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Abstract

Sentences in a well-formed text are connected to each other via various links to form the cohe-
sive structure of the text. Current neural machine translation (NMT) systems translate a text in
a conventional sentence-by-sentence fashion, ignoring such cross-sentence links and dependen-
cies. This may lead to generate an incoherent target text for a coherent source text. In order to
handle this issue, we propose a cache-based approach to modeling coherence for neural machine
translation by capturing contextual information either from recently translated sentences or the
entire document. Particularly, we explore two types of caches: a dynamic cache, which stores
words from the best translation hypotheses of preceding sentences, and a topic cache, which
maintains a set of target-side topical words that are semantically related to the document to be
translated. On this basis, we build a new layer to score target words in these two caches with a
cache-based neural model. Here the estimated probabilities from the cache-based neural model
are combined with NMT probabilities into the final word prediction probabilities via a gating
mechanism. Finally, the proposed cache-based neural model is trained jointly with NMT sys-
tem in an end-to-end manner. Experiments and analysis presented in this paper demonstrate that
the proposed cache-based model achieves substantial improvements over several state-of-the-art
SMT and NMT baselines.

1 Introduction

Neural machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) as an emerging machine
translation approach, quickly achieves the state-of-the-art translation performance on many language
pairs, e.g., English-French (Jean et al., 2015; Luong et al., 2015b), English-German (Shen et al., 2015;
Luong et al., 2015a) and so on. In principle, NMT is established on an encoder-decoder framework,
where the encoder reads a source sentence and encodes it into a fixed-length semantic vector, and the
decoder generates a translation according to this vector.

In spite of its current success, NMT translates sentences of a text independently, ignoring document-
level information during translation. This largely limits its success since document-level information
imposes constraints on the translations of individual sentences of a text. And such document-level con-
straints, at least, can be categorized into three aspects: consistency, disambiguation and coherence. First,
the same phrases or terms should be translated consistently across the entire text as much as possible, no
matter in which sentence they occur. If sentences of a text are translated independent of each other, it will
be difficult to maintain the translation consistency across different sentences. Second, document-level
information provides a global context that can help disambiguate words with multiple senses if sentence-
level local context is not sufficient for disambiguation. Third, the topic of a document is able to keep
individual sentences translated in a coherent way.

In the literature, such informative constraints have been occasionally investigated in statistical machine
translation and achieved certain success via a variety of document-level models, such as cache-based

∗Corresponding author
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/



597

language and translation models (Tiedemann, 2010; Gong et al., 2011; Nepveu et al., 2004) for the
consistency constraint, topic-based coherence model (Xiong and Zhang, 2013; Tam et al., 2007) for the
coherence constraint. By contrast, in neural machine translation, to the best of our knowledge, such
constraints have not been explored so far.

Partially inspired by the success of cache models in SMT, we propose a cache-based approach to
capturing coherence for neural machine translation. Particularly, we incorporate two types of caches into
NMT: a static topic cache and a dynamic cache being updated on the fly. For the topic cache, we first
use a projection-based bilingual topic learning approach to infer the topic distribution for each document
to be translated and obtain the corresponding topical words on the target side. These topical words are
then integrated into the topic cache. For the dynamic cache, words are retrieved from the best translation
hypotheses of recently translated sentences. While the topic cache builds a global profile for a document,
which helps impose the coherence constraint on document translation, the dynamic cache follows an
intuition that words occurred previously should have higher probabilities of recurrence even if they are
rare words in the training data.

In order to integrate these two caches into neural machine translation, we further propose a cache-
based neural model, which adds a new neural network layer on the cache component to score each word
in the cache. During decoding, we estimate the probability of a word from the cache according to its
score and combine this cache probability with the original probability computed by the decoder via a
gating mechanism to obtain the final word prediction probability.

On the NIST Chinese-English translation tasks, our experiment results show that the proposed cache-
based neural approach can achieve significant improvements of up to 1.60 BLEU points on average (up
to 2.53 BLEU points on NIST04) over the state-of-the-art attention-based NMT baseline.

2 Related Work

In the literature, several cache-based translation models have been proposed for conventional statistical
machine translation, besides traditional n-gram language models and neural language models. In this
section, we will first introduce related work in cache-based language models and then in translation
models.

