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Abstract

Fundamental to several knowledge-centric applications is the need to identify named entities
from their textual mentions. However, entities lack a unique representation and their mentions
can differ greatly. These variations arise in complex ways that cannot be captured using textual
similarity metrics. However, entities have underlying structures, typically shared by entities of
the same entity type, that can help reason over their name variations. Discovering, learning and
manipulating these structures typically requires high manual effort in the form of large amounts
of labeled training data and handwritten transformation programs. In this work, we propose an
active-learning based framework that drastically reduces the labeled data required to learn the
structures of entities. We show that programs for mapping entity mentions to their structures can
be automatically generated using human-comprehensible labels. Our experiments show that our
framework consistently outperforms both handwritten programs and supervised learning models.
We also demonstrate the utility of our framework in relation extraction and entity resolution tasks.

1 Introduction

Named entities are atomic objects of reference and reasoning in many cognitive applications and
knowledge-centric services like deep question answering, text summarization and analytics. A real-world
entity may have a great variety of representations (Galárraga et al., 2014; Nakashole et al., 2011). For
example, University of California, Santa Cruz could have different string representations or name variations:
UCSC, UC Santa Cruz, UC–Santa Cruz. Determining if two representations refer to the same entity is an
important primitive in entity resolution and entity linking algorithms that drive these knowledge-centric
applications (Shen et al., 2015; Arasu and Kaushik, 2009).

Unifying entity representations has been widely studied in record linkage (Christen, 2012), deduplica-
tion (Elmagarmid et al., 2007) and reference matching (McCallum et al., 2000). Typically, duplicates are
identified using the attributes and/or the contextual information of entities (Zhang et al., 2010; Han et al.,
2011; Shen et al., 2015). The string representation or mention of an entity forms key evidence: similar
mentions likely refer to the same entity. Although deemed as crucial (Dredze et al., 2010), variations in
mentions are typically handled using textual similarity like edit distance and cosine similarity (Zheng et
al., 2010; Lehmann et al., 2010; Liu et al., 2013), which can be misleading.
Example. Consider the mentions: (a) General Electric Corporation, (b) General Electric China Corporation,
(c) GE Corp. Mentions (a) and (b) are textually similar, differing in just one token. However, they refer to
different entities, owing to the location detail ‘China’. Conversely, textually dissimilar mentions (a) and
(c) refer to the same entity.
An entity mention is not merely a sequence of characters (Arasu and Kaushik, 2009). It instead has an
internal structure, specific to the type of entity. For example in Table 1, the company mentions have a
〈name〉, optionally followed by 〈loc〉 and 〈suffix〉. Such structural interpretation can help design similarity

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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Unlabeled Mention Structured Representation Labeled Mention

IBM United Kingdom Ltd. 〈name〉〈loc〉〈suffix〉 IBM→〈name〉,United Kingdom→〈loc〉, Ltd.→〈suffix〉
Alibaba USA 〈name〉〈loc〉 Alibaba→〈name〉, USA→〈loc〉
Barclays 〈name〉 Barclays→〈name〉
Hewlett-Packard Co. 〈name〉〈suffix〉 Hewlett-Packard→〈name〉, Co.→〈suffix〉

University of California, Irvine 〈name〉,〈loc〉 University of California→〈name〉, Irvine→〈loc〉
UM-Ann Arbor 〈name〉-〈loc〉 UM→〈name〉, Ann Arbor→〈loc〉
Stanford University 〈name〉 Stanford University→〈name〉

Table 1: Example Structured Representations of Company and University Mentions

functions to capture the nuances in name variations of an entity that string similarity functions cannot.
For instance, GE can be explained as a mention of General Electric Corporation using transformations like
abbreviate 〈name〉 and drop 〈suffix〉. These transformations coupled with string similarity functions can
augment existing entity linking algorithms (Qian et al., 2017).

The name variations and, consequently, the transformations are highly domain-dependent (Arasu et
al., 2008). Designing similarity functions for an entity type that can reason over the structure of entities
requires: (a) a comprehensive list of the structured representations (e.g. column 2 in Table 1), and (b)
programs that can map mentions to these structures (e.g. column 3 in Table 1). Traditionally, a domain
expert would scan a list of mentions of a target entity type to identify the different structured representa-
tions and handwrite programs. This requires specialized skills, and is error-prone and expensive, taking
up to several person months to tune the programs for a single application (Campos et al., 2015).

