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Abstract

This paper demonstrates a novel high-order dependency parsing framework that targets non-
projective languages. It imitates how a human parses sentences in an intuitive way. At every
step of the parse, it determines which word is the easiest to process among all the remaining
words, identifies its head word and then folds it under the head word. This greedy framework
achieves competitive accuracy on WSJ evaluation set and shows additional advantage on the
non-projective corpus. Further, this work is flexible enough to be augmented with other parsing
techniques. !

1 Introduction

Dependency parse trees, as the most commonly used syntax representation, is a preliminary part in many
Natural Language Processing(NLP) tasks. Existing data-driven dependency parsers are divided into two
classes, graph-based and transition-based.  As typical graph-based parsers, MSTParser and its vari-
ants (McDonald et al., 2005) presently enjoy high accuracy at some cost of parsing time. However, such
exact inference approach limits the range of features that can be extracted (McDonald and Nivre, 2007).
MaltParser (Nivre, 2003), which is the most representative of transition-based parsers, carries out a se-
quence of greedy actions determined by a classifier trained from parsing sequences. Transition-based
parsing is done incrementally by processing smaller word spans into subtrees first before combining
smaller subtrees into bigger ones. Consequently, MaltParser has not met much success with non-
projective parsing.’

Studies in psycholinguistics revealed how humans comprehend a sentence. Humans tend to perform a
rapid and shallow recognition of major phrases, which guide the understanding process from the easiest
relations to the more difficult ones (Townsend and Bever, 2001). By folding modifiers under their head
words, we can gradually grasp the sentence structure and incorporate the already built structures for
later parse. There is an earlier attempt inspired by the same intuition (Goldberg and Elhadad, 2010),
whose framework is an adaptation of transition-based parser. However, it inherits the same problem as
MaltParser in which candidate heads are all locally determined and can only deal with projective parsing.

This paper builds a parsing framework that follows the above intuition. It has two key components.
The sequence predictor generates a permutation of words in the input sentence, which indicates the
processing order, from the easy to the hard. The head mapper takes each word from the sequence and
maps the head for each word in that order.  Our current implementation generates transition-based
processing sequence to guide a greedy high order graph-based decoder. It outperforms the easy-first
parser in that it achieves similar accuracies with projective parsing (Kong and Smith, 2014), but can also
deal with non-projective cases. In this paper, we use the idea of parsing sequence to bridge the gap
between transition-based and graph-based methods under one framework.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
'Kenny Q. Zhu is the corresponding author and is partially supported by NSFC Grant No. 61373031.
The later proposal of SWAP action ameliorates some of this problem. But training a classifier for this action is hard due
to limited resources of training data.
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2  Framework

The general architecture of the parser is shown in Figure 1 and is divided into training phase and parsing
phase.
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Figure 1: Sequence Based Parser Framework

Training: The preprocessing step generates oracle sequences from the gold standard parse trees.
Only the word forms and the POS tags in these parse trees are used. Here, we assume that a child node is
easier to process than its parent node and it is supposed to be attached before its parent. > We then train
respectively a graph-based head mapper (a.k.a. decoder) from the gold sequences and the gold parses,
and a sequence predictor from the gold sequences.

Parsing: Given an input sentence, the sequence predictor outputs a feasible decoding sequence, which
is a permutation of the words in the input. For each word in this sequence, the head mapper returns its
best head word according to a scoring function while employing a cycle detection mechanism. The
process continues until all words in the sentence have found their heads. The procedure guarantees to
produce a tree structure eventually.

In the current implementation, we generate the decoding sequence by stackproj algo-
rithm (Nivre, 2009) in MaltParser and scorer-based greedy head mapper.

3 System Architecture

In the following, we present the preliminary investigation on the two key components of the our parser:
head mapper and sequence predictor .

3.1 Head Mapper

Figure 2 shows the decoding process of the head mapper for a non-projective example sen-
tence (McDonald et al., 2005): “John saw a dog yesterday which was a Yorkshire Terrier”. A head
mapper takes the lexical information of a sentence and a permutated sequence of words in that sentence
as inputs. Suppose the sequence is:

Johniy — a3 — dogy — yesterdays — Yorkshireg — ag — wasy; — whichg — Terrieryy —
saws.

The subscript stands for the position of the word in original sentence. At step one, we look for the
head of John. At this point, all other words are potential candidate heads. In order to measure the
probabilities of these candidate arcs, we introduce a scorer, which is the key idea of graph-based parsers.
By comparing the scores printed on every black arc in Figure 2, the red arc was eventually selected, i.e.
saw is made the head of John. The process continues for the word a, etc.

In practice, we ensure that there are no cycles of nodes generated during parsing, so that the final
output is a dependency tree structure starting from the ROOT node*. We also build a parse agenda to

3By this rule, multiple gold sequences can be generated from one dependency tree. In this paper, when a parent node has

multiple children, we generate the sequence by a left-to-right order.
4 A manually introduced node in dependency parsing task, it is the root of a dependency tree.
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Root John saw a dog yesterday which was a Yorkshire Terrier

Id: 0 1 2 3 4 5 6 7 8 9 10
Seq: -1 1 10 2 3 4 8 7 6 5 9
Par %. 141
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Figure 2: Example Parse of head mapper

record the existing arcs, which provides the high order information for our scorer. For example, after
adding arc:saw — John , all the attachment on these two nodes will take this arc into consideration.