For traditional n-gram language models, Kuhn and De Mori (1990) propose a cache-based language
model, which mixes a large global language model with a small local model estimated from recent items
in the history of the input stream for speech recongnition. Della Pietra et al. (1992) introduce a MaxEnt-
based cache model by integrating a cache into a smoothed trigram language model, reporting reduction
in both perplexity and word error rates. Chueh and Chien (2010) present a new topic cache model for
speech recongnition based on latent Dirichlet language model by incorporating a large-span topic cache
into the generation of topic mixtures.

For neural language models, Huang et al. (2014) propose a cache-based RNN inference scheme, which
avoids repeated computation of identical LM calls and caches previously computed scores and useful
intermediate results and thus reduce the computational expense of RNNLM. Grave et al. (2016) extend
the neural network language model with a neural cache model, which stores recent hidden activations to
be used as contextual representations. Our caches significantly differ from these two caches in that we
store linguistic items in the cache rather than scores or activations.

For neural machine translation, Wang et al. (2017) propose a cross-sentence context-aware approach
and employ a hierarchy of Recurrent Neural Networks (RNNs) to summarize the cross-sentence context
from source-side previous sentences. Jean et al. (2017) propose a novel larger-context neural machine
translation model based on the recent works on larger-context language modelling (Wang and Cho, 2016)
and employ the method to model the surrounding text in addition to the source sentence.

For cache-based translation models, Nepveu et al. (2004) propose a dynamic adaptive translation
model using cache-based implementation for interactive machine translation, and develop a monolin-
gual dynamic adaptive model and a bilingual dynamic adaptive model. Tiedemann (2010) propose a
cache-based translation model, filling the cache with bilingual phrase pairs from the best translation hy-
potheses of previous sentences in a document. Gong et al. (2011) further propose a cache-based approach
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to document-level translation, which includes three caches, a dynamic cache, a static cache and a topic
cache, to capture various document-level information. Bertoldi et al. (2013) describe a cache mechanism
to implement online learning in phrase-based SMT and use a repetition rate measure to predict the utility
of cached items expected to be useful for the current translation.

Our caches are similar to those used by Gong et al. (2011) who incorporate these caches into statistical
machine translation. We adapt them to neural machine translation with a neural cache model. It is
worthwhile to emphasize that such adaptation is nontrivial as shown below because the two translation
philosophies and frameworks are significantly different.

3 Attention-based NMT

In this section, we briefly describe the NMT model taken as a baseline. Without loss of generality,
we adopt the NMT architecture proposed by Bahdanau et al. (2015), with an encoder-decoder neural
network.

3.1 Encoder
The encoder uses bidirectional recurrent neural networks (Bi-RNN) to encode a source sentence with a
forward and a backward RNN. The forward RNN takes as input a source sentence x = (x1, x2, ..., xT )

from left to right and outputs a hidden state sequence (
−→
h1,
−→
h2, ...,

−→
hT ) while the backward RNN reads

the sentence in an inverse direction and outputs a backward hidden state sequence (
←−
h1,
←−
h2, ...,

←−
hT ). The

context-dependent word representations of the source sentence hj (also known as word annotation vec-
tors) are the concatenation of hidden states

−→
hj and

←−
hj in the two directions.

3.2 Decoder
The decoder is an RNN that predicts target words yt via a multi-layer perceptron (MLP) neural network.
The prediction is based on the decoder RNN hidden state st, the previous predicted word yt−1 and a
source-side context vector ct. The hidden state st of the decoder at time t and the conditional probability
of the next word yt are computed as follows:

st = f(st−1, yt−1, ct) (1)

p(yt|y<t;x) = g(yt−1, st, ct) (2)

3.3 Attention Model
In the attention model, the context vector ct is calculated as a weighted sum over source annotation
vectors (h1, h2, ..., hT ):

ct =

Tx∑
j=1

αtjhj (3)

αtj =
exp(etj)∑T
k=1 exp(etk)

(4)

etj = a(st−1, hj) (5)

where αtj is the attention weight of each hidden state hj computed by the attention model, and a is a
feed forward neural network with a single hidden layer.

The dl4mt tutorial1 presents an improved implementation of the attention-based NMT system, which
feeds the previous word yt−1 to the attention model. We use the dl4mt tutorial implementation as our
baseline, which we will refer to as RNNSearch*.

The proposed cache-based neural approach is implemented on the top of RNNSearch* system, where
the encoder-decoder NMT framework is trained to optimize the sum of the conditional log probabilities
of correct translations of all source sentences on a parallel corpus as normal.

1https://github.com/nyu-dl/dl4mt-tutorial/tree/master/session2
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Figure 1: Architecture of NMT with the neural cache model. Pcache is the probability for a next target
word estimated by the cache-based neural model.

