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Abstract

In this paper, we describe TextEnt, a neural network model that learns distributed representations
of entities and documents directly from a knowledge base (KB). Given a document in a KB
consisting of words and entity annotations, we train our model to predict the entity that the
document describes and map the document and its target entity close to each other in a continuous
vector space. Our model is trained using a large number of documents extracted from Wikipedia.
The performance of the proposed model is evaluated using two tasks, namely fine-grained entity
typing and multiclass text classification. The results demonstrate that our model achieves state-
of-the-art performance on both tasks. The code and the trained representations are made available
online for further academic research.

1 Introduction

The problem of learning distributed representations (or embeddings) from a knowledge base (KB) has
recently attracted considerable attention. These representations enable us to use the large-scale, human-
edited information of a KB in machine learning models, and can be applied in various natural language
tasks such as entity linking (Hu et al., 2015; Yamada et al., 2016; Yamada et al., 2017), entity search (Hu
et al., 2015), and link prediction (Bordes et al., 2013; Wang et al., 2014).

In this paper, we describe TextEnt, a simple neural network model that learns distributed representa-
tions of entities and documents from a KB. Specifically, given a document in a KB consisting of words
and contextual entities (i.e., entities referred from entity annotations in the document), our model predicts
the target entity explained by the document (see Figure 1), and maps the document and its target entity
close to each other in a continuous vector space. Here, words, contextual entities, and target entities
are mapped into continuous vectors that are updated throughout the training. In this study, we train the
model using documents retrieved from Wikipedia.

One key characteristic of our model is that it enables us to combine the semantic signals obtained from
both words and entities in a straightforward manner. The main motivation for using entities in addition
to words is to address the problems of ambiguity (i.e., the same words or phrases may have different
meanings) and variety (i.e., the same meaning may be expressed using different words or phrases) in
natural language. For example, the word Washington is ambiguous because it can refer to a US state, or
the capital city of the US, or the first US president George Washington, and so on. Further, New York
is sometimes referred to as NY or by its nickname, the Big Apple. Obviously, entities do not have these
problems, because they are uniquely identified in the KB.

To evaluate our model, we address two important tasks using the proposed representations. Firstly,
we consider a fine-grained entity typing task (Yaghoobzadeh and Schutze, 2015) to evaluate the quality
of the learned entity representations. In this task, the aim is to infer one or more types of each entity
(e.g., athlete, airport, sports team) from a predefined type set. We perform this task using the simple
multilayer perceptron (MLP) classifier with the learned entity representations as features. The results
show that our method outperforms the state-of-the-art methods by a wide margin.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Saturn is the sixth planet from the Sun and the second-largest in the Solar System, 
after Jupiter. It is a gas giant with an average radius about nine times that of Earth.
Contextual entities: Planet, Sun, Solar System, Jupiter, Gas giant, Earth
Target entity: Saturn

`

Figure 1: Example of a KB document with entity annotations.

Secondly, we consider a multiclass text classification task, which aims to classify documents into a
set of predefined classes. This task examines the ability of our model as a generic encoder of arbitrary
documents. One important approach adopted here is that we automatically annotate entities appear-
ing in the target documents using a publicly available entity linking system and encode the documents
to the document representations in the same manner as the documents in the KB. For this task, the
logistic regression classifier is applied to the document representations. Because of the quality of seman-
tic signals obtained from the entities, our method outperforms strong state-of-the-art methods on two
popular datasets (i.e., the 20 newsgroups dataset (Lang, 1995) and R8 dataset (Debole and Sebastiani,
2005)). To facilitate further research, our code and the trained representations are available online at
https://github.com/studio-ousia/textent/.

Our contributions can be summarized as follows:

• We propose TextEnt, a simple neural network model that learns distributed representations of entities
and documents from a KB. Given a document in a KB consisting of words and contextual entities,
our model learns the representations by predicting the target entity explained by the document (see
Figure 1). We train our model using large-scale documents extracted from Wikipedia.