To alleviate the high manual effort, some of the prior works (Arasu and Kaushik, 2009) use declarative,
programmable frameworks that allow an expert to directly manipulate the mentions. The expert can
provide a program as a set of grammar rules to generate the structured representations. While this equips
the expert to manipulate the structure of a mention, it is only a partial solution. The rules are not generic,
requiring the expert to specify how each mention is parsed to its structure. This is wasteful because a
structure, shared by several mentions, can be captured with a generic rule. Another limitation of previous
approaches is that they do not handle structural ambiguities. For instance, there can be multiple structures
of Apple Inc. such as 〈name〉〈loc〉 and 〈name〉〈suffix〉, only one of which is correct.

Since several mentions of an entity type tend to have similar structures, it is possible to learn the vari-
ous structures from a subset of mentions. Given a good query strategy, active learning offers a promising
approach to efficiently select a small set of such mentions. Moreover, the expert need not provide pro-
grams that parse the selected mentions and generalize to unseen mentions. These programs can be in-
duced from the labels for the structures of the mentions. Embodying these ideas, we propose LUSTRE,
an active-learning based framework that learns structured representations for an entity type from human-
comprehensible labels for a small set of mentions. It automatically synthesizes generalizable programs
from the labels to map new mentions of the entity type to the learned structured representations. In addi-
tion, it allows the expert to incorporate domain knowledge and additional feedback to handle structural
ambiguities. Our framework significantly reduces the manual effort in labeling mentions and writing
programs for the structured representations. We also demonstrate how these structured representations
help define similarity functions that benefit entity resolution, and string transformation functions that
benefit relation extraction. The intellectual contributions of this work are as follows:

• Structured Representations. We present a framework to reason about name variations of entities based
on their structured representations.
• Active-learning. We present an active-learning approach and a unified query strategy to learn struc-

tured representations for a target entity type with minimal human input.
• Program Synthesis. We propose to automatically synthesize generalizable programs from human-

understandable labels to map mentions to their structured representations.
• Experimental Evaluation. Our experiments show that our framework achieves an average of 92% pre-

cision and 86% recall in predicting structured representations for several entity types, outperforming
competing approaches that require high manual effort. We demonstrate the usefulness of the structured
representations in two important tasks: entity resolution and relation extraction.
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Figure 1: LUSTRE Architecture

2 Problem Formalization and Notations

Given a set of unlabeled mentions (i.e., raw strings) of a target entity type ε, our goal is to actively learn
a high-quality model Mε (with a small number of user labels) that can map a new mention of type ε to its
structured representation. Key technical challenges in learning such a model include: (1) designing an
effective query strategy to find representative mentions that are structurally similar to several other men-
tions and to find mentions with diverse structures; (2) automatically inferring mapping programs from
the user labels to reduce the human effort, as in (Campos et al., 2015) and (Arasu and Kaushik, 2009);
(3) handling ambiguities when an unlabeled mention has multiple candidate structured representations.

Mentions of a target entity type have internal structured representations consisting of atomic semantic
units. Given the labels for the semantic units for a small set of mentions, we want to learn a model M of
mapping rules. Each mapping rule converts a raw string mention into a structured representation.

Definition 1 (Structured Representation). A structured representation S of an entity mention is a se-
quence of atomic semantic units that compose its structure.

Textually dissimilar mentions can have the same structure (e.g. Apple Inc. and Hewlett-Packard Co.).

Definition 2 (Semantic Unit). A semantic unit is a tuple u = 〈l : p〉 where l is a label for the unit and p
is a pattern matching function (e.g., a regular expression), referred to as a matcher.

A matcher describes how a substring in a mention matches a semantic unit. For instance, a matcher
([A-Z][A-Za-z]*[-’]?)+ captures 〈name〉 in mentions Apple Inc. and GE Corp. Name variations of an entity can
be explained as transformations on its semantic units (e.g. dropping suffix in Apple Inc. generates Apple).

Definition 3 (Mapping Rule). The mapping rule rS for a structured representation S consists of matchers
which decide how an unlabeled mention is mapped to S, resulting in a labeled entity mention.

Specifically, a mapping rule rS is a sequence of matchers in the semantic units in S, denoted by rS =
{pi | 〈li, pi〉 ∈ S}. This mapping rule constitutes a program that maps unseen mentions to S. Together
the various mapping rules constitute a model Mε for the entity type ε.

