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Abstract

This work addresses challenges arising from extracting entities from textual data, including the
high cost of data annotation, model accuracy, selecting appropriate evaluation criteria, and the
overall quality of annotation. We present a framework that integrates Entity Set Expansion (ESE)
and Active Learning (AL) to reduce the annotation cost of sparse data and provide an online
evaluation method as feedback. This incremental and interactive learning framework allows for
rapid annotation and subsequent extraction of sparse data while maintaining high accuracy.

We evaluate our framework on three publicly available datasets and show that it drastically re-
duces the cost of sparse entity annotation by an average of 85% and 45% to reach 0.9 and 1.0
F-Scores respectively. Moreover, the method exhibited robust performance across all datasets.

1 Introduction

Entity extraction methods delimit all mentions of an entity class (e.g., Location Names, Proteins, or Auto
Parts IDs) in corpora of unstructured text. Supervised machine learning approaches have been effective in
extracting such entity mentions, such as (Finkel et al., 2005). However, the prohibitive cost of obtaining
a large volume of labeled data for training makes them unattractive and hard to use in realistic settings
where resources may be scarce or costly to create (e.g., aviation engineer needing to annotate engine
maintenance data). In this paper, we address the problem by developing a practical solution exploiting
the strengths of the supervised sequence labeling techniques (Ye et al., 2009) while reducing the high
cost of annotation.

Training data and the annotation approach are the two focal points of any supervised method. A
model can be built from pre-annotated data or using de novo annotations. There are many pre-annotated
and publicly available corpora such as CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003), GENIA
(Ohta et al., 2001), and BioCreative II (et. al., 2008). However, having such data leaves us with two chal-
lenges: (i) no training dataset can be found for many of the domain-specific entity classes in enterprise
corpora due to data privacy concerns, IP restrictions, and problem specific use cases (needing de novo
annotations), and (ii) data sparsity, which hinders the performance of supervised models on unseen data
(needing incrementally augmented annotations to the annotated sentence pool).

We propose a practical solution to model building through (i) rapid auto-annotation, to create models
with reduced cost, and (ii) flexible stopping criteria using an online evaluation method, which calculates
the confidence of a model on unseen data without a need for a gold standard. Having such an online
feedback method supports incremental learning which allows us to partially overcome the data sparsity
problem (see Section 2).

Mainstream entity annotation approaches typically present a large body of text or full documents to
annotators, which can be time-consuming as well as lead to low quality annotations. Additionally, the
majority of these techniques require labeling for multiple entity classes which makes the annotation task
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harder and more complex. Therefore, sentence-level and single-entity-class annotation are desirable to
improve tractability and reduce cost. Imposing such requirements, however, causes a labeling starvation
problem (i.e., querying annotators to label sentences containing a low frequency of entities from the
desired class). In this work, we develop an Entity Set Expansion (ESE) approach to work side by side
with Active Learning (AL) to reduce the labeling starvation problem and improve the learning rate.

Our framework is similar to the work proposed by (Tsuruoka et al., 2008) that aims to annotate all
mentions of a single entity class in corpora while relaxing the requirement of full coverage. Our design
choice lowers the annotation cost by using flexible stopping criteria, assisting in the corpus annotating
procedure and removing the requirement for annotators to scan all sentences. Our approach differs from
the above in that we perform ESE by learning the semantics and relevant context to retrieve similar
entities by analogy, to accelerate the learning rate. Moreover, our approach provides Fast (FA), Hyper
Fast (HFA), and Ultra Fast (UFA) auto-annotation modes for rapid annotation. Our contributions include:

1. A framework to annotate sparse entities rapidly in unstructured corpora using auto-annotation. We
then use flexible stopping criteria to learn sequence labeling models incrementally from annotated
sentences without compromising the quality of the learned models.

2. A comprehensive empirical evaluation of the proposed framework by testing it on six entity classes
from three public datasets.

3. An open source implementation of the framework within the widely used Stanford CoreNLP pack-
age (Manning et al., 2014).1

In the upcoming sections, we describe our incremental learning solution developed using Active
Learning, and how we use ESE to accelerate the annotation. Finally, we will evaluate the proposed
method on publicly available datasets showing its effectiveness.