• Our proposed model allows us to effectively combine the semantic signals retrieved from both
words and entities in a straightforward manner. We demonstrate the effectiveness of this feature
by addressing two important tasks: fine-grained entity typing and text classification. Despite the
simplicity of our approach, we achieve state-of-the-art results in both tasks.

• We have published our code and the trained representations online to facilitate further academic
research.

2 Our Method

In this section, we describe our approach of learning distributed representations of entities and documents
from a KB.

2.1 Model
Given a document D in a KB consisting of a set of words w1, ..., wN and a set of contextual entities
e1, ..., eK , we train our model to predict the target entity that the document is explaining. We first
derive two vector representations of documentD: the word-based representation vDw and the contextual
entity-based representation vDe . For simplicity, we compute vDw and vDe by averaging the vector
representations of words and those of contextual entities, respectively.

vDw =
1

N

N∑
n=1

awn , vDe =
1

K

K∑
n=1

ben , (1)

where aw ∈ Rd and be ∈ Rd are the vector representations of words and contextual entities, respectively.
We define a probability that represents the likelihood of entity et being the target entity of document

D as the following softmax function:

P (et|D) =
exp(cet

>vD)∑
e′∈EKB

exp(ce′>vD)
, (2)

https://github.com/studio-ousia/textent/
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Figure 2: Model architecture of TextEnt.

where EKB is a set of all entities in the KB, ce ∈ Rd denotes the vector representation of target entity e,
and vD ∈ Rd is the vector representation of document D.

Here, vD is computed using a fully connected hidden layer with vDw and vDe as inputs:

vD = W[vDw ,vDe ] (3)

where W ∈ Rd×2d is a weight matrix, and [vi,vj ] is the concatenation of vi and vj . This layer projects
the input vector ([vDw ,vDe ]) down to d dimensions, and captures the interactions between vDw and vDe .

We use the categorical cross-entropy loss to train the model:

L = −
∑

(D,et)∈Γ

logP (et|D), (4)

where Γ represents a set of pairs consisting of a document D and its target entity et in the KB.
When training our model, the denominator in Eq. (2) is computationally expensive because it involves

summation over all KB entities. To address this, we use negative sampling (Mikolov et al., 2013b);
specifically, we replace EKB in Eq. (2) with a set consisting of the target entity et and k randomly
chosen negative entities. Furthermore, to avoid overfitting, we use word dropout (Iyyer et al., 2015),
which randomly excludes words and contextual entities with a probability p during the training.

We also test models trained using only words (denoted by TextEnt-word) and only contextual enti-
ties (denoted by TextEnt-entity) in our experiments. These variants are created by replacing vD in Eq.
(2) with vDw (TextEnt-word) and vDe (TextEnt-entity). Hereafter, our original model is referred to as
TextEnt-full.

2.2 Dataset
We trained our model using documents obtained from the April 2016 version of the DBpedia NIF abstract
dataset1, which contains the texts and entity annotations in the first introductory sections of Wikipedia
articles.

For computational efficiency, we limited the size of our dataset. In particular, we excluded documents
with fewer than five incoming links from other documents if the corresponding entity of the document is
not contained in the dataset used in our fine-grained entity typing experiments, presented in Section 3.1.
As a result, the number of target documents was 702,388.

We also modified all words to lowercase, and excluded words that make fewer than five appearances
and contextual entities that make fewer than three appearances in the documents. Thus, the final dataset
contained 242,771 unique words and 327,263 unique contextual entities.

1http://wiki.dbpedia.org

http://wiki.dbpedia.org
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2.3 Parameters

The parameters to be trained in our model are the weight matrix W in the fully connected layer and
the vector representations of the words, contextual entities, and target entities. The weight matrix was
initialized at random and the vector representations were initialized using pre-trained representations.
The pre-trained representations of words and entities were learned jointly using the skip-gram model
(Mikolov et al., 2013a; Mikolov et al., 2013b) with negative sampling2. The corpus was automatically
generated by replacing the name of each entity annotation in the Wikipedia documents with a unique
identifier of the entity corresponding to that annotation. Note that we used the same pre-trained entity
representations to initialize the representations of the contextual entities and the target entities. Addition-
ally, we used all Wikipedia documents obtained from the July 2016 version of Wikipedia dump3 to build
the corpus.

