likely more important, as illustrated in Section 3.2.1. As shown in Figure 2, we leverage a self-
attention mechanism, following (Zhou et al., 2016; Lin et al., 2017). Let H ∈ Rd×T denote a matrix
comprising hidden vectors [h1, . . . ,hT ] where d is the dimensionality of a hidden vector. The self-
attention mechanism computes the hidden state as follows:

M = tanh(H) (1)

α = softmax(wTM) (2)

r = HαT (3)

h∗ = tanh(r) (4)

where a vector α ∈ RT is attention weights and w ∈ Rd is a parameter vector. We refer to the attention-
based classifier as GC-BLSTM-Attn.

Implementation Details. We randomly sample 1,000 examples from each of D+ and D− to create
a test set and a validation set, and use the rest of D for a training set. We use the 300-dimensional
GloVe vectors7 from (Pennington et al., 2014) and do not fine-tune them during training. We map all
out-of-vocabulary words to a single vector randomly initialized by uniform sampling from [−0.01, 0.01].
We use a single hidden layer of 100 dimensions, i.e., d = 100. We optimize model parameters using
minibatch stochastic gradient descent (SGD) with momentum 0.9. We choose an initial learning rate of
η0 = 1.0e−3. We use a minibatch of size 1. To mitigate overfitting, we apply the dropout method (Sri-
vastava et al., 2014) to the inputs and outputs of the network. We also employ L2 regularization. We
perform a small grid search over combinations of dropout rates {0.0, 0.1, 0.2} and L2 regularization
penalties {0.0, 1.0e−3, 1.0e−4}. We use early stopping based on performance on the validation set.

3.3 Learning for Event Detection

After generating training data, we train a supervised event detection model on the synthesized data.
As seen in the self-training model by Liao and Grishman (2011), erroneously generated training data
worsen system performance. Therefore, we need to generate training data as accurately as possible.
On the other hand, our algorithm for generating training data comprises at least three non-trivial (error-
prone) submodules: disambiguation, wikification, and gloss classification. To eliminate negative effects
of disambiguation errors, we choose the SemCor corpus (Miller et al., 1993) as our base text for training
data generation. SemCor has human-annotated WordNet senses on 186 documents in numerous genres.
We apply our rule-based event detector to generate training data automatically from SemCor.

We formalize event detection as a sequence labeling problem and employ a BLSTM for sequence
modeling. One difference from traditional sequence labeling problems is that our output includes dis-
continuous phrases. Thus, we leverage an extended version of the standard BIO tagging scheme, inspired
by Metke-Jimenez and Karimi (2016). Besides the three tags of B, I and O, we introduce two additional
tags: DB and DI. DB means the beginning of a discontinuous concept, and DI the continuation of a
discontinuous concept. The BLSTM model computes a hidden representation from each input word and
then predicts one of {B, I,DB,DI,O}. For the BLSTM model, we use a fixed concatenation of the GloVe
embeddings and 50-dimensional word embeddings from Turian et al. (2010) under the same assumption

7https://nlp.stanford.edu/projects/glove/
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as (Lee et al., 2017) that different learning objectives of the GloVe and Turian embeddings can provide
orthogonal information. We additionally employ 10-dimensional part-of-speech embeddings. We train
the model with the objective of minimizing cross-entropy loss. We use early stopping based on the loss
on a validation set.

4 Open-Domain Event Corpus

Since our target is unrestricted domains, we need gold standard data to evaluate whether systems work
robustly in various domains. However, annotating events manually in all domains would be unrealistic
due to annotation cost. To make the corpus creation manageable while retaining the domain diversity,
we select 100 articles in Simple English Wikipedia, comprising 10 from each of 10 different domains.
The domains are: architecture, chemistry, disasters, diseases, economics, education, geology, history,
politics, and transportation. We choose Simple Wikipedia because our annotators are not necessarily
experts in these domains, and the simplified sentences could facilitate our annotation of events against
text from the wide variety of domains. Three annotators perform annotation independently following
our annotation guidelines, and we measure inter-annotator agreement using the pairwise F1 score under
two conditions: strict match and partial match. The former checks whether two annotations have exactly
the same span. The latter checks whether there is an overlap between annotations, with the restriction
that each annotation can only be matched to one annotation by the other annotator. We compute the
agreements for all annotator pairs and average them for the overall agreement. As a result, the inter-
annotator agreement was 80.7% (strict match) and 90.3% (partial match). Finally, the most experienced
annotator finalizes event annotation. We refer to the event corpus as SW100.8

Table 2(a) shows that event nuggets appear in the 10 domains almost uniformly, ensuring the ubiquity
of events. We use Stanford CoreNLP to tokenize text and decide head words of event nuggets with de-
pendencies. Table 2(b) counts multi-word event nuggets by part-of-speech tags of their heads, amounting
to 955. 24% of the 955 are discontinuous, and most (97%) of the discontinuous multi-word event nuggets
are verb phrases. ‘Others’ in Table 2(b) include pronouns, demonstrative determiners, and numbers.