2 Incremental and Interactive Learning

In practical applications, domain experts have datasets from which they want to extract entities and then
use these entities to build various applications like identifying the mentions of the same suppliers and
materials referred to by similar entities in sourcing databases for the purpose of optimizing supply chains.
Next, we will describe how we use AL to accelerate the learning rate, to auto-annotate sentences, and to
provide feedback for flexible stopping criteria.

Active Learning (AL) We adopt the linear-chain Conditional Random Field (CRF) implementation by
(Finkel et al., 2005) to learn a sequence labeling model to extract entities. However, we use pool-based
AL for sequence labeling (Settles and Craven, 2008) to replace the sequential or random samplers during
online corpus annotation.

Our iterative AL-enabled framework requires a pre-trained/base model to sample the next batch of
sentences to be labeled. This iterative sampling allows us to reach higher accuracies with fewer data
points by incrementally incorporating the new knowledge encoded in the trained models. This more
informative sampling is achieved due to the added requirement on model training that uses all previously
annotated sentences as well as new batches of annotated sentences2. In Section 3, we show how learning
the base model by annotating sentences sampled using a method called Entity Set Expansion (ESE) is
better than learning a model from a random sample.

While the default inductive behavior of CRF is to provide one label sequence (the most probable one),
we instead use an n-best sequence method that uses the Viterbi algorithm to return, for each sentence, the
top n sequences with their probabilities. We then query the annotator to annotate b number of sentences
(equal to a pre-selected batch size) with the highest entropies (Kim et al., 2006; Settles and Craven, 2008)
calculated using the following equation:

1Codes and data can be found at https://github.com/halolimat/SpExtor
2We train all CRF models using the default set of features for CoNLL 4 class - https://rebrand.ly/corenlpProp
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nSE(m, s) = −
∑
ŷ∈Ŷ

pm(ŷ|s; θ) log pm(ŷ|s; θ) (1)

where m is the trained CRF model, s is a sentence, Ŷ is the set of n sequences, and θ is the features’
weights learned by the model m.

Annotation Modes We devise four AL-enabled annotation modes: 1. ESE and AL (EAL), 2. Fast
(FA), 3. Hyper Fast (HFA), and 4. Ultra Fast (UFA) annotation mode. The EAL mode (which perform
ESE to learn the base model, see Section 3) uses model confidence on sentences estimated using nSE
for sampling while the rest use a thresholded auto-annotation method that we developed to accelerate the
annotation procedure.

Auto-annotation employs a pre-trained CRF model m to annotate all unlabeled sentences in the pool.
Then, we accept the most probable annotation of each sentence (i.e., the first label sequence) from the
model if the first two label sequences satisfies the following condition: if SE1(s)

SE2(s)
≤ t, where SEi(s) is

the entropy of the sequence i of the sentence s and t is a predefined threshold representing the desired
margin difference between the entropies of the two sequences 1 and 2. We chose t after running some
experiments. What we found was that any threshold below 0.10 usually resulted in no auto-annotations,
while a threshold above 0.20 resulted in many incorrect ones. Therefore, we chose 0.10, 0.15, and
0.20 for the FA, HFA, and UFA auto-annotation modes, respectively. In Section 4.4, we evaluate the
effectiveness of the devised annotation modes.

Interactive Learning We designed an online evaluation method σ that provides feedback to annotators
on the confidence of a model m on a given sentence pool S (Equation 2). This feedback is an alternative
to the F-measure and is very valuable in the absence of a gold standard dataset that could otherwise
provide this kind of a feedback.