2.4 Implementation Details

The proposed model was implemented using PyTorch4 and trained with mini-batch stochastic gradient
descent (SGD). The mini-batch size was fixed at 100 and the learning rate was automatically controlled
by Adadelta (Zeiler, 2012). We trained the model by iterating over the documents in the KB in random
order for 50 epochs5. For computational efficiency, we used only the first 2,000 words and first 300
entities in the documents. The training took approximately 25 h on an NVIDIA GTX 1080 Ti GPU.
Regarding the other hyper-parameters, the representations were set to have d = 300 dimensions, the size
of the negative entities was k = 100, and the dropout probability was set to p = 0.5, as recommended in
Srivastava et al. (2014)

3 Experiments

To evaluate the models described in the previous section, we conducted fine-grained entity typing and
text classification tasks using the learned representations. A description of each task is given in the
following subsections. Finally, we qualitatively analyze the learned representations.

3.1 Fine-grained Entity Typing

This section describes the task of fine-grained entity typing (Yaghoobzadeh and Schutze, 2015; Nee-
lakantan and Chang, 2015; Yaghoobzadeh and Schütze, 2017) using the entity representations learned
by our proposed models. The aim of this task is to assign each entity with one or more fine-grained
types such as musician and film. Because an entity typing model is capable of predicting the entity
types that are missing from the KB, this can be seen as a knowledge base completion problem. The task
is important because entity type information is often missing from KBs, but is known to be beneficial
for various downstream natural language tasks such as entity linking (Ling et al., 2015), coreference
resolution (Hajishirzi et al., 2013), and semantic parsing (Liu et al., 2015).

Setup
Our experimental setup follows that of Yaghoobzadeh and Schutze (2015). In particular, we use their
entity dataset of 201,933 Freebase6 entities mapped to 102 entity types based on the FIGER type set (Ling
and Weld, 2012). The dataset consists of a training set (50%), development set (20%), and test set (30%).
Because the dataset is constructed based on Freebase, we preprocessed the data by mapping each entity
to the corresponding entry in Wikipedia and excluded those entities that did not exist in Wikipedia.7 As
a result, we successfully mapped approximately 92% of the entities to Wikipedia, and obtained training,

2We used the skip-gram model implemented in the open-source Gensim library with size = 300, window = 10,
negative = 15, min count = 3, and iter = 5. Default values were used for other parameters.

3We obtained the Wikipedia dump from Wikimedia Downloads: https://dumps.wikimedia.org/
4http://pytorch.org
5We experimented using 10, 20, 30, and 50 epochs. All numbers achieved similar performance in our experiments. We used

the model trained for 50 epochs because it achieved the best P@1 performance in our fine-grained entity typing task.
6https://developers.google.com/freebase/
7We used the wikipedia.en title property contained in the Freebase dump to create the mapping.

https://dumps.wikimedia.org/
http://pytorch.org
https://developers.google.com/freebase/
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development, and test sets containing 93,350, 37,036, and 55,715 entities, respectively. We publicized
the dataset and the code used to generate the dataset at https://github.com/studio-ousia/
textent/.

Following Yaghoobzadeh and Schutze (2015), we evaluated the models using ranking and classifica-
tion measures. The ranking measures test how well a model ranks entity types. In particular, we ranked
the entity types based on the probabilities assigned by the model and evaluated the ranked list using the
precision at 1 (P@1) and breakeven point (BEP)8.

The classification measures evaluate the quality of the thresholded assignment decisions of a model.
The assignment decisions are based on thresholding the probability assigned to each type. The threshold
is selected per type by maximizing the F1 score of entities assigned to the type in the development set.
We used the accuracy (an entity is correct if all its types and no incorrect types are assigned to it), micro-
average F1 (F1 score of all type–entity assignment decisions), and macro-average F1 (F1 score of types
assigned to an entity, averaged over entities). These ranking and classification measures are exactly the
same as those used in Yaghoobzadeh and Schutze (2015).