3 The LUSTRE System

We propose LUSTRE that addresses the aforementioned challenges in learning a model of mapping
rules for an entity type by:
• adopting a unified query strategy that combines uncertainty sampling (i.e., selecting a mention whose

current structured representation is unknown or uncertain) and density-weighted sampling (i.e., select-
ing a mention whose structured representation is representative of many unlabeled mentions).
• seeking human-comprehensible labels for the semantic units in the structure of an unlabeled mention,

and deducing a mapping rule by combining the matchers for the semantic units.
• handling structural ambiguities of an unlabeled mention by ranking the candidate mapping rules based

on their reliability and additional user feedback.
Figure 1 depicts the workflow of LUSTRE and Algorithm 1 shows our learning algorithm. It takes as

input unlabeled mentions Uε and optionally dictionaries Dε of a target entity type ε. These dictionaries
and a set of pre-defined matchers form the building blocks for the mapping rules. Before training,
LUSTRE evaluates all the matchers against Uε to inform the query strategy and rule generation (Sec 3.1).
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Algorithm 1 LUSTRE learning algorithm

input: Uε = a pool of unlabeled mentions {m}
output:Mε = a model of mapping rules {rS}

1: function TRAIN(Uε)
2: Lε = a set of labeled mentions {〈m, l〉}
3: F = feedback {〈m, l, f〉 | m ∈ U , f ∈ {0, 1}}
4: M = ∅
5: for t = 1,2... do
6: M = UPDATE(M,L,F)
7: select m∗ ∈ U , mention with highest utility
8: select F with least confident predictions
9: query label l∗ for mention m∗

10: query binary feedback on F
11: L = L ∪ 〈m∗, l∗〉, U = U\{m∗}
12: returnM
13: function UPDATE(M,L,F)
14: for 〈m, l〉 ∈ L do
15: rS = generate rule(l)
16: if rS /∈M then
17: PrS = reliability(rS)
18: M =M∪ 〈rS ,PrS 〉
19: for 〈rS ,PrS 〉 ∈ M do
20: PrS = estimate(PrS ,F)

21: returnM

During training, in each iteration, LUSTRE
selects a candidate mention for the user to label
(Sec 3.2). Given the user-provided labels for se-
mantic units of the selected mention, it derives
a generic mapping rule for the structure of the
mention (Sec 3.3). It then updates the model
M with the new rule, and predicts the structures
of unlabeled mentions (Sec 3.4). It presents a
sample of these predictions to the user and in-
tegrates the user feedback in M (Sec 3.5). This
iterative process continues until all the unlabeled
mentions can be mapped to some structure or the
user is satisfied with M .

3.1 Indexing
User-provided dictionaries and pre-defined reg-
ular expressions constitute the vocabulary of
matchers for the mapping rules. The dictionar-
ies help capture key domain-specific terminol-
ogy but need not correspond to semantic units.
Example. A suffix dictionary may contain ‘Inc.’,
‘Corp’, ‘LLC’, ‘Pvt. Ltd.’

Additionally, we use type-independent regex
matchers shown in Table 2. In a pre-processing
step (Line 1 of Algorithm 1), we evaluate the
unlabeled mentions against the matchers to save computational overhead. We refer to these enriched
unlabeled mentions during training. Name Regex

caps [A-Z][A-Za-z]*[.-’]?
alphaNum [A-Za-z0-9]+[.-’]?
num [0-9]+
special [ˆA-Za-z0-9]+
wild .+

Table 2: Predefined Matchers

Example. Given dictionaries for country and suffix and a mention
IBM UK Ltd., the matchers yield matches UK→〈country〉, Ltd.→〈suffix〉
IBM→ [〈caps〉,〈alphaNum〉], UK→ [〈caps〉].

Multiple matchers can match the same token (e.g. 〈country〉 and
〈caps〉 match ‘UK’). We assume that more specific matchers offer
higher precision than generic matchers. We further formalize this in-
tuition in Section 3.3. We rank matchers in the following order based
on their selectivity: Dε > caps> alphaNum> num> special> wild1.

3.2 Candidate Selection
The query strategy to determine what constitutes an informative mention is the central challenge in our
active-learning setting (Line 7 of Algorithm 1). We consider a mention informative if its represents the
structure of several other unlabeled mentions and its current structure is unknown or uncertain. We adopt
a unified approach, combining density-weighted sampling (Settles and Craven, 2008) and uncertainty
sampling (Culotta and McCallum, 2005) as it is robust to outliers and input distribution.

For each unlabeled mention mi, we compute a correlation score ci (based on its structural similarity
to other mentions) and an uncertainty score fi (based on its predicted structure). We then compute a
utility score ui for mi, combining its correlation and uncertainty scores, and select a mention m∗ with
the highest utility score for labeling.

To compute correlation score ci, we need a reliable metric to measure the similarity of the structures
of two mentions. Since surface-string similarity metrics won’t suffice, we estimate structural similarity
of two mentions as a function of the matchers that constitute their structures. Specifically, we compute
structural similarity c(i, j) of a pair of mentions (i, j) as the edit distance of their structures, Si and Sj .