σ = 1− 1

|S|
∑
s∈S

nSE(m, s) (2)

Typically, σ ∈ [0, 1], where 1 is the highest confidence value. Hence, it gives the annotator a clearer
picture of whether to keep the model as is or learn a new model, interactively, using the mean of all nSEs
(i.e., 1

|S|
∑

s∈S nSE(m, s)). We use σ both during the incremental learning steps from the same sentence
pool and to test the model’s accuracy/confidence on unseen sentences. Therefore, using this feedback,
we can decide to stop annotating from a certain sentence pool and augment it with sentences from a
new pool, or simply stop annotating and train a final model. Consequently, deciding to annotate new
sentences that contain novel entities helps reduce the effect of data sparsity and increase the accuracy of
models, which highlights the importance of this online feedback method.

We compare our online evaluation method with the Estimated Coverage (EC) method in (Tsuruoka et
al., 2008) that computes the expected number of entities as follows:

EC =
E

E +
∑

u∈U Eu
(3)

where E is the number of annotated entities in sentences, U is the set of all unlabeled sentences, and
Eu is the expected number of entities in sentence u. Eu is calculated by summing the probability of
each entity in all of the n-best sequences. As shown later in Section 4.4, our online method is more
informative than the EC method.

3 Entity Set Expansion Framework

Since AL requires a base (pre-trained) model to work (Settles and Craven, 2008), learning that model
from annotated sentences sampled using sequential or random sampling can be very expensive due to the
labeling starvation problem mentioned before. Therefore, we developed an Entity Set Expansion (ESE)
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method that incorporates and exploits the semantics and relevant context of the desired entity class to
more informatively sample sentences that are likely to have entities of the desired class.

We assume that all noun phrases (NPs) are candidate entities and extract all of them from the unstruc-
tured text3. Then, we record five features for each noun phrase (np) and model the data as a bipartite
graph with NPs on one side and features on the opposite side. Ultimately, modeling the edges from
multi-modal edge weights allow us to calculate the similarity between NPs and retrieve all sentences
containing the most similar ones.

3.1 Noun Phrase Extraction (NPEx)
We POS tag and parse sentences to the form ([wi/posi ∀w ∈ W ]). We then use the regular expressions
below to extract NPs, where JJs are adjectives, NNs are nouns (singular, plural, proper, etc.), and CDs
are cardinal numbers (Santorini, 1990).

NP = JJs + NNs + CDs
JJs = (?:(?:[A-Z]\\w+ JJ )*)
NNs = (?:[ˆ\\s]* (?:N[A-Z]*)\\s*)+
CDs = (?:\\w+ CD)?

3.2 Featurization
We automatically extract and record five kinds of features for each extracted noun phrase from text to
create relationships between noun phrases. Following is the list of the diverse lexical, syntactic, and
semantic features we derive:

1 Lexical Features (LF):

• Orthographic Form (OF): We abstract OF features from the actual word and obtain its type
(i.e., numeric, alpha, alphanumeric, or other). Additionally, we classify the word as: all upper
case, all lower case, title case, or mixed case.
• Word Shape (WS): We define WS to abstract the patterns of letters in a word as short/long

word shape (SWS/LWS) features. In LWS, we map each letter to “L”, each digit to “D”, and
retain the others unchanged. On the other hand, for SWS, we remove consecutive character
types. For example, LWS(“ABC-123”)→ “LLL-DDD” and SWS(“ABC-123”)→ “L-D”.

2 Lexico-Syntactic Features (LS): We use a skip-gram method to record the explicit LS-patterns
surrounding each NP, i.e., for each np in s we record the pattern wi−1 + np + wi+1, where w(.)

are the two words that precede and follow np.

3 Syntactic Features (SF): We use dependency patterns to abstract away from the word-order in-
formation that we can capture using contextual and lexico-syntactic features. We use Stanford’s
English UD neural network-based dependency parser (Chen and Manning, 2014) to extract uni-
versal dependencies of NPs. For each np in s, we record two dependency patterns of the NP that
serve in governor and dependent roles.

4 Semantic Features (SeF): To capture the lexical semantics, we use WordNet (Miller, 1995) to get
word senses and draw sense relations between NPs if they have the same sense class.

5 Contextual Features (CF): To capture the latent features, we use a Word2Vec embedding model
(Mikolov et al., 2013) trained on the sentence pool S as the only bottom-up distributional seman-
tics method. We exploit the word-context co-occurrence patterns learned by the model to induce
the relational similarities between NPs.