4 The Cache-based Neural Model

In this section, we elaborate on the proposed cache-based neural model and how we integrate it into
neural machine translation, Figure 1 shows the entire architecture of our NMT with the cache-based
neural model.

4.1 Dynamic Cache and Topic Cache
The aim of cache is to incorporate document-level constraints and therefore to improve the consistency
and coherence of document translations. In this section, we introduce our proposed dynamic cache and
topic cache in detail.

4.1.1 Dynamic Cache
In order to build the dynamic cache, we dynamically extract words from recently translated sentences
and the partial translation of current sentence being translated as words of dynamic cache. We apply the
following rules to build the dynamic cache.

a) The max size of the dynamic cache is set to |cd|.

b) According to the first-in-first-out rule, when the dynamic cache is full and a new word is inserted into
the cache, the oldest word in the cache will be removed.

c) Duplicate entries into the dynamic cache are not allowed when a word has been already in the cache.

It is worth noting that we also maintain a stop word list, and we added English punctuations and
“UNK” into our stop word list. Words in the stop word list would not be inserted into the dynamic cache.
So the common words like “a” and “the” cannot appear in the cache. All words in the dynamic cache
can be found in the target-side vocabulary of RNNSearch*.

4.1.2 Topic Cache
In order to build the topic cache, we first use an off-the-shelf LDA topic tool2 to learn topic distributions
of source- and target-side documents separately. Then we estimate a topic projection distribution over
all target-side topics p(zt|zs) for each source topic zs by collecting events and accumulating counts of
(zs, zt) from aligned document pairs. Notice that zs/zt is the topic with the highest topic probability
p(z.|d) on the source/target side. Then we can use the topic cache as follows:

1) During the training process of NMT, the learned target-side topic model is used to infer the topic
distribution for each target document. For a target document d in the training data, we select the topic
z with the highest probability p(z|d) as the topic for the document. The |ct| most probable topical
words in topic z are extracted to fill the topic cache for the document d.

2) In the NMT testing process, we first infer the topic distribution for a source document in question with
the learned source-side topic model. From the topic distribution, we choose the topic with the highest
probability as the topic for the source document. Then we use the learned topic projection function to
2http://www.arbylon.net/projects/
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Figure 2: Schematic diagram of the topic projection
during the testing process.

cache model

topic
cache

dynamic
cache

game

team

…

sport

0.2  0.13  …  0.87

word embedding

topic cache

Figure 3: Architecture of the cache model.

map the source topic onto a target topic with the highest projection probability, as illustrated in Figure
2. After that, we use the |ct| most probable topical words in the projected target topic to fill the topic
cache.

The words of topic cache and dynamic cache together form the final cache model. In practice, the
cache stores word embeddings, as shown in Figure 3. As we do not want to introduce extra embedding
parameters, we let the cache share the same target word embedding matrix with the NMT model. In this
case, if a word is not in the target-side vocabulary of NMT, we discard the word from the cache.

4.2 The Model
The cache-based neural model is to evaluate the probabilities of words occurring in the cache and to
provide the evaluation results for the decoder via a gating mechanism.

4.2.1 Evaluating Word Entries in the Cache
When the decoder generates the next target word yt, we hope that the cache can provide helpful infor-
mation to judge whether yt is appropriate from the perspective of the document-level cache if yt occurs
in the cache.To achieve this goal, we should appropriately evaluate the word entries in the cache.

In this paper, we build a new neural network layer as the scorer for the cache. At each decoding step
t, we use the scorer to score yt if yt is in the cache. The inputs to the scorer are the current hidden state
st of the decoder, previous word yt−1, context vector ct, and the word yt from the cache. The score of yt
is calculated as follows:

score(yt|y<t, x) = gcache(st, ct, yt−1, yt) (6)

where gcache is a non-linear function.
This score is further used to estimate the cache probability of yt as follows:

pcache(yt|y<t, x) = softmax(score(yt|y<t, x)) (7)

4.2.2 Integrating the Cache-based Neural Model into NMT
Since we have two prediction probabilities for the next target word yt, one from the cache-based neural
model pcache, the other originally estimated by the NMT decoder pnmt, how do we integrate these two
probabilities? Here, we introduce a gating mechanism to combine them, and word prediction probabili-
ties on the vocabulary of NMT are updated by combining the two probabilities through linear interpola-
tion between the NMT probability and cache-based neural model probability. The final word prediction
probability for yt is calculated as follows:

p(yt|y<t, x) = (1− αt)pcache(yt|y<t, x) + αtpnmt(yt|y<t, x) (8)

Notice that if yt is not in the cache, we set pcache(yt|y<t, x) = 0, where αt is the gate and computed as
follows:

αt = ggate(fgate(st, ct, yt−1)) (9)

where fgate is a non-linear function and ggate is sigmoid function.
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We use the contextual elements of st, ct, yt−1 to score the current target word occurring in the cache
(Eq. (6)) and to estimate the gate (Eq. (9)). If the target word is consistent with the context and in the
cache at the same time, the probability of the target word will be high.