1The order of preference can be inferred in a pre-processing step in which the system counts the selectivity of each matcher
against the input mentions
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Example. ‘IBM Ltd.’ and ‘Apple Inc.’ have the same structure 〈caps〉〈suffix〉, and therefore, have an edit
distance of 0. Each has edit distance 1 to ‘Microsoft Asia Inc.’ with structure 〈caps〉〈loc〉〈suffix〉.

Given the pair-wise structural similarity metric, the correlation score ci of a mention mi is its average
structural similarity to other unlabeled mentions.

ci =
1

|U |
∑
j∈U

c(i, j)

c(i, j) = 1− edit distance(Si,Sj)
max edit distance

fi =

{
1 if no rule maps mi

1− Pr̂S otherwise

Pr̂S = argmax
r

PrS

ui = ci ∗ fi
m∗ = argmax

mi

ui

To estimate the uncertainty score fi of a mention, we use PrS , the reliability of the mapping rules that
can parse the mention. If no mapping rule can parse a mention mi, its structure is unknown i.e. fi is
simply 1. Otherwise, it is the uncertainty of the most reliable rule r̂S known to parse the mention. We
discuss how the reliability PrS of mapping rules are estimated in Sec. 3.4.

3.3 Rule Generation

Once the user labels a selected mention, LUSTRE next has to synthesize a generic program i.e. a
mapping rule for the structure of the mention (Line 15 of Algorithm 1). Deriving a mapping rule is non-
trivial as semantic units in the structure can potentially span multiple tokens and matchers. As a result,
there are many ways to combine matchers and derive the rule.
Example. A user can label ‘General Motors’ as semantic unit 〈name〉 in ‘General Motors Co.’ Tokens ‘Gen-
eral’ and ‘Motors’ map to matchers caps and alphaNum . The most reliable interpretation for 〈name〉 is
〈name ::caps{1,2}〉, a combination of two adjacent matchers 〈caps〉.

LUSTRE derives a reliable rule as the sequence of most selective matchers, where selectivity is the
expected number of matches of a matcher over the set of unlabeled mentions U (Li et al., 2008).

sel(pi) = E[match(pi,m ∈ U)]

with match(pi,m) being number of matches of pi over mention m.

3.4 Parsing

When a new mapping rule is learned, we want to estimate its reliability in predicting structures of men-
tions, and update the model M (Line 17-18 of Algorithm 1). These reliability scores are used for esti-
mating utility scores at candidate selection and for resolving ambiguities when multiple rules can parse
a mention (with preference given to the most reliable rule). Following the intuition that generic rules are
less reliable, we estimate reliability of a rule based on its expected numbers of matches in the unlabeled
mentions. Specifically, reliability PrS is a function of the selectivity of the matchers in rS .

p∗ = argmin
i
{sel(pi) | 〈li, pi〉 ∈ S}

PrS = 1− sel(p∗)

3.5 User Interface

LUSTRE uses an easy-to-use interface (Qian et al., 2018) to seek labels for a selected mention and
additional feedback on intermediate predictions (Line 9 of Algorithm 1). To reduce the labeling effort,
tokens in the mention that match an entry in the dictionary are pre-labeled with the name of the dictionary
(e.g. ‘IBM Corp’ is presented with ‘Corp’ labeled as suffix). The user can keep these and/or provide new
labels (e.g. user can label ‘IBM’ as name).

In addition, the interface presents the predictions of structures for a sample of unlabeled mentions.
It selects 10 least confident predictions based on uncertainty scores (Section 3.2). The user can simply
mark a prediction incorrect, without providing labels for its correct structure. LUSTRE effectively
integrates this feedback to avoid over-estimating the reliability of learned rules, thereby improving the
quality of modelM . Specifically, it updates the reliability of a mapping rule P irS as a function of number
of incorrect predictions mr for the rule in the set of 10 predictions presented to the user (Line 20 of
Algorithm 1).

Pj
rS = Pi

rS ∗ (1− α ∗
|mr|
10

)



692

with α being the decay constant. We found such estimation, though simple, was effective in estimating
the reliability of mapping rules. Training more powerful measures such as a discriminative model would
require larger user feedback than is available in this setting.