The use of semantic (i.e., word senses) and contextual (i.e., word embeddings) features for sparse or
domain-specific data (such as enterprise data) is not enough and sometimes not even possible due to
unavailability (Tao et al., 2015). Therefore, we tried to use diverse features in a complementary manner

3While not all candidate NPs are positive examples of an entity, a human-in-the-loop would interactively give feedback to
the system by choosing the positive ones.
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Figure 1: The three stages of graph embedding for candidate entities ranking.

to capture as many meaningful relations between potential entities as possible. For example, the absence
of SeF for domain specific entities, such as protein molecules or parts numbers, is compensated by the
use of WS features (e.g., by drawing a relation between the NPs “IL-2” and “AP-1” which have the same
SWS and LWS features).

3.3 Feature-Graph Embedding
We model edges in the bipartite graph by assigning a weight w between each pair of a noun phrase n and
a feature f using one of the following weights:

w1n,f = Cn,f (4)

w2n,f = log(1 + Cn,f )[log|N | − log(|N |f )] (5)

w3n,f = log(1 + Cn,f )[log|N | − log(
∑
n̂

Cn̂,f )] (6)

where Cn,f is the co-occurrence count between n and f , |N | is the number of NPs in our dataset, |N |f
is the co-occurrence count of all NPs with f , and

∑
n̂Cn̂,f is the sum of all NP co-occurrences with the

feature f . Equations 5 and 6 are two variations of TFIDF where the latter is adapted to weigh the edges
in (Shen et al., 2017; Rong et al., 2016).

3.4 Set Expansion

Data: e: input seed; S: text sentences
Result: N = {n}: ranked similar noun phrases
Start
N̂ = ∅; // all noun phrases
F = ∅; // all features
for s← S do

N̂ = N̂ ∪ ExtractNounPhrases(s);
F = F ∪ Featurize(N̂ ); // Sec. 3.2

end
G = BuildBipartiteGraph(N̂ , F );

// Section 3.3
N = CalculateSimilarity(e, G);

// Equation 7 or 8
return rank(N);

Algorithm 1: Entity Set Expansion

Our method starts by taking a seed entity e from
the annotator input, and returns a ranked list of
similar NPs (see Algorithm 1). After construct-
ing a graph using the embedding method men-
tioned in the previous section (see Figure 1), we
calculate the similarity between the seed entity e
and all other noun phrases NPs in the graph G
using one of the following similarity methods:

Sim1(n1, n2|F ) =

∑
f∈F

wn1,fwn2,f√ ∑
f∈F

w2
n1,f

√ ∑
f∈F

w2
n2,f

(7)

Sim2(n1, n2|F ) =

∑
f∈F

min(wn1,f , wn2,f )∑
f∈F

max(wn1,f , wn2,f )
(8)
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Figure 2: Coarse features ensemble method for ranking candidate entities.

Dataset Name Entity Class |S| (with Entities) # Entities NPEx Precision Seed Entity (Count)

CoNLL-2003
Location 13519 (36%) 1258 84% U.S. (296), Washington (26)

Person 13519 (31%) 3388 76% Clinton (70), Von Heesen (1)

BioCreAtIvE II Gene 12500 (51%) 10441 51% insulin (64), GrpE (1)

GENIA 3.02
Protein Molecule 14838 (55%) 3413 60% NF-kappa B (552), IL-1RA (1)

Cell Type 14838 (27%) 1569 24% T cells (489), MGC (2)

Virus 14838 (8%) 324 50% HIV-1 (336), adenovirus E1A (1)

Table 1: Evaluation dataset statistics, noun phrase extraction accuracies, and seed entity counts.

where Sim(n1, n2|F ) is the similarity between the two noun phrases n1 and n2 given the set of features
F they have in common, and w(.,.) is the weight of the edge between the NPs and features (defined
using one of the Equations 4-6). Equation 7 is the cosine similarity and Equation 8 is the context-
dependent similarity by (Shen et al., 2017). The difference between these two similarity measure is that
higher cosine similarities implies that the two NPs are better aligned on many feature dimensions, while
higher context-dependent similarities implies that the two NPs are significantly similar on some feature
dimensions compared to others.