Domain # (%) Domain # (%)
Architecture 475 (8.8) Education 653 (12.1)
Chemistry 576 (10.7) Geology 483 (8.9)
Disaster 510 (9.4) History 486 (9.0)
Disease 618 (11.4) Politics 534 (10.0)
Economics 479 (8.9) Transportation 583 (10.8)

(a) Event nuggets with respect to domains.

Single-word Multi-word All
Verb 2799 (51.9) 560 (10.4) 3359 (62.2)
Noun 1273 (23.6) 382 (7.1) 1655 (30.6)
Adjective 192 (3.6) 2 (0.0) 194 (3.6)
Others 178 (3.3) 11 (0.2) 189 (3.5)
All 4442 (82.3) 955 (17.7) 5397 (100.0)

(b) Event nuggets with respect to syntactic types.

Table 2: Corpus statistics of SW100. Percentages (%) are shown in parentheses.

5 Experimental Results

This section describes our experimental results.

5.1 Results of Gloss Classification
Gloss classification is a binary classification subtask for training data generation, aimed to improve
event detection by capturing proper nouns with Wikipedia knowledge. We use two datasets to eval-
uate our gloss classifiers described in Section 3.2. One is the test set of WordNet glosses described
in Section 3.2.2. However, we actually care about the gloss classification performance against unseen
Wikipedia concepts. Thus, we create an additional dataset which comprises Wikipedia concepts that
do not appear in WordNet. We collect 100 eventive and 100 non-eventive Wikipedia glosses in 10 do-
mains9, independently of SW100. We measure the performance of gloss classification using accuracy.
For comparison, we consider two baselines. BoW-LR is a bag-of-words model trained with logistic

8https://bitbucket.org/junaraki/coling2018-event
9Economics, history, politics, psychology, architecture, earth science, physics, chemistry, biology, and medicine.
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regression, and DAN is a deep average network proposed by Iyyer et al. (2015). Since DAN can be seen
as a neural bag-of-words model, these two models are word-order insensitive baselines. Table 3 shows
that GC-BLSTM-Attn performs best and significantly better than GC-BLSTM on both WordNet and
Wikipedia datasets. This result verifies our assumptions that the classifier trained on WordNet glosses
generalizes well against unseen Wikipedia concepts and that the attention mechanism is effective for
gloss classification.

Model WordNet Wikipedia
HeadLookup 77.80 73.50
BoW-LR 79.50 73.00
DAN 83.15 64.00
GC-BLSTM 90.10 80.00
GC-BLSTM-Attn 91.65** 85.00*

Table 3: Accuracy of gloss classifiers. The
stars indicate statistical significance com-
pared to GC-BLSTM (*: p < 0.05; **:
p < 0.005) based on McNemar’s test.

Model Strict Partial
P R F1 P R F1

VERB (Baseline) 79.5 51.7 62.7 95.4 62.0 75.2
PRED (Baseline) 55.1 62.4 58.5 67.6 76.6 71.8
RULE 80.1 77.0 78.5 89.0 85.5 87.2
RULE-WP-HL 80.5 77.5 79.0 88.6 85.3 86.9
RULE-WP-GC 80.8 77.7 79.2 89.1 85.7 87.3

Table 4: Performance of the rule-based event detectors
on SW100.