Finally, we train the proposed cache model jointly with the NMT model towards minimizing the
negative log-likelihood on the training corpus. The cost function is computed as follows:

L(θ) = −
N∑
i=1

T∑
t=1

logp(yt|y<t, x) (10)

where θ are all parameters in the cache-based NMT model.

4.3 Decoding Process
Our cache-based NMT system works as follows:

(1) When the decoder shifts to a new test document, clear the topic and dynamic cache.

(2) Obtain target topical words for the new test document as described in Section 4.1 and fill them in the
topic cache.

(3) Clear the dynamic cache when translating the first sentence of the test document.

(4) For each sentence in the new test document, translate it with the proposed cache-based NMT and
continuously expands the dynamic cache with newly generated target words and target words ob-
tained from the best translation hypothesis of previous sentences.

In this way, the topic cache can provide useful global information at the beginning of the translation
process while the dynamic cache is growing with the progress of translation.

5 Experimentation

We evaluated the effectiveness of the proposed cache-based neural model for neural machine translation
on NIST Chinese-English translation tasks.

5.1 Experimental Setting
We selected corpora LDC2003E14, LDC2004T07, LDC2005T06, LDC2005T10 and a portion of data
from the corpus LDC2004T08 (Hong Kong Hansards/Laws/News) as our bilingual training data, where
document boundaries are explicitly kept. In total, our training data contain 103,236 documents and
2.80M sentences. On average, each document consists of 28.4 sentences. We chose NIST05 dataset
(1082 sentence pairs) as our development set, and NIST02, NIST04, NIST06 (878, 1788, 1664 sentence
pairs. respectively) as our test sets. We compared our proposed model against the following two systems:

• Moses (Koehn et al., 2007): an off-the-shelf phrase-based translation system with its default setting.

• RNNSearch*: our in-house attention-based NMT system which adopts the feedback attention as
described in Section 3 .

For Moses, we used the full training data to train the model. We ran GIZA++ (Och and Ney, 2000)
on the training data in both directions, and merged alignments in two directions with “grow-diag-final”
refinement rule (Koehn et al., 2005) to obtain final word alignments. We trained a 5-gram language
model on the Xinhua portion of GIGA-WORD corpus using SRILM Toolkit with a modified Kneser-
Ney smoothing.

For RNNSearch, we used the parallel corpus to train the attention-based NMT model. The encoder
of RNNSearch consists of a forward and backward recurrent neural network. The word embedding
dimension is 620 and the size of a hidden layer is 1000. The maximum length of sentences that we used
to train RNNSearch in our experiments was set to 50 on both Chinese and English side. We used the most
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Model NIST02 NIST04 NIST05 NIST06 Avg
Moses 31.52 32.73 29.52 29.57 30.69
RNNSearch* 36.18 36.36 32.56 30.57 33.92
+ Cd 36.86 37.16 33.10 32.60 34.93
+ Cd,Ct 38.04 38.89 33.31 31.85 35.52

Table 1: Experiment results on the NIST Chinese-English translation tasks. [+Cd] is the proposed model
with the dynamic cache. [+Cd,Ct] is the proposed model with both the dynamic and topic cache. Avg
means the average BLEU score on all test sets.

frequent 30K words for both Chinese and English. We replaced rare words with a special token “UNK”.
Dropout was applied only on the output layer and the dropout rate was set to 0.5. All the other settings
were the same as those in (Bahdanau et al., 2015). Once the NMT model was trained, we adopted a beam
search to find possible translations with high probabilities. We set the beam width to 10.