4 Experiments

We assess the effectiveness of our learning algorithm, and the quality and usefulness of learned struc-
tures.2

4.1 Experimental Setup

Datasets. We conduct experiments on four entity types of varied complexity and ambiguity.
• Person: Focusing on subtype Individual, we randomly select 200 unique mentions for training and

another 200 mentions for testing from the ACE 2005 dataset (Walker et al., 2006). For out-of-domain
tests, we randomly select 200 person mentions from Freebase (Bollacker et al., 2008).
• Company: Focusing on subtype Commercial, we randomly select 200 mentions for training and use

the remaining 100 mentions for testing from the ACE dataset. For out-of-domain test, we randomly
select 200 company mentions from Freebase.
• Tournament: We use a 50/50 split for the 100 unique mentions of tournaments in Freebase.
• Academic Title: We use a 50/50 split for the 350 unique mentions of academic titles in Freebase.

For each mention, we ask two experts to manually annotate every token with a semantic label to
produce the ground truth. The average inter-annotator agreement was 0.89 for Cohen’s κ.
Baselines. We compare LUSTRE with the following methods.
• STG: A commercial system (Campos et al., 2015) which requires an expert (with domain knowledge

and programming skills) to analyze the structures of an entity type and handwrite mapping programs.
• Linear-chain CRF3: A linear-chain CRF model that predicts a sequence of labels for the tokens in a

mention. We use matches from the Indexing stage as features. We use two different training settings:
CRF trained on the entire training set (to compare with best model), and CRFL trained on the subset
of training set selected via the query strategy in LUSTRE (to compare with same user effort).
• LUSTRET: LUSTRE with a native tf-idf based query strategy.
Evaluation Metric. We consider a prediction correct if the model and expert agree on the semantic
labels for each token in the mention. We measure precision as the fraction of predictions that are correct
and recall as the fraction of correct structures that are predicted. We define a new metric, which we call
the α value, to estimate the role of manual effort on performance of various methods (definition is given
below). Intuitively, higher the α value, higher the effectiveness of a method in learning from a user label.

α(X, t) =
F-score of method X on entity type t
number of user labels requested by X

,where X ∈ {LUSTRE, CRF, CRFL}.

4.2 Quality Analysis

The performance results of the different methods are summarized in Table 3. For Person mentions, all
methods achieve reasonably good results (F-scores are all above 0.85). This is not surprising as person
mentions typically have simple structures with few semantic units. STG achieves lowest performance,
indicating that manually-crafted programs are not as robust as learned models. CRF models, especially
CRFL trained on mentions selected using LUSTRE, show evident improvement over STG. LUSTRE
achieves comparable performance. However, it outperforms all other methods on out-of-domain test
data, suggesting it can capture the structures in mentions regardless of their data source.

Company mentions are more complex than Person mentions. They can have several semantic units
such as core name, location, suffix and subsidiary, which can appear in different orders, be separated
by special symbols etc. Consequently, capturing structures in company mentions is more difficult, as is
reflected in the performance across methods. Learning a reliable model/program would require higher

2We will release the code and data from this work. Code is proprietary but can be licensed.
3http://mallet.cs.umass.edu/sequences.php
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manual effort in STG and more training data in CRF. In contrast, LUSTRE, with small human input,
achieves high precision and recall for both in-domain and out-of-domain data.

IN-DOMAIN OUT-OF-DOMAIN

Type Algorithm P R F1 P R F1

Person

STG 0.92 0.92 0.92 0.85 0.85 0.85
CRF 0.97 0.97 0.97 0.90 0.90 0.90
CRFL 0.99 0.99 0.99 0.91 0.91 0.91
LUSTRET 0.98 0.95 0.96 0.92 0.90 0.91
LUSTRE 0.99 0.97 0.98 0.92 0.95 0.93

Company

STG 0.83 0.83 0.83 0.79 0.79 0.79
CRF 0.87 0.87 0.87 0.85 0.85 0.85
CRFL 0.81 0.81 0.81 0.73 0.73 0.73
LUSTRET 0.84 0.77 0.80 0.78 0.60 0.68
LUSTRE 0.95 0.86 0.90 0.91 0.85 0.88

Tournament

CRF 0.70 0.70 0.70 - - -
CRFL 0.68 0.68 0.68 - - -
LUSTRET 0.96 0.68 0.79 - - -
LUSTRE 0.96 0.90 0.93 - - -

Academic

Title

CRF 0.69 0.69 0.69 - - -
CRFL 0.67 0.67 0.67 - - -
LUSTRET 0.36 0.23 0.28 - - -
LUSTRE 0.79 0.65 0.72 - - -

Table 3: Performances of LUSTRE, STG and CRF

Tournament and Academic Title mentions have even more complex structures that exhibit more varia-
tions. Even for these complex types, LUSTRE outperforms CRF. We do not report results of STG for
these two entity types because these were not considered when STG was developed. We do not provide
an out-of-domain evaluation of the two entity types because only the Freebase data included mentions of
these entity types.