3.5 Feature Ensemble Ranking
Similar to the use in SetExpan (Shen et al., 2017), we ensemble the coarse features4 and rank NPs in
sublists to reduce the effect of inferior features on the final ranking. The size of each sublist is equal to
|F̂ | − 1, where F̂ is the set of all features from Section 3.2.

MRR(n) =
∑
q∈Q

1

rank(n, q)
(9)

We then use the mean reciprocal rank (MRR) from Equation 9 above, a form of rank aggregation, to
find the final ranking of each noun phrase n using its rank in each sublist q (see Figure 2).

4 Experiments and Results

4.1 Data Preparation
To test our framework while emulating the full experience of annotators, we use three publicly available
gold standard datasets labeled for several entity classes (CoNLL-2003, GENIA 3.02, and BioCreAtIvE
II). We tokenize documents into sentences, then query the emulator (which plays the role of annotators)
to label sentences, thus avoiding the required annotation of full documents for better user experience.
We require the emulator to label only a single entity class from each dataset, to avoid the complexity
of multiple class annotations. Therefore, we created six versions of the datasets where only one class is
kept in each version. Table 1 includes some statistics about the datasets. The percentage of sentences
with entities of a given class shows the sparsity of those entities.

4Coarse features are the five groups of features in Section 3.2 as opposed to the fine ones which are part of each of them.
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Location Person Gene Protein Cell Type Virus
Eq.4 Eq.5 Eq.6 Eq.4 Eq.5 Eq.6 Eq.4 Eq.5 Eq.6 Eq.4 Eq.5 Eq.6 Eq.4 Eq.5 Eq.6 Eq.4 Eq.5 Eq.6

Seed 1
Eq.7 0.37 0.40 0.50 0.23 0.23 0.30 0.00 0.03 0.13 0.17 0.23 0.20 0.27 0.50 0.53 0.20 0.13 0.17

Eq.8 0.63 0.73 0.73 0.03 0.17 0.20 0.03 0.07 0.07 0.43 0.43 0.53 0.17 0.23 0.23 0.07 0.10 0.07

Seed 2
Eq.7 0.33 0.33 0.57 0.53 0.40 0.30 0.63 0.63 0.63 0.17 0.60 0.27 0.10 0.20 0.13 0.07 0.03 0.03

Eq.8 0.57 0.70 0.63 0.47 0.37 0.37 0.60 0.57 0.60 0.07 0.30 0.30 0.07 0.07 0.07 0.03 0.10 0.03

Table 2: ESE performance (p@k). The use of TFIDF variant without co-occurrence summation (Equation
5), to weight the graph edges, and the context-dependent similarity (Equation 8), to measure the similarity
between NPs, led to the bold-faced best performing combination.

Text

ESE
Input Seed

Auto Annotate
-  Fast
-  Hyper Fast
-  Ultra Fast

Learn Model

t1 t2 t3 t4 t5

B-Cla I-Cla O B-Cla O

Sample Sentences

Annotate
Human 

Intelligence 
Task (HIT)

-  Random-based
-  nSE-based

A B C

DE

Figure 3: End-to-End system pipeline. Arrows represent paths can be followed to annotate text.

4.2 NPEx Evaluation
Since ESE method operates at an NP level, the performance of Noun Phrase Extraction (NPEx) signifi-
cantly influences the overall performance of ESE. Table 1 includes the precision of NPEx method. In the
future, ESE performance can be improved by enhancing the performance of candidate entities extraction
through, for example, extracting noun phrases formed from typed-dependencies.

4.3 Entity Set Expansion (ESE) Evaluation
To test the influence of seed entity frequency on ESE performance, we manually picked two seeds, the
most frequent and the least frequent among all noun phrases (See Table 1). Additionally, we varied
the weighting measure of the graph edges to reflect different notions of feature relevance using one of
Equations 4-6. Finally, we varied the similarity measure when ranking NPs (Equations 7 and 8).

