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Abstract

In neural machine translation, the attention mechanism facilitates the translation process by pro-
ducing a soft alignment between the source sentence and the target sentence. However, without
dedicated distortion and fertility models seen in traditional SMT systems, the learned alignment
may not be accurate, which can lead to low translation quality. In this paper, we propose two
novel models to improve attention-based neural machine translation. We propose a recurrent
attention mechanism as an implicit distortion model, and a fertility conditioned decoder as an
implicit fertility model. We conduct experiments on large-scale Chinese–English translation
tasks. The results show that our models significantly improve both the alignment and translation
quality compared to the original attention mechanism and several other variations.

1 Introduction

Sequence-to-sequence neural machine translation (NMT) has shown promising results lately (Sutskever
et al., 2014; Cho et al., 2014b). An NMT model typically consists of an encoding neural network which
transforms the source sentence into some vector representation, and a decoding neural network which
generates the target sentence from the vector representation. This is called the encoder-decoder model. In
order to handle variable length inputs, recurrent neural networks (RNN) are usually used as the encoder
and the decoder. The encoder RNN will read the words in the source sentence one by one and generate
a sequence of corresponding hidden states; the decoder will then by conditioned on the encoder states
to output each word in the target sentence. In (Cho et al., 2014b), only the last encoder state is used for
target sentence generation, so the single hidden state vector must preserve all the necessary information
in the source sentence for the decoding process , which is very difficult when the source sentence is long.

To leverage the whole sequence of encoder states and retrieve information from the source sentence in
a more flexible way, the attention mechanism (Bahdanau et al., 2014) was introduced into the encoder-
decoder model. In an attention-based encoder-decoder model, matching scores between the source and
target words are calculated based on their corresponding encoder and decoder states. These scores are
then normalized and used as weights for the source words given each target word. This can be seen as
a soft alignment and the attention mechanism here plays similar role to that of a traditional alignment
model.

In alignment models used in traditional machine translation models such as IBM Models (Brown et
al., 1993), distortion and fertility are modeled explicitly. By comparison, in the attention mechanism,
alignment is computed by matching the previous decoder hidden state with all the encoder hidden states,
without modeling distortion and fertility. Since the translation of target words is guided by the attention
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mechanism, the translation accuracy of an attention-based NMT model is largely dependent on the accu-
racy of the alignment, and a large portion of errors seen in the translation result can be associated with the
lack of distortion and fertility models. Without a distortion model, the generated alignment sometimes
contains incorrect word reordering and as a result the meaning of the sentence could be twisted. Due to
the lack of a fertility model, the number of times that each word in the source sentence be aligned to is
not restricted, and as a result we sometimes observe that part of the sentence is translated repeatedly, or
part of the sentence is missing in the translation.

In the following sections, we first review the attention-based encoder-decoder model, and then give a
detailed analysis of these problems using example alignment matrices generated by the standard model.
In Section 4 we introduce the two proposed extensions to the attention-based encoder decoder. We first
introduce a recurrent attention mechanism with extra recurrent paths as an implicit distortion model to
solve the reordering problem. To address the lack of fertility model, we use a fertility vector which
memorizes the words that have been translated and design a decoder that is conditioned on this vector. In
Section 6 we will show the results of our experiments on large-scale Chinese–English translation tasks
and demonstrate that our proposed methods can significantly improve the translation performance.

2 Attention-based Encoder-Decoder

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU)
(Cho et al., 2014b) are often used as RNNs in attention-based encoder-decoder models. In this section,
we will briefly introduce GRU, followed by a short review of how attention is modeled between encoder
and decoder states as described in (Bahdanau et al., 2014).

2.1 Gated Recurrent Unit

At time i, a recurrent function RNN computes its hidden state hi based on the input xi and previous
hidden state hi−1:

hi = RNN(hi−1,xi)

A GRU uses reset gate and update gate to help model long-term dependencies:

ri = σ(W rxi + U rhi−1)
zi = σ(W zxi + U zhi−1)
h′i = tanh(U(ri � hi−1) + Wxi)
hi = (1− zi)� h′i + zi � hi−1

where xi is the input, and hi−1 is the previous hidden state. ri and zi are reset and update gates respec-
tively. � denotes element-wise product.