In summary, LUSTRE outperforms
STG and CRF-based methods in terms
of overall F-score with the exception of
Person where CRFL has a small improve-
ment over LUSTRE. Furthermore, its
unified query strategy is more effective
than a tf-idf based strategy, as is reflected
in the performance of LUSTRET.

We found two main sources of er-
rors made by LUSTRE. First, akin to
all learning methods (such as CRF), it
has low recall when the training data
is not representative. Second, rank-
ing mapping rules sometimes cannot ef-
fectively resolve structural ambiguities.
For example, ‘The Stanford University Pro-
fessorship in Nephrology’ can be inter-
preted as 〈honorary prefix〉〈title〉〈specialty〉
or 〈institute〉〈title〉〈specialty〉. The former
is incorrect, but being more commonly
observed in the training data, is ranked
higher.

4.3 Effectiveness
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Figure 2: Performance of LUSTRE over itera-
tions

To assess how the quality of structured representa-
tions evolves in the learning process, we examine the
precision and recall of LUSTRE after each iteration
(as shown in Figure 2). We found that the precision
remains nearly constant. There are a limited number
of structures for the same types of entities. Every time
LUSTRE learns a precise rule that improves cover-
age. There are slight drops in the precision due to
the long tail of non-representative cases. The recall
generally increases depending on whether the system
prefers to gather additional evidence or to discover
new structured representations.

We also examine the number of rules learned, num-
ber of incorrect intermediate predictions, and percent-
age of input training data covered after each learning
iteration in LUSTRE (as shown in Figure 3). We
found that it took 8-13 iterations to learn almost all
different structures of an entity type. The fraction of
training data that could be parsed using the mapping rules also generally increased, indicating that our
query strategy selected structurally diverse mentions for labeling. Only a few (<5) predictions were
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Figure 3: Number of mapping rules, number of incorrect predictions, fraction of training data parsed
after each iteration

marked incorrect in each iteration. This suggests that LUSTRE, with a small set of labeled mentions
and a little user feedback, learned reliable rules and ranked them correctly.

Next, we compare the nature and amount of human effort across different methods. STG requires high
effort and high skill. Even for a simple entity type Person, it takes one skilled developer a few months to
manually inspect the different structural patterns and write programs. Learned models such as LUSTRE
and CRF reduce the skill level and require only human-readable labels for a mention. However, in
contrast to CRF, LUSTRE does not require the user to collect and label a set of representative mentions.
It guides the user to interactively and iteratively label a few mentions, with each iteration taking less 7
seconds. The optional feedback also is small (<5 predictions) and low-effort (boolean labels).

LUSTRE CRF CRFL

Person (in-domain) 0.089 0.005 0.090
Person (out-domain) 0.084 0.005 0.083
Company (in-domain) 0.125 0.004 0.101
Company (out-domain) 0.11 0.004 0.091
Tournament 0.072 0.014 0.052
Title 0.060 0.004 0.055

Table 4: The α values of different methods

Quantitatively, we report the α values of the three
learning methods. CRF has the lowest α value be-
cause it uses all labeled examples. Interestingly,
benefiting from the informative mentions selected by
LUSTRE, CRFL have much higher α values. LUS-
TRE, however, has the highest α values.

4.4 Usefulness
We present an extrinsic evaluation on entity resolution
and relation extraction tasks, both of which require
reasoning over name variations of entities. We implement a configurable variant generation program that
uses structure of an entity to generate its name variations. It allows the user to configure a set of string
transformation functions for the semantic units in a structure, which are then used to compose name
variations. It supports four transformations: DROP (ignore a token), INITIAL (retain first character of a
token), INITIALdot (retain first character followed by a dot) and MAP (replace with user-provided string).

Entity Resolution

Type Algorithm # links Precision # true links

EMP-SOCIAL
ERLearn-CIKM 1088 0.93 ∼1015
ERLearn-LUSTRE 1178 0.9 ∼1060

CRYSTAL
ERLearn-CIKM 145,516 0.9 ∼130,964
ERLearn-LUSTRE 147,232 0.9 ∼132,508

Table 5: ERLearn-CIKM vs. ERLearn-LUSTRE

We use ERLearn (Qian et al., 2017), a
state-of-the-art system for large-scale
entity resolution (ER). ERLearn aims
to learn a set of matching rules, each
consisting of matching functions for
different entity attributes (e.g., to de-
termine duplicate names ‘John Smith’
and ‘J. Smith’). The matching func-
tions are mostly based on textual sim-
ilarity of attributes. We replace these with matching functions created using LUSTRE4. We focus on two
scenarios: (1) Emp-Social (matching ∼470k employee records with 50 million social network user pro-
files) (2) Crystal (de-duplicating ∼1.3 million company records). We include new matching functions
for person names and company names for the two scenarios respectively.