We tested the performance of ESE with and without using the feature ensemble method in Section
3.5. We measured the precision of the method in ranking positive examples of entities similar to the seed
entity (Seed 1 and Seed 2) in the top k NPs. We designed ESE to output thirty candidate entities (NPs)
ranked based on the similarity to the seed term. Therefore, we calculated precision at k (p@k) where
k is always 30. Table 2 shows the best results when using the feature ensemble method which is more
stable than the non-ensemble one (due to lower standard deviation and non-zero precision). According
to the results, the best combination in terms of the mean and standard deviation is obtained when using
TFIDF (Eq.5) to weigh the edges and context-dependent similarity (Eq.8) to rank NPs. This shows that
the uniqueness and the significant overlap of features between noun phrases were very important.

4.4 Full System Evaluation
We tested our pipeline on three different settings following three different paths in Figure 3:

1. All Random (AR): (E,B,C)∗, where E is a random-based sampler.

2. ESE and AL (EAL): A,B,C, (E,B,C)∗, where E is an nSE-based sampler.

3. EAL in addition to auto-annotation (EAA): A,B,C, (D,C,E,B,C)∗
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Figure 4: Percentage of sentences annotated while using EAL to reach different F-Scores.

Dataset Name Entity Class
EAL EAA Annotation Mode

@ 1.0 F FA HFA UFA
σ % cut F-Score (percentage cut)

CoNLL-2003
Location 0.97 55% 0.99 (46%) 0.93 (83%) 0.82 (91%)

Person 0.97 59% 0.99 (48%) 0.95 (81%) 0.85 (90%)

BioCreAtIvE II Gene 0.94 35% 1.00 (35%) 0.96 (50%) 0.89 (69%)

GENIA 3.02
Protein Molecule 0.99 33% 0.98 (36%) 0.87 (71%) 0.74 (85%)

Cell Type 0.99 62% 0.94 (70%) 0.82 (86%) 0.74 (91%)

Virus 0.94 24% 0.97 (79%) 0.89 (94%) 0.84 (96%)

Average 0.97 45% 0.98 (52%) 0.90 (78%) 0.81 (87%)

Table 3: Pipeline testing results of EAL and EAA annotation modes (see Section 2) showing the model
confidence (σ), F-Scores, and percentage cut from the pool of sentences.

We iterate through the loop paths in the starred parentheses while sampling 100 sentences each time until
we finish all sentences in the pool or reach full F-Score. In Figure 5, we show the performance of the
first two settings (i.e., AR and EAL) in terms of F-Score. The use of AL and ESE methods outperformed
random sampling all the time. ESE increased the performance of the base model by 35% F-Score on
average, allowing us to reach 0.5 F-Score while the random sampler reached only 0.37 F-Score.

As shown in Figure 4, the percentage consumption of the sentence pool to reach up to 0.95 F-Score
follows almost a linear growth. However, this cost grows exponentially if we want to reach 1.0 F-Score
(needing on average around 33% more sentences). Practically speaking, we might want to trade the 5%
F-Score improvement to significantly reduce manual labor.5

We used Jensen-Shannon divergence (Lin, 1991) to compare the curves corresponding to the perfor-
mance of the estimated coverage method (Equation 3) and our online evaluation metric σ (Equation 2)
with the F-Score curve of EAL (see Figure 5). Our method σ outperformed the estimated coverage
method with a decrease of 96% in dissimilarity, which makes our method more reliable. Additionally, as
shown in Table 3, on average σ gives an accurate estimation of the F-Score without labeled data, with an
error margin of 3% on average, when reaching 1.0 F-Score (i.e., @ 1.0 F).6

Our EAL method also outperformed (Tsuruoka et al., 2008) on the three overlapping entity classes
we tested on from the two datasets (Genia and CoNLL-2003). EAL needed 2800, 2900, and 400 fewer
sentences to reach the same coverage as (Tsuruoka et al., 2008) for the Location, Person, and Cell-Type
datasets, respectively.