2.2 RNNSearch

RNNSEARCH referes to the attention-based encoder-decoder model proposed by (Bahdanau et al.,
2014). It consists of two RNNs: an encoder RNN that maps the source sentence to a sequence of hidden
states, and a decoder RNN that generates the target sentence based on the encoder states with attention
mechanism.

Encoder The encoder used in RNNSEARCH is a bi-directional GRU. It consists of two independent
RNNs, one reading the source sentence from left to right, another from right to left, generating two
hidden states at each position. The two hidden states produced by forward and backward RNNs are
concatenated to generate the sequence of encoder states sJ1 , where J is the length of source sentence.

Decoder Unlike the decoder of (Cho et al., 2014b; Sutskever et al., 2014), which takes only the last
encoder state as the context vector, the decoder with attention mechanism uses encoder states from all
time-stamps as context. Decoder with attention mechanism is illustrated in Figure 5.
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Figure 1. Incorrect reordering by the at-
tention mechanism. The correct transla-
tion is “US president Bush warned that
the election to be held on January 30th
next year would not be an end to serious
violence in Iraq.”

Figure 2. Our proposed model RECATT

produced the correct reordering of the
source words, and based on that generated
a better translation.

At position i in the target sentence, the attention model computes a matching score eij with match
function α, for the previous decoder state hi−1 and each encoder state sj .

eij = v> tanh (α(hi−1, sj))

wij =
exp(eij)∑
k exp(eik)

We wrap this computation of weights as ALIGN:

wi = ALIGN(hi−1, s
J
1 )

There are various match functions, as analyzed in (Luong et al., 2015). In our paper we use the sum
match function α(hi−1, sj) = W αhi−1 + Uαsj . The weighted average of the encoder states sJ1 is
calculated as the context ci =

∑
j wijsj . It is added to the input of each gate in the decoder, together

with previous state hi−1 and previous target word embedding yi−1:

hi = RNN(hi−1,yi−1, ci)

3 Problems of the Attention Mechanism

Although attention modeling works well in finding translation correspondence between source and target
words, there are still some issues that can be systematically identified, which fall into three categories:
incorrect reordering, missing translation and repeated translation.

Incorrect Reordering Reordering is often required for the translation between two languages with dif-
ferent grammars. When the source words are translated in the wrong order, the meaning of the sentence
can be twisted.In the example shown in Figure 1, the phrase “明年一月” (meaning “January next year”)
in the source is attended to after the translation of “暴动” (meaning “riot”), resulting in a translation that
twisted the meaning of the source sentence.

Missing Translation In Figure 3, we can see that only the first half of the source sentence is translated,
because the last half sentence is never chosen for attention.
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Figure 3. Missing translation example.
The correct translation is “We hope that
the president could appoint the chief of
the intelligence bureau so we can elimi-
nate groups that control Ukrainian’s poli-
tics and business.”

Figure 4. Repeated translation example.
The correct translation is “Powell will at-
tend the annual meeting of the organiza-
tion of europe.”

Repeated Translation In the example shown in Figure 4, part of the source sentence, “欧安 组织”
(“the organization of europe”), is repeatedly translated into “the organization of europe the organization
of europe”. This is because the attention mechanism focused on this phrase twice.

4 Our Methods

In traditional SMT methods, the distortion model controls the order of target word generation. It can thus
prevent the meaning of source sentences to be twisted due to wrong reordering. We propose to address
the incorrect reordering problem using a implicit distortion model which leverages information about
previous alignments.

In traditional SMT methods, the fertility model controls how many target words should be generated
from a source word. It can thus prevent a source word to be repeatedly translated, which corresponds to
the repeated translation problem, or not translated, which corresponds to the missing translation problem.
We propose to address the missing and repeated translation problems in NMT by by using a fertility
model which memorizes which words have been translated and which have not.

In the following sections, we introduce our extended attention-based encoder-decoder models. For
implicit distortion model, we propose a recurrent attention mechanism, RECATT; for implicit fertility
model, we propose a fertility-conditioned decoder FERTDEC.