As shown in Table 5, the new matching functions help ERLearn identify 4.40% and 1.17% more
true links for Emp-Social and Crystal scenarios, respectively. This improvement is significant for

4Due to space constraints, we request readers to refer to the supplementary material for details
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Emp-Social given the extreme low matching ratio for this dataset. ERLearn-CIKM already identifies
a significant subset of the true links in such a sparse space that it is non-trivial for ERLearn-LUSTRE
to have found additional 45 true links. In contrast, the ER task is more challenging for the Crystal

scenario, with more matching functions (158 vs. 68) (Qian et al., 2017). ERLearn-LUSTRE could
still identify additional 1544 true links, which is a significant improvement over 130k true links already
identified by ERLearn-CIKM. 5

Relation Extraction

We use MULTIR (Hoffmann et al., 2011), a state-of-the-art relation extractor trained on NY Times
text (Riedel et al., 2010) with weak supervision from Freebase (Bollacker et al., 2008). The weak super-
vision data is generated by exactly matching the textual mentions to canonicalized entities in Freebase.
We instead match to the variations of entities of types Person and Company, generated using the con-
figurations in Table 6. We follow the approach of (Hoffmann et al., 2011) to generate supervision data,
compute features and evaluate aggregate extraction.

Person
〈first〉 INITIAL, INITIALdot Dr. R. M. Nelson

〈middle〉 INITIAL, INITIALdot ,

DROP

Dr. Russell Nelson

〈title〉 DROP Russell Nelson II

〈suffix〉 DROP Dr. Russell Nelson

Company
〈name〉 INITIAL, INITIALdot HP USA Inc.

〈suffix〉 DROP Hewlett-Packard USA

〈location〉 DROP Hewlett-Packard Inc.

Table 6: Configurations for generating variants

For the 2 million entities, we generate 5.3 mil-
lion variations. There were 24,882 sentences
where textual mentions exactly matched a canon-
ical Freebase entity and one of the specified rela-
tions existed between the entities. This increased
to 34,197 sentences when named variations of en-
tities were included, suggesting name variations
are useful for entity recognition. By including the
variations for only two entity types, we could gen-
erate a training data that improved the overall ex-
tractor performance (F-1 score increased by 3%
from 0.485 to 0.499). The extractor could further
benefit from variations for entities of other types.

5 Related Work

Exploiting the compositional structure of entities and attributes especially from query streams and text
has received much attention in databases and NLP literature. It has mostly been used for understanding
NL questions (Berant et al., 2013), noun-phrase queries (Li, 2010) or normalizing time expressions (Lee
et al., 2014; Bethard, 2013). Consequently, structuring and linking information on the web (Bollacker
et al., 2008; Auer et al., 2007) about entities and their attributes, has seen a rise in interest. With this
information being automatically extracted from textual data (Fader et al., 2011; Carlson et al., 2010),
reconciling variations in entities and attribute names has become an integral part of the effort. Some re-
cent work (Halevy et al., 2016) has attempted to organize attribute names by learning their compositional
structure. On the other hand, some have proposed complex normalization frameworks (D’Souza and Ng,
2015) for specific domains. However, we need methods that can learn structured representations for the
large scale of entity types found on the web.

Named entities are not atomic units and often contain other entities (Finkel and Manning, 2009). How-
ever, entity resolution has relied largely on surface-level match of entity mentions (Riedel et al., 2010;
Hoffmann et al., 2011; Xu et al., 2013). Variations are typically handled using similarity functions such
as edit distance, jaccard similarity, which have limited customizability. While learning string transfor-
mation rules (Arasu et al., 2009; Singh and Gulwani, 2012) to reconcile variations has been studied in
different contexts, it typically relies on a set of input-output examples. It is difficult to obtain such data for
entities and their variations. We instead propose a different approach to first learn the internal structure
of an entity and then enable configurable transformations on its structure to generate its variations.

We focus on the problem of reducing manual effort in selecting a set of representative examples for
learning the regular expression patterns, which is different from the problem of synthesizing regular

5More results of the entity resolution experiment can be found in the appendix.
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expressions from examples (Bartoli et al., 2012; Li et al., 2008).