For the proposed cache-based NMT model, we implemented it on the top of RNNSearch*. We set the
size of the dynamic and topic cache |cd| and |ct| to 100, 200, respectively. For the dynamic cache, we
only kept those most recently-visited items. For the LDA tool, we set the number of topics considered
in the model to 100 and set the number of topic words that are used to fill the topic cache to 200. The
parameter α and β of LDA were set to 0.5 and 0.1, respectively. We used a feedforward neural network
with two hidden layers to define gcache (Equation (6)) and fgate (Equation (9)). For fgate, the number of
units in the two hidden layers were set to 500 and 200 respectively. For gcache, the number of units in the
two hidden layers were set to 1000 and 500 respectively. We used a pre-training strategy that has been
widely used in the literature to train our proposed model: training the regular attention-based NMT model
using our implementation of RNNSearch*, and then using its parameters to initialize the parameters of
the proposed model, except for those related to the operations of the proposed cache model.

We used the stochastic gradient descent algorithm with mini-batch and Adadelta to train the NMT
models. The mini-batch was set to 80 sentences and decay rates ρ and ε of Adadelta were set to 0.95 and
10−6.

5.2 Experimental Results

Table 1 shows the results of different models measured in terms of BLEU score3. From the table, we can
find that our implementation RNNSearch* using the feedback attention and dropout outperforms Moses
by 3.23 BLEU points. The proposed model RNNSearch∗+Cd achieves an average gain of 1.01 BLEU
points over RNNSearch* on all test sets. Further, the model RNNSearch∗+Cd,Ct achieves an average
gain of 1.60 BLEU points over RNNSearch*, and it outperforms Moses by 4.83 BLEU points. These
results strongly suggest that the dynamic and topic cache are very helpful and able to improve translation
quality in document translation.

Effect of the Gating Mechanism

In order to validate the effectiveness of the gating mechanism used in the cache-based neural model,
we set a fixed gate value for RNNSearch∗+Cd,Ct, in other words, we use a mixture of probabilities
with fixed proportions to replace the gating mechanism that automatically learns weights for probability
mixture.

Table 2 displays the result. When we set the gate α to a fixed value 0.3, the performance has an obvious
decline comparing with that of RNNSearch∗+Cd,Ct in terms of BLEU score. The performance is even
worse than RNNSearch* by 10.11 BLEU points. Therefore without a good mechanism, the cache-based
neural model cannot be appropriately integrated into NMT. This shows that the gating mechanism plays
a important role in RNNSearch∗+Cd,Ct.

3As our model requires document boundaries so as to gurantee that cache words are from the same document, we use all
LDC corpora that provide document boundaries. Most training sentences are from Hong Kong Hansards/Laws Parallel Text
(accounting for 57.82% of our training data) which are in the law domain rather than the news domain of our test/dev sets. This
is the reason that our baseline is lower than other published results obtained using more news-domain training data without
document boundaries.
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Model NIST02 NIST04 NIST05 NIST06 Avg
RNNSearch* 36.18 36.36 32.56 30.57 33.92

+ Cd,Ct 38.04 38.89 33.31 31.85 35.52
+ α = 0.3 23.39 17.83 31.51 28.90 25.41

Table 2: Effect of the gating mechanism. [+α=0.3] is the [+Cd,Ct] with a fixed gate value 0.3.

Model NIST02 NIST04 NIST05 NIST06 Mean
RNNSearch* 1.90 2.43 1.31 1.50 1.78
+ Ct 2.11 2.51 1.53 1.73 1.96
Reference 2.39 2.51 2.20 1.28 2.09

Table 3: The average number of words in translations of beginning sentences of documents that are also
in the topic cache. Reference represents the average number of words in four human translations that are
also in the topic cache.

Effect of the Topic Cache

When the NMT decoder translates the first sentence of a document, the dynamic cache is empty. In this
case, we hope that the topic cache will provide document-level information for translating the first sen-
tence. We therefore further investigate how the topic cache influence the translation of the first sentence
in a document. We count and calculate the average number of words that appear in both the translations
of the beginning sentences of documents and the topic cache.

The statistical results are shown in Table 3. Without using the cache model, RNNSearch* generates
translations that contain words from the topic cache as these topic words are tightly related to documents
being translated. With the topic cache, our neural cache model enables the translations of the first sen-
tences to be more relevant to the global topics of documents being translated as these translations contain
more words from the topic cache that describes these documents. As the dynamic cache is empty when
the decoder translates the beginning sentences, the topic cache is complementary to such a cold cache at
the start. Comparing the numbers of translations generated by our model and human translations (Ref-
erence in Table 3), we can find that with the help of the topic cache, translations of the first sentences of
documents are becoming closer to human translations.