4.1 RECATT

The structure of RECATT is illustrated in Figure 6. At position i in the target sentence, the attention
model outputs a weight vector for the encoder states and a weighted-average context. To inform the
attention model about the previous alignments, we pass the previous context vector ci−1 to it. The
decoder with RECATT follows:

wi = ALIGN(hi−1, ci−1, s
J
1 )

ci =
J∑
j=1

wijsj

hi = RNN(hi−1,yi−1, ci)
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Figure 5. Decoder with attention mech-
anism. The dashed lines denote passing
the previous state to the current attention
model and current state.
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Figure 6. RECATT, decoder with re-
current attention mechanism. The thick
dashed line denotes passing the previous
attention-generated context to the atten-
tion model.

The new ALIGN function with modified match function α is computed as:

α(hi−1, ci−1, sj) = W αhi−1 + Uαci−1 + V αsj

eij = v> tanhα(hi−1, ci−1, sj)

wij =
exp(eij)∑
k exp(eik)

By using the previous context vector, the new attention model can avoid focusing on the same position
repeatedly, or jumping from the previous attended position incorrectly. We note that RNNSEARCH is a
special case of RECATT where the previous context ci−1 is ignored in the match function.

One important design choice of RECATT is to use the previous context vector instead of the previous
weight vector. Using the context vector makes the attention model aware of the content of source words,
instead of the weight vector, which contains only the position information. Furthermore, the length
of the source sentence is variable, so is the length of the weight vector. To use it in the match function,
transformation to a fixed-length vector is needed. Possible methods including taking a fixed-size window
or passing it through a convolution, both result in a local and partial recurrent information. When we
need a long-distance jump from the previous attended position, especially out of the window, partial
information might not suffice. Using the context vector, as in RECATT, is not restricted in this scenario.
The attention model can always have full information about the previous alignments even when a long-
distance jump happens, which makes the implicit distortion model much more flexible.

4.2 FERTDEC

To address the missing and repeated translation problems, we introduce fertility-conditioned decoder
FERTDEC. FERTDEC uses a coverage vector 1 to represent the information of the source sentence that
has not been translated. Initialized by the sum of source word embeddings

∑J
j=1 xj and updated along

the translation dynamically, our trainable coverage vector is different from the predefined condition vec-
tor used in (Wen et al., 2015). In order to leverage the coverage vector in decoding, we change the

1The coverage vector in our work plays a similar role with the one used in beam search decoder (Koehn, 2004).There are
two major two differences between them: 1. our coverage vector is used as a soft constraint instead of a hard constraint. 2. we
tract untranslated words instead of translated words.
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decoding recurrent unit as follows:

di = ei−1 � di−1

ri = σ(W ryi−1 + U rhi−1 + V rdi)
zi = σ(W zyi−1 + U zhi−1 + V zdi)
ei = σ(W eyi−1 + U ehi−1 + V edi)
h′i = tanh(U(ri � hi−1) + Wyi−1 + V di)

hi = (1− zi)� h′i + zi � hi−1 + tanh(V hdi)

where di is the coverage vector, ei is the new added extract gate, which is used to update di based on
the words that has been translated.

di is designed to track the untranslated words during decoding, so it is not expected to change dras-
tically between consecutive time-stamps. Also, it should converge to zero at the end of the sentence.
Therefore in the training stage, we update the loss function as follows:

T∑
i=1

− log p(yi) +
1
T

T∑
i=1

||di − di−1||2 + ||di||2

where the first term is the negative log-likelihood used in the encoder–decoder model. The new intro-
duced second and third terms are step-decay and left-over costs. Step-decay cost prevents the extract
gate from extracting too much information at each time-step. It is different than that of (Wen et al., 2015)
2. While left-over cost ensures all the source words are translated after generating the whole target
sentence.

5 Related Work

There are variations of the attention mechanism with recurrent paths similar to those in our recurrent
attention mechanism. In this section, we put them in a general framework and compare them with ours.

INPUTFEED Input-feeding method (Luong et al., 2015) also has a recurrent path - the previous
attention-generated context is passed to the decoder together with current one:

wi = ALIGN(hi−1, s
J
1 )

ci =
J∑
j=1

wijsj

hi = RNN(hi−1,yi−1, ci, ci−1)

Using the previous context helps the decoder generate better target words, but it doesn’t help the atten-
tion model select source words more accurately or generate better alignment. This makes INPUTFEED

very different from our RECATT.