Finally, for the last setting, we tested the system using the three auto-annotation modes (i.e., FA, HFA,
5This would, therefore, make the annotated data a silver standard instead of a gold standard.
6The σ curves of GENIA-Cell-Type and GENIA-Virus show high overestimation of the F-Score curve in the first iterations.

This is due to missing entity annotations we found in the gold standard, which mistakenly shows that we had many false
positives. To list a few, GENIA-Cell-Type have missing annotations for “transformed T cells”, “transformed cells”, and “T
cells”, where GENIA-Virus have some missing annotations for “HIV-1” and “HIV-2”.
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Figure 5: Learning curves with different query strategies. Y-axis value for AR and EAL is the F-Score,
and for Sigma and Estimated Coverage is the value from Equations 2 and 3, respectively.

and UFA) as shown in Table 3. While the auto-annotation mode can allow us to reduce up to 87% of
the data pool, this drastic saving also reduces the accuracy of the learned model, achieving, on average,
around 81% F-Score. Overall, our framework presents a trade off between coverage and annotation cost.
The HFA auto-annotation mode shows the benefit, especially in a realistic enterprise setting, when we
need to annotate 33% of the data to increase F-Score by only 10% (when comparing the on average
performance of HFA with ESA) is unreasonable.

Table 3 appears to show FA being inferior to EAL in terms of the percentage cut for the Location class,
for example. In reality FA reduced sentence annotation by 65% to reach 0.99 F-Score. But as our testing
criteria demanded that we either reach 1.0 F-Score or finish all sentences from the pool, FA tried to finish
the pool without any further performance improvement on the 0.99 F-Score.

5 Related Work

To extract sparse entities from texts and learn sequence models faster, our practical framework uses
Active Learning (AL) for sequence labeling (Tomanek and Hahn, 2009; Settles and Craven, 2008), both
as a method of sampling and to auto-annotate sentences. Our work encompasses entity extraction, Entity
Set Expansion (ESE), corpora pre-annotation, auto-annotation, and AL.

Using a pattern-based ESE (a.k.a., seed set expansion) technique on top of AL helped our approach
in discovering rare patterns and rules which might have been hidden when using only a feature-based
system (Chiticariu et al., 2013). Our ESE method is similar to (Shen et al., 2017; Tao et al., 2015;
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Sadamitsu et al., 2012) where the system starts with a few positive examples of an entity class and tries
to extract similar entities. Additionally, we use a richer set of features than those in (Gupta and Manning,
2014; Grishman and He, 2014; Min and Grishman, 2011) while training a CRF model and using it to
find additional positive examples of a given entity class.

Methods such as (Sarmento et al., 2007) computes the degree of membership of an entity in a group of
predefined entities called seed entities, where the class of each group is predefined. Their method does
not focus on entity extraction, rather it focuses on detecting the class of entities during the evaluation
step, which makes their method different from ours.

Regarding corpus annotation, many notable previous works such as (Lingren et al., 2013) use dictio-
naries to pre-annotate texts. However, inaccurate pre-annotations may harm more than improve since
they require an added overhead of modifications and deletions (Rehbein et al., 2009). Kholghi et al.
(2017) and Tsuruoka et al. (2008) propose AL-based annotation systems. However, their work differs
from ours in the following ways: (1) we propose a more accurate online evaluation method than theirs,
(2) we use ESE to bootstrap the learning framework collaboratively with a user-in-the-loop, and finally,
(3) we provide auto-annotation modes which reduces the number of sentences to be considered for an-
notation and so allows for better usability of the framework.

6 Conclusions and Future Work

We presented a practical and effective solution to the problem of sparse entity extraction. Our frame-
work builds supervised models and extracts entities with a reduced annotation cost using Entity Set
Expansion (ESE), Active Learning (AL), and auto-annotation without compromising extraction quality.
Additionally, we provided an online method for evaluating model confidence that enables flexible stop-
ping criteria. In the future, we might consider evaluating different AL querying strategies and compare
their performances and try a more sophisticated candidate entity extractors for entity set expansion.
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