Analysis on the Cache-based Neural Model

As shown above, the topic cache is able to influence both the translations of beginning sentences and
those of subsequent sentences while the dynamic cache built from translations of preceding sentences
has an impact on the translations of subsequent sentences. We further study what roles the dynamic and
topic cache play in the translation process. For this aim, we calculate the average number of words in
translations generated by RNNSearch∗+Cd,Ct that are also in the caches. During the counting process,
stop words and “UNK” are removed from sentence and document translations.

Table 4 shows the results. If only the topic cache is used ([document ∈ [Ct],sentence ∈ (Ct)] in
Table 4), the cache still can provide useful information to help NMT translate sentences and documents.
28.3 words per document and 2.39 words per sentence are from the topic cache. When both the dynamic
and topic cache are used ([document ∈ [Ct,Cd],sentence ∈ (Ct,Cd)] in Table 4), the numbers
of words that both occur in sentence/document translations and the two caches sharply increase from
2.61/30.27 to 6.73/81.16. The reason for this is that words appear in preceding sentences will have
a large probability of appearing in subsequent sentences. This shows that the dynamic cache plays a
important role in keeping document translations consistent by reusing words from preceding sentences.

We also provide two translation examples in Table 5. We can find that RNNSearch* generates different
translations “operations” and “actions” for the same chinese word “行动(xingdong)”, while our proposed
model produces the same translation “actions”.
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Model NIST02 NIST04 NIST05 NIST06 Avg
document ∈ (Ct) 25.70 27.48 26.89 41.00 30.27
document ∈ (Cd,Ct) 59.46 64.24 76.70 124.25 81.16
sentence ∈ (Ct) 2.93 3.07 2.49 1.95 2.61
sentence ∈ (Cd,Ct) 6.77 7.18 7.09 5.89 6.73

Table 4: The average number of words in translations generated byRNNSearch∗+Cd,Ct that are also in
the dynamic and topic cache. [document/sentence ∈ [Ct]] denote the average number of words that are
in both document/sentence translations and the topic cache. [document/sentence ∈ [Cd,Ct]] denote
the average number of words occurring in both document/sentence translations and the two caches.

SRC (1)并将计划中的一系列军事行动提前付诸实施。
(2)会议决定加大对巴方的军事打击行动。

REF (1) and to implement ahead of schedule a series of military actions still being planned .
(2) the meeting decided to increase military actions against palestinian .

RNNSearch* (1) and to implement a series of military operations .
(2) the meeting decided to increase military actions against the palestinian side .

+ Cd,Ct (1) and to implement a series of military actions plans.
(2) the meeting decided to increase military actions against the palestinian side .

Table 5: Translation examples on the test set. SRC for source sentences, REF for human translations.
These two sentences (1) and (2) are in the same document.

Model Coherence
RNNSearch* 0.4259

RNNSearch∗+Cd,Ct 0.4274
Human Reference 0.4347

Table 6: The average cosine similarity of adjacent sentences (coherence) on all test sets.

5.3 Analysis on Translation Coherence
We want to further study how the proposed cache-based neural model influence coherence in document
translation. For this, we follow Lapata and Barzilay (2005) to measure coherence as sentence similarity.
First, each sentence is represented by the mean of the distributed vectors of its words. Second, the
similarity between two sentences is determined by the cosine of their means.

sim(S1, S2) = cos(µ( ~S1), µ( ~S2)) (11)

where µ(~Si) = 1
|Si|

∑
~w∈Si

~w, and ~w is the vector for word w.
We use Word2Vec4 to get the distributed vectors of words and English Gigaword fourth Edition5 as

training data to train Word2Vec. We consider that embeddings from word2vec trained on large mono-
lingual corpus can well encode semantic information of words. We set the dimensionality of word
embeddings to 200. Table 6 shows the average cosine similarity of adjacent sentences on all test sets.
From the table, we can find that theRNNSearch∗+Cd,Ct model produces better coherence in document
translation than RNNSearch* in term of cosine similarity.

6 Conclusion

In this paper, we have presented a novel cache-based neural model for NMT to capture the global topic
information and inter-sentence cohesion dependencies. We use a gating mechanism to integrate both the
topic and dynamic cache into the proposed neural cache model. Experiment results show that the cache-
based neural model achieves consistent and significant improvements in translation quality over several
state-of-the-art NMT and SMT baselines. Further analysis reveals that the topic cache and dynamic
cache are complementary to each other and that both are able to guide the NMT decoder to use topical
words and to reuse words from recently translated sentences as next word predictions.

4http://word2vec.googlecode.com/svn/trunk/
5https://catalog.ldc.upenn.edu/LDC2009T13
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