MARKOV In Markov condition model (Cohn et al., 2016), ξ takes a fixed-width window of the previous
weight vector wi−1 and passes it to the attention model:

ξ(wi−1, j) = [wi−1,j−k, .., wi−1,j , .., wi−1,j+k]
>

wi = ALIGN(hi−1, s
J
1 , ξ(wi−1))

ci =
J∑
j=1

wijsj

This can be seen as a location-based counterpart of RECATT. As discussed in Section 4.1, this method
is less flexible - it can only use partial recurrent information and is not content-aware.

2These two cost functions achieve similar result on our task, but our has no hyperparameter.
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LOCFER In local fertility model (Cohn et al., 2016), ξ uses all previous weight vectors w<i and
computes the sum of previous attention weights.

ξ(w<i, j) =

[∑
i′<i

wi′,j−k, ..,
∑
i′<i

wi′,j+k

]>
wi = ALIGN(hi−1, s

J
1 , ξ(w<i))

ci =
J∑
j=1

wijsj

The intuition is to consider the fertility up to the current position, and use it to guide new alignment.
This is done by a location-based recurrent path similar to that of MARKOV. LOCFER can prevent focus-
ing nearby words already translated, and it is a blend of distortion and fertility model.

6 Experiments

6.1 Settings
Datasets We use NIST Chinese–English training set excluding Hong Kong Law and Hong Kong
Hansard as the training set (500,000 sentence pairs after exclusion). The test set is Nist2005 (1082
sentence pairs). The validation set is Nist2003 (913 sentence pairs).

Following (Bahdanau et al., 2014), we use a vocabulary size of 30,000 for both source and target
language, covering 97.4% and 98.9% of the words. Out-of-vocabulary words are replaced with a special
token 〈UNK〉.
UNK Replacement With word alignment result on the training set generated by GIZA++ (Och and
Ney, 2003), we build a translation table. We choose the most frequently aligned target word as the
translation for each source word. UNK replacement is performed after the translation is completed,
based on the alignment matrix generated by the attention model. If a target word is UNK, we replace
it with the translation (from the translation table) of its aligned source word, the one with the highest
attention weight.

Model & Baseline Two baseline systems are used in our experiment. The first one is HPSMT, our
in-house implementation of hierarchical phrase-based SMT (Chiang, 2007) with standard features. For
a fair comparison, the 4-gram language model is trained only with the target sentences of the training
set. The second one is RNNSEARCH 3 (Cho et al., 2014b), the original attention-based encoder-decoder.
Other compared models are our implementations of: INPUTFEED (Luong et al., 2015), MARKOV and
LOCFER (Cohn et al., 2016) as discussed in Section 5.

Training Details For all the NMT models, the hidden GRU states are 1000-dimensional, source and
target word embeddings are 620-dimensional. Dropout rate is 0.5. The settings of other hyperparameters
follow (Bahdanau et al., 2014). Each model is trained with AdaGrad (Duchi et al., 2011) on a K40m
GPU for approximately 4 days, finishing about 400, 000 updates, equivalent to 64 epochs.

6.2 Experiment Results
6.2.1 End-to-end Translation Quality
BLEU scores on the test set are shown in Table 1. The two proposed methods RECATT and FERTDEC

both out-performed the original model RNNSEARCH. Note that RECATT gained the most improvement
from UNK replacement, 5.04 BLEU points. The effectiveness of our UNK replacement depends largely
on the quality of the alignment, so the gain can be seen as a measurement of alignment quality. This is
an evidence that RECATT improved attention-generated alignment and as a result improved translation
quality. The last line shows the results obtained by the combination of RECATT and FERTDEC, which
further out-performed both models.

3The implementation of RNNSEARCH is from https://github.com/mila-udem/blocks-examples
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Before After Diff
HPSMT / 32.25 /
RNNSEARCH 26.65 31.02 4.37
INPUTFEED 25.44 29.02 3.58
LOCFER 27.05 31.68 4.63
MARKOV 27.54 32.21 4.67
RECATT 28.