Method
We used an MLP classifier with the entity representations as inputs to predict the probability of entity
e being a member of type t in the set of possible types T . In particular, we used an MLP with a single
hidden layer and the tanh activation function, and an output layer that contains, for each possible type
t ∈ T , a logistic regression classifier that predicts the probability of t:[

P (t1|e), ..., P (t|T ||e)
]

= σ
(
Wo tanh (Whce)

)
, (5)

where ce ∈ Rd is the vector representation of entity e, σ is the sigmoid function, and Wh ∈ Rh×d

and Wo ∈ R|T |×h are the weight matrices corresponding to the hidden layer and the output layer,
respectively. The model was trained to minimize the binary cross-entropy loss summed over all entities
and types:

−
∑
e

∑
t

(
ye,t log pe,t + (1− ye,t) log(1− pe,t)

)
, (6)

where ye,t ∈ {0, 1} and pe,t denote the ground-truth label and predicted probability, respectively, of
entity e being type t. The parameters in Wh and Wo are updated in the training stage. Note that the
model described here is equivalent to that proposed in Yaghoobzadeh and Schutze (2015).

The model was trained using mini-batch SGD, with the learning rate controlled by Adam (Kingma and
Ba, 2014) and the mini-batch size set to 32. The model was trained using the training set and evaluated
using the test set. Following Yaghoobzadeh and Schutze (2015), the number of hidden units was set to
200. We also measured P@1 on the development set to locate the best epoch for testing.

Baselines
The performance of our models is compared with that of the following three entity representation models.

• Figment-GM (Yaghoobzadeh and Schutze, 2015) is based on the skip-gram model (Mikolov et
al., 2013a; Mikolov et al., 2013b) trained using a large corpus with automatically generated en-
tity annotations (i.e., FACC1 (Gabrilovich et al., 2013)). In this experiment, we used the entity
representations publicized by the authors9.

• Skip-Gram-Wiki is equivalent to Figment-GM, except that Wikipedia is used as the entity-
annotated corpus. This model is also the same as our pre-trained representations described in Sec-
tion 2.3.

• Wikipedia2Vec (Yamada et al., 2016) extends the skip-gram model to learn entity representa-
tions based on the contextual words of link anchors in Wikipedia and the internal link structure

8BEP is the F1 score at the point in the ranked list at which the precision and recall have the same value.
9https://github.com/yyaghoobzadeh/figment

https://github.com/studio-ousia/textent/
https://github.com/studio-ousia/textent/
https://github.com/yyaghoobzadeh/figment
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P@1 BEP Acc. Mic. Mac.
TextEnt-full .932 .948 .626 .857 .842
TextEnt-word .909 .933 .611 .838 .820
TextEnt-entity .882 .912 .560 .702 .770
Figment-GM .813 .858 .421 .719 .683
Wikipedia2Vec .925 .943 .600 .844 .822
Wikipedia2Vec (all) .897 .917 .554 .798 .787
Skip-Gram-Wiki .900 .927 .576 .831 .804
Skip-Gram-Wiki (all) .852 .881 .510 .764 .740

Table 1: Results of the entity typing task.

of Wikipedia entities. We used the entity representations trained using the code publicized by the
authors10 and the Wikipedia dump used to train the Skip-Gram-Wiki model.11

We used the entity typing method presented above with the entity representations of each baseline
model as inputs. Note that, because the Wikipedia2Vec and Skip-Gram-Wiki models were trained using
the link anchors in Wikipedia, they do not contain entities that do not appear or are very rare as the
link anchor destinations in Wikipedia. To address this, we evaluated these models in the following two
settings: (1) using only the entities that exist in the model, and (2) using all entities, including non-
existent ones. In the latter setting, we used the zero vector as the representation of non-existent entities.
Similar to the latter setting, the former is not a fair comparison because it is typically more difficult
to learn good entity representations of rare entities than those of popular entities (Yaghoobzadeh and
Schutze, 2015).