5.2 Results of Training Data Generation
We measure the performance of the rule-based event detectors on SW100 using precision (P), recall (R),
and F1 with the two matching options described in Section 4. We use IMS (It Makes Sense) for dis-
ambiguation. Table 4 shows the results. VERB is a simple baseline that detects all single-word main
verbs as events, excluding be-verbs and auxiliary verbs. PRED is another baseline that detects all predi-
cates as events by running a state-of-the-art semantic role labeler called PathLSTM10 (Roth and Lapata,
2016). Since PathLSTM is trained on both PropBank and NomBank, it is able to detect both verbal and
nominal predicates. However, semantic role labeling has a different focus on predicate-argument struc-
tures. More specifically, the combination of PropBank and NomBank has a narrower coverage of events
while having non-event predicates. This difference explains PathLSTM’s relatively low performance of
58.5 strict F1, even underperforming the VERB baseline. The performance difference between RULE
and VERB mostly comes from nouns, indicating that our WordNet-based heuristics is effective. We
found that RULE-WP-GC achieves the best F1. This result shows that the proposed enhancements with
Wikipedia can contribute to generating higher-quality training data.

We then applied the best-performing RULE-WP-GC to SemCor and found that the generated data
contains 59,796 event nuggets in total. We randomly split this data or its subset to 9:1 with respect
to the number of documents, creating training and validation data. We train the neural event detector
described in Section 3.3 on the training data and measure its performance on SW100. Figure 3 shows
how the amount of training data affects the performance of event detection. As shown, a larger amount
of training data enables the model to achieve better performance.

5.3 Comparison with Supervised Models
In order to test the robustness of our distant supervision model, in this experiment we divide SW100
into in-domain and out-domain datasets by randomly sampling 5 domains for each. We further split
the in-domain dataset into training (60%), validation (20%) and test subsets (20%) with respect to the
number of documents, and then train the BLSTM event detection model described in Section 3.3. We
repeat this procedure three times and measure the average of F1 scores with strict match (Table 5).
We refer to the model trained on the in-domain data as BLSTM and the model trained on the data
generated from SemCor as DS-BLSTM. In all the three runs, DS-BLSTM outperforms BLSTM in both
in-domain and out-domain settings. The performance difference in the out-domain setting is statistical
significant at p < 0.05 based on a two-tailed t-test. BLSTM ends up overfitting to the training data,
and its weak generalization power is more evident in the out-domain setting. In contrast, DS-BLSTM
performs robustly in both settings. Table 6 shows more detailed performance of DS-BLSTM.

10https://github.com/microth/PathLSTM
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Figure 3: Performance of the event detection model
on SW100 with respect to the number of training
examples generated from SemCor.

Setting Model Strict F1 Partial F1

In-domain BLSTM 73.8 85.9
DS-BLSTM 76.1 88.0

Out-domain BLSTM 67.9 82.8
DS-BLSTM 71.3 86.6

Table 5: Results of event detection.

Domain Strict Partial
P R F1 P R F1

Architecture 81.1 71.2 75.8 92.3 81.1 86.3
Chemistry 75.5 71.2 73.3 91.0 85.8 88.3
Disaster 80.7 70.6 75.3 95.7 83.7 89.3
Disease 66.6 53.2 59.2 89.9 71.8 79.9
Economics 73.7 67.8 70.7 93.2 85.8 89.3
Education 71.8 67.4 69.5 86.9 81.6 84.2
Geology 78.6 71.6 75.0 92.3 84.1 88.0
History 77.4 69.8 73.4 92.2 83.1 87.4
Politics 78.2 69.7 73.7 93.5 83.3 88.1
Transportation 81.5 75.6 78.5 91.5 84.9 88.1

(a) With respect to domains.

Syntactic type Strict Partial
P R F1 P R F1

Verbs 79.7 83.3 81.5 94.9 99.2 97.0
Nouns 67.4 51.7 58.5 82.5 63.4 71.7
Adjectives 68.9 26.3 38.1 68.9 26.3 38.1

(b) With respect to syntactic types.

Table 6: Detailed performance of DS-BLSTM.

6 Error Analysis and Discussion

This section discusses our error analysis.
Analysis of Gloss Classification. One error pattern is that the gloss of an eventive example is partially

or completely overlapped with that of non-eventive one, confusing the classifier:
• broadcast2n: a radio or television show
• laugh track1

n: prerecorded laughter added to the soundtrack of a radio or television show

The former is eventive and the latter is not. Beside such errors, we found possible inconsistencies in
WordNet entries in terms of eventiveness:

• sufficiency1
n: sufficient resources to provide comfort and meet obligations

• unanimity1
n: everyone being of one mind

• minority3
n: any age prior to the legal age

The first three synsets are in the state2
n taxonomy, but the ways of defining them, especially the syntactic

heads of glosses (underlined above) sound like non-eventive entities rather than events.