We introduce a linear arc scorer to measure the score of a directed arc. The sum of all arc scores gives
the final score of the whole parse tree. We currently use the typical high-dimensional binary features,
including second order features (McDonald and Pereira, 2006). Because of the deterministic decoding
in our framework, we can make use of existing arcs to guide later head mapping. This kind of decoder
gives us the flexibility of applying any high order features explored by previous works (Carreras, 2007;
Koo and Collins, 2010; Ma and Zhao, 2012).

The arc scorer is trained by the iterative online training framework MIRA (Margin Infused Relaxed
Algorithm) (Crammer and Singer, 2003). In each iteration, we update the feature weights based on one
sentence. The decoder gives a greedy parse according to current feature weights. By scoring the gold
dependency tree and the current parse, along with the number of incorrect arcs in the current parse, MIRA
keeps updating the weights until it eventually converges to an optimal scorer. The learning algorithm
typically terminates after a few iterations.

3.2 Sequence Predictor

The intuition of sequence predictor is to rank words according to the ease of head word attaching. Words
that are easy to handle can be processed earlier without high order features. To decide whether process a
word immediately, we imitate the action classifier in MaltParser.

In fact, we can understand the action classifier in a different way that it can reflect the relative priority
between the top two words on processing stack. We translate the actiones as:

e LA - process the word on the top of stack;
e RA - process the second word in stack;
e SH - postpone the process of both the two words on top of stack.

In this way, a word sequence can be inferred rather straightforwardly from the action sequence.

4 Demo

We build this sequence-based non-projective dependency parser and the part of the work is licensed
under the GNU General Public License.

We evaluate our demo systsem on the WSJ test set under english® and five non-projective treebanks in
different languages.® 7

Sthe training set is sections 2-21 of WSJ corpus and test set is sections 00-01
®http://ilk.uvt.nl/conll/post_task_data.html
http://www.nltk.org/nltk_data/
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Table 1 shows the results of our system(nonproj), MaltParser and MSTParser. Generally, we outper-
form MaltParser in non-projective treebanks, which indicates that our framework tolerates free word
order better. Our accuracy is not as good as MSTParser, because of the greedy decoding strategy. Nev-
ertheless, this strategy gives rise to improvement in parsing time and flexibility in defining high order
features than MSTParser.

Table 1: End-to-end accuracies on 8 languages

Language nonproj MSTParser MaltParser
basque 77.45% 81.81% 74.88%
dutch 81.43% 85.66% 77.28%
danish 86.84% 89.39% 85.65%
portuguese | 86.93% 88.63% 85.97%
slovene 78.26% 80.16% 76.09%
WSJ 89.50% 90.64% 90.23%

Further, we compare the accuracies of the non-projective arcs in the test data in Table 2. The system
produces reasonable accuracies and outperforms MaltParser and MSTParser on parsing non-projective
arcs.

Table 2: Accuracy of non-projective arcs in 5 languages

basque dutch danish portuguese slovene
parser correct total accuracy correct total accuracy correct total accuracy correct total accuracy correct total accuracy
nonproj 225 569 0.395431 339 529 0.640832 79 121 0.652893 104 191 0.544503 101 263 0.3840304
MaltParser 200 569 0.351494 300 529 0.567108 58 121 0.479339 103 191 0.539267 98 263 0.3726236
MSTParesr 204 569 0.358524 204 529 0.385633 63 121 0.520661 90 191 0.471204 109 263 0.4144487

Given a CoNLL formatted training data and test data, our demo can parse out the dependency tree.
Figure 1 is the snapshot of the demo showing the parsing result on the multilingual corpus.

Nonproj Dependency Parser

Parse Result

Enter a sentence to be parsed: Language: Dutch B

ledereen loopt een zeker risico, dat_wil_zeggen een kans op gezondheidsschade. su (loopt-2, ledereen-1)
ROOT (Root-0, loopt-2)
det (risico-5, een-3)
mod (risico-5, zeker-4)
obj1 (loopt-2, risico-5)
punc (risico-5, ,-6)
mod (risico-5, dat_wil_zeggen-7)
det (kans-9,een-8)
body (dat_wil_zeggen-7, kans-9)
mod (kans-9, op-10)
obj1 (op-10, gezondheidsschade-11)
punc (gezondheidsschade-11, .-12)

2

Random | | Parse

Figure 3: Example Parse of head mapper

5 Conclusion

We develop a novel sequence-based dependency parsing framework. It shows promising results despite
of an unoptimized implementation. The key idea is that a good parsing sequence can be predetermined
and can contribute to good parsing accuracy and substantial speedup. Although only a few simple ap-
proaches are attempted to train the sequence predictor, the framework allows the integration of better and
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more advanced models, which may lead to results closer to an upper bound 93.59% 8 for the WSJ test
set.

Even though the current classifier based sequence predictor produces better results among our prelim-
inary attempts, the parsing accuracy is limited by the rather localized or even incorrect sequence order
produced. More importantly, we discovered that the parsing accuracy is very sensitive to the quality of
parsing sequence. Future work can be focused on developing better sequence predictors that outperform
this classifier based method.

Graph-based methods spend most of the time extracting features. Some work attempted to save time
by displaying arc filter (Bergsma and Cherry, 2010; Rush and Petrov, 2012). We can incorporate some
of these techniques to speed up the parsing. Furthermore, Beam search works well in a left-to-right head
attaching. We can also adapt beam search to our framework so as to relax its strictly greedy nature.
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