Results
Table 1 compares the results of our models with those of the baseline models. Our TextEnt-full model
outperforms the baseline models in all measures. In particular, the TextEnt-full model achieves a strong
P@1 score of 93.2%, which clearly shows the effectiveness of our entity typing model for many down-
stream NLP tasks. Moreover, the TextEnt-full model generally performs better than both the TextEnt-
word and TextEnt-entity models. This demonstrates the effectiveness of combining the semantic signals
obtained from words and entities.

3.2 Multiclass Text Classification

This section describes the multiclass text classification task, which tests the ability of our proposed
representations to encode arbitrary documents. Our key assumption here is that, because our proposed
representations are trained to predict the corresponding entity of a given document in the KB, they can
also classify non-KB documents into classes that are much more coarse-grained than entities.

Setup
Following Jin et al. (2016), we used two standard text classification datasets: the 20 newsgroups dataset12

(denoted by 20NG) (Lang, 1995) and the R8 dataset (Debole and Sebastiani, 2005). The 20NG dataset
consists of 11,314 training documents and 7,532 test documents retrieved from 20 different newsgroups.
The documents are partitioned nearly equally across the classes. The R8 dataset contains documents from
the eight most frequent classes of the Reuters-21578 corpus (Lewis, 1992), which consists of labeled
news articles from the 1987 Reuters newswire. The R8 dataset contains 5,485 documents for training
and 2,189 documents for testing. Unlike the 20NG dataset, the R8 dataset is imbalanced; the largest class
contains 3,923 documents and the smallest class contains 51 documents. For both datasets, we report the

10https://github.com/wikipedia2vec/wikipedia2vec
11We trained the representations with dim size = 300, window = 10, negative = 15, min entity count = 3, and

iteration = 5. Default values were used for other parameters.
12We used the by-date version of the dataset obtained from http://qwone.com/˜jason/20Newsgroups/.

https://github.com/wikipedia2vec/wikipedia2vec
http://qwone.com/~jason/20Newsgroups/
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accuracy and macro-average F1 score. Furthermore, the development set was formed by selecting 10%
of the documents in the training set at random for both datasets.

As preprocessing, we lowercased all words and removed words and entities appearing fewer than five
times. Furthermore, we automatically annotated entity mentions in the documents using an entity linking
system. In particular, we used TAGME13 (Ferragina and Scaiella, 2010), a state-of-the-art entity linking
system that is freely available and has been frequently used in recent studies (Xiong et al., 2016; Hasibi
et al., 2016). However, TAGME returned many irrelevant entity mentions that would act as noise (e.g., I
like refers to an entity I Like (Keri Hilson song)). Thus, we excluded mentions having relevance scores14

of less than 0.0515.

Method

For this task, we simply stacked a logistic regression layer onto our TextEnt model to classify documents
into the predefined classes. First, we encoded each document (words with entity annotations) and used
the resulting document representation (i.e., vD in the TextEnt-full model, vDw in the TextEnt-word
model, and vDe in the TextEnt-entity model) as the feature of the logistic regression classifier.

We trained the classifier using the training set of each dataset, and evaluated the classification per-
formance using the corresponding test set. The classifier was trained using mini-batch SGD, with the
learning rate controlled by Adam (Kingma and Ba, 2014) and the mini-batch size set to 32. The accuracy
on the development set of each dataset was used to locate the best epoch for testing.

Baselines

We adopted the following state-of-the-art models as our baselines.

• BoW-SVM is based on a linear support vector machine (SVM) classifier with bag-of-words (BoW)
features as inputs. This model outperforms the conventional naive Bayes model (Jin et al., 2016).

• BoE (Jin et al., 2016) is an extension of the skip-gram model that learns different word represen-
tations per target class. A linear model based on learned word representations was used to classify
documents. This model achieves state-of-the-art results on both the 20NG and R8 datasets.