# Submodule Description Examples
(1) Phrase detection A phrase is missing or incorrectly detected. amount to, stay clear, take one’s toll

(2) Wikification A proper name is not identified or disambiguated
into an incorrect entry in Wikipedia.

Polish Revolution, Battle of The
Little Horn

(3) Wikipedia gloss
extraction

A corresponding Wikipedia article does not
provide a gloss of an expected form. Spanish flu, Exxon Valdez oil spill

(4) Gloss classification A disambiguated gloss is misclassified. Anglican parson, Archbishop

Table 7: Noticeable errors of our training data generation.

Analysis of Training Data Generation. Besides gloss classification, our training data generation is
subject to errors from the rule-based event detection and wikification. Table 7 shows noticeable errors in
training data generation. The cause of error (1) is small coverage of WordNet phrases, particularly verb
phrases. Error (2) and (4) can be reduced by more sophisticated wikification and gloss classification, re-
spectively. An example of error (3) is that Wikipedia entry Spanish flu is empty because it is redirected
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to 1918 flu pandemic. A simple remedy of partial help to error (3) is to resolve such empty concepts
using Wikipedia redirect relations.

Analysis of Event Detection. Two major error sources of the DS-BLSTM model are nouns and
phrases. Our training data generated from SemCor is 11 times larger than SW100 with respect to the
number of event nuggets. Still, many nouns and phrases do not appear in the training data, making correct
predictions difficult. As shown in Table 5(a), the most difficult domain is ‘Disease’ where numerous
domain-specific terms, such as migraine and bubonic plague, can appear even in simplified text of Simple
Wikipedia, but not in SemCor at all.

7 Related Work

Most prior work has addressed event detection using supervised models based on symbolic features.
Some studies employ token-level classifiers (Ahn, 2006; Ji and Grishman, 2008; Liao and Grishman,
2010b; Hong et al., 2011; Berant et al., 2014), while others cast event detection as a sequence labeling
problem and apply structured prediction models (McClosky et al., 2011; Lu and Roth, 2012; Li et al.,
2013; Li et al., 2014; Araki and Mitamura, 2015; Yang and Mitchell, 2016). Recent work has explored
neural network models with distributional features (Ghaeini et al., 2016; Nguyen et al., 2016; Chen et
al., 2015; Nguyen and Grishman, 2015; Feng et al., 2016). These models are typically trained on a small
amount of human-annotated data in closed domains and thus subject to overfitting.

Semi-supervised and unsupervised approaches are less studied than supervised ones in event detec-
tion. Several studies leverage bootstrapping methods to find new patterns for similar events (Liao and
Grishman, 2010a; Liu and Strzalkowski, 2012; Huang and Riloff, 2012; Huang and Riloff, 2013). Others
explore self-training (Liao and Grishman, 2011), event vector representation (Peng et al., 2016), tensor-
based composition (Huang et al., 2016), and distant supervision (Chen et al., 2017). However, their
models focus on predicate-argument structures and are validated in a few domains, mostly in ACE. It is
unclear how well they scale to the open domain, particularly to phrases and proper nouns.

Several lines of recent work refine the definition of events. Rich ERE (LDC, 2015) defines events
under a particular event ontology mainly from the syntactic perspective, without clarifying what seman-
tically constitutes events. The ISO-TimeML specification (Pustejovsky et al., 2010) defines events as
“something that can be said to obtain or hold true, to happen or to occur.” This definition is consistent
with Bach’s eventualities and the closest to ours. The studies described above have narrower coverage of
events than our work in terms of domains, syntactic types, or multi-word expressions.

8 Conclusion and Future Work

We have introduced open-domain event detection, a new event detection paradigm whose goal is to
detect all kinds of events regardless of domains. Due to the ubiquity and ambiguities of events, human
annotation of events in the open domain is substantially expensive. We presented a distant supervision
method that is able to generate high-quality training data automatically, obviating the need for human
annotation. Our distantly supervised model is not bounded to any particular datasets and offers a versatile
solution for event detection. Our experiment shows that the model outperforms supervised models in both
in-domain and out-domain settings.

There are numerous avenues for future work. One could conduct experiments on normal English
text, such as newspaper articles, in various domains. We plan on event coreference resolution to detect
eventive pronouns and demonstrative determiners. We recognize that event types and epistemic status
are key features for event coreference resolution, and thus extracting them is an important problem.
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