6 Conclusion

This paper identifies a novel problem of understanding structured representations of entities for handling
their name variations. We propose an active-learning based approach, LUSTRE, to iteratively learn the
structured representations of an entity type from a few labeled mentions and a large set of unlabeled men-
tions. With small manual effort, it can learn these structured representations and automatically generate
programs to map mentions to their structured representations. Reasoning over such structured represen-
tations is useful for entity resolution and relation extraction that require reasoning over name variations
of entities. In the future, we plan to extend our approach to learn structures of nested entities, and use
sophisticated variant generation algorithms that could rank the variations based on their reliability.
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7 Appendix A. Experimental Setup of Entity Resolution

Person

〈first〉 INITIAL,

INITIALdot

Dr. R. M. Nelson

〈last〉 INITIAL,

INITIALdot

Dr. Russell N.

〈middle〉 INITIAL,

INITIALdot ,

DROP

Dr. Russell Nelson

〈title〉 DROP Russell Nelson II

〈suffix〉 DROP Dr. Russell Nelson

ORDER 〈title〉〈first〉〈middle〉〈last〉〈suffix〉

Company

〈name〉 INITIAL,

INITIALdot

GM U.S. Trading Corp.

〈industry〉 DROP General Motors U.S. Corp.

〈suffix〉 DROP General Motors U.S.

〈location〉 DROP General Motors Trading Corp.

ORDER 〈name〉〈industry〉〈suffix〉〈location〉

Table 7: Configurations with examples

Our entity resolution experiments use ER-
Learn (Qian et al., 2017) on two scenar-
ios Emp-Social and Crystal. We aim to
provide it supplementary matching func-
tions that reason over structured represen-
tations of entity names. To learn struc-
tured representations for the Emp-Social

scenario, we randomly sample 1000 per-
son names from the Emp records and 1000
person names from the online social net-
work data. Using LUSTRE over the 2000
names, we learn the structures for Person
with five different semantic units: 〈first〉,
〈last〉, 〈middle〉, 〈suffix〉, and 〈title〉. For the
Crystal scenario, we learn structures for
Company names using a sample of 2000
names. These structures have semantic units
〈name〉, 〈industry〉, 〈suffix〉, and 〈location〉.

To design matching functions that reason
over structured representations to identify
duplicates, we refer to the name variations
of mentions generated using their representations. Intuitively, duplicate mentions are likely to share
many name variations. Given a mention, we first generate its variations using the configurations in Ta-
ble 7. We keep both the original string and the transformed string for a semantic unit modified using
an operator from the configuration. For instance, dropping the title in a person name would generate
Dr. Russell Nelson Sr. and Russell Nelson Sr. as variations of Dr. Russell Nelson Sr.. We define matching
functions to identify two mentions as duplicates if they have at least r common variations.
matchPerson(Emp.name, social.name, r),
matchCompany(cp1.name, cp2.name, r),
matchCompany(cp1.parent.name, cp2.parent.name, r),
where r = 1, 2, . . . , 20. These matching functions complement the matching functions used in the
original study (Qian et al., 2017). We compare the ER rules learned by ERLearn in two different con-
figurations, ERLearn-LUSTRE and ERLearn-CIKM, with and without the new matching functions
respectively. The rules learned by ERLearn-LUSTRE had similar constituent matching functions as
rules from ERLearn-CIKM. However, we found they additionally included the new matching functions
and had relaxed some of the matching functions. For illustration, consider the following rules:

match Emp i, Social s By R:
matchPerson(i.Name, s.name, 9)
AND i.name.last = s.name.last
AND lastNameFreqFilter(s.name.last, 50%)
AND sameCity(i.CITY, s.city)
AND countryIsInUS(i.COUNTRY, s.country)

(a) ERLearn-LUSTRE

match Emp i, Social s By R:
nameMatch(i.Name.firstNameVars,s.name.first)
AND i.Name.last = s.name.last
AND lastNameFreqFilter(s.name.last, 60)
AND upperCase(i.CITY)= upperCase(s.home.city)
AND countryIsInUSA(i.COUNTRY)

(b) ERLearn-CIKM

There are to key differences: (1) the matching function for first names now uses the new matching func-
tion matchPerson, (2) the threshold value used in lastNameFreqFilter decreased from 60% to 50%. In
contrast to the original rules, the lower threshold value for last names in the new rule makes it less con-
servative, potentially increasing the risk of identifying incorrect links. However, the matching function
matchPerson makes the rule less susceptible to over-generalization. We found that by including match-
ing functions that exploit the structured representations of entities, ERLearn could learn an ER model
with appropriate generalization.