We also used the Wikipedia2Vec and Skip-Gram-Wiki models described in Section 3.1 as baselines.
For this experiment, we simply input the representations of words and entities in these models to our text
classification model described in the previous section.

Results

Table 2 compares the results of our proposed models with those of the baseline models. We obtained the
BoW-SVM and BoE results from Jin et al. (2016). Our TextEnt-full model outperforms the state-of-the-
art models in terms of accuracy and macro F1 score on both the 20NG and R8 datasets. Furthermore,
similar to the results of our previous experiment, the TextEnt-full model generally performs better than
both the TextEnt-word and TextEnt-entity models. This shows that combining semantic signals obtained
from words and entities is also beneficial for text classification tasks.

Furthermore, we conducted a detailed comparison of the BoW-SVM model, BoE model, and TextEnt-
full model using the class-level F1 scores on the 20NG dataset (Table 3) and the R8 dataset (Table 4).
On the 20NG dataset, our model achieves the best scores in more than half of the classes and provides
comparable performance in the other classes. Moreover, our model achieves strong performance in
classes with relatively few documents on the R8 dataset. This is because our model successfully captures
the strong semantic signals that can only be obtained from entities.
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20NG R8
Acc. F1 Acc. F1

TextEnt-full .845 .839 .967 .910
TextEnt-word .836 .828 .965 .860
TextEnt-entity .831 .824 .957 .878
BoW-SVM .790 .783 .947 .851
BoE .831 .827 .965 .886
Wikipedia2Vec .829 .823 .965 .881
Skip-Gram-Wiki .822 .815 .963 .879

Table 2: Results of the text classification task.

Class SVM BoE TextEnt
alt.atheism .699 .712 .783
comp.graphics .702 .724 .773
comp.os.ms-windows.misc .714 .724 .742
comp.sys.ibm.pc.hardware .673 .706 .721
comp.sys.mac.hardware .778 .792 .840
comp.windows.x .779 .853 .846
misc.forsale .846 .852 .829
rec.autos .817 .910 .909
rec.motorcycles .900 .942 .943
rec.sport.baseball .895 .947 .941
rec.sport.hockey .935 .967 .960
sci.crypt .890 .926 .934
sci.electronics .721 .737 .757
sci.med .803 .869 .891
sci.space .892 .885 .900
soc.religion.christian .823 .877 .904
talk.politics.guns .781 .833 .810
talk.politics.mideast .837 .920 .944
talk.politics.misc .699 .687 .678
talk.religion.misc .590 .676 .672

Table 3: Class-level F1 scores in each class on the 20NG dataset.

4 Qualitative Analysis

To investigate how our model encodes documents and entities into the same continuous vector space, we
extracted five example sentences from the 20NG dataset and encoded each sentence into a vector using
our model. The closest entities to this vector based on the cosine similarity are presented in Table 5. We
automatically annotated the entity mentions using TAGME16, and fed the words and detected entities into
the TextEnt-full model. Table 5 presents the sentences, nearest entities, and their corresponding classes
in the 20NG dataset. Our model successfully encodes the sentences into vectors that are close to their
relevant entities. For example, all nearest entities of the first sentence “At one time there was speculation
that the first spacewalk (Alexei Leonov?) was a staged fake” are strongly related to the historic Soviet
space program. Similar results can be observed in the other four examples.

13We used the public Web API service available at https://services.d4science.org/.
14We used the ρ scores assigned by TAGME.
15Excluding entity mentions using the relevance scores is the recommended practice described in the documentation:

https://services.d4science.org/web/tagme/documentation
16We used the same configuration as described in Section 3.2.

https://services.d4science.org/
https://services.d4science.org/web/tagme/documentation
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Class Count SVM BoE TextEnt
grain 51 .824 .818 .889
ship 144 .781 .783 .829
interest 271 .745 .832 .873
money-fx 293 .687 .853 .876
trade 326 .897 .879 .918
crude 374 .929 .958 .929
acq 2,292 .956 .978 .977
earn 3,923 .986 .990 .988

Table 4: Class-level F1 scores with the number of documents in each class on the R8 dataset.

Class Sentence Nearest entities
sci.space At one time there was specula-

tion that the first spacewalk (Alexei
Leonov?) was a staged fake.

Sputnik 1 (0.39), Soviet space program
(0.38), Soyuz 5 (0.38), Vostok 1 (0.37)

rec.autos I prefer a manual to an automatic as
it should be.

Manual transmission (0.45), Automatic trans-
mission (0.45), Dual-clutch transmission
(0.43), Semi-automatic transmission (0.41)

sci.crypt I change login passwords every cou-
ple of months.

Password (0.49), Login (0.46), Privilege
(computing) (0.44), Privilege escalation
(0.43)

soc.religion.
christian

Which version of the Bible do you
consider to be the most accurate
translation?

Bible translations (0.37), King James Only
movement (0.37), Biblical poetry (0.36), The
Living Bible (0.36)

sci.med The blood tests have shown that I
have a little too much Hemoglobin

Blood (0.38), Introduction to genetics (0.38),
Hemoglobin (0.37), Blood transfusion (0.35)

Table 5: Five example sentences with their top nearest entities using the TextEnt model.

5 Related Work

In recent years, various models for computing distributed representations of text (e.g., sentences and
documents) have been proposed (Le and Mikolov, 2014; Kiros et al., 2015; Wieting et al., 2016; Hill et
al., 2016). These models typically use large, unstructured corpora for training; however, certain models
attempt to learn text representations from structured data. For instance, Hill et al. (2016) proposed a
neural network model that learns text representations from online public dictionaries by predicting each
dictionary word from its description. Further, Wieting et al. (2016) used a large set of paraphrase pairs
obtained from the Paraphrase Database (Ganitkevitch et al., 2013) to learn text representations.

A number of recent models have attempted to learn distributed representations of entities from a KB.
For example, Hu et al. (2015) extended the skip-gram model (Mikolov et al., 2013a) to learn entity
representations using the hierarchical structure of the KB, and Li et al. (2016) modified the model by Hu
et al. to learn both the category representations and entity representations using the category information
of the KB. Additionally, relational embedding models (Bordes et al., 2013; Wang et al., 2014; Lin et al.,
2015) learn the entity representations for link prediction tasks.

Furthermore, some models learn the representations of both words and entities from the KB. A simple
method reported in the literature (Yaghoobzadeh and Schutze, 2015; Yamada et al., 2017) is used to
derive the pre-trained representations in this study (i.e., preprocessing an entity-annotated corpus by
replacing the name of each annotation with the unique identifier of the entity and feeding the corpus
into a word embedding model (e.g., skip-gram)). Yamada et al. (2016) proposed Wikipedia2Vec, which
extends this idea by using neighboring entities in the internal link graph of the KB as additional contexts
for training the model. Note that we used Wikipedia2Vec as a baseline method in the two experiments
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conducted in this study. Similarly, in their subsequent work (Yamada et al., 2017), they proposed a
neural network model that takes entity-annotated text as input and learns word and entity representations
by predicting the annotated entities contained in each text. Furthermore, Mancini et al. (2017) proposed a
model that maps words and entities in a lexical dictionary (i.e., BabelNet (Navigli and Ponzetto, 2012)) to
a single vector space by extending the CBOW model. Unlike our proposed model, these models require
users to design a composition function (e.g., vector averaging) to model the semantics of a document
using words and entities in it. Moreover, we showed that our approach is highly effective for the two
important tasks of fine-grained entity typing and multiclass text classification.

6 Conclusions

In this paper, we described TextEnt, a simple neural network model that learns distributed representa-
tions of entities and documents from large-scale KB descriptions. We evaluated the performance of the
proposed model on fine-grained entity typing and text classification tasks, and achieved state-of-the-art
results in both cases, which clearly demonstrates the effectiveness of our approach. In future work, we
will explore the applicability of our model to broader NLP tasks such as entity search and KB-based
question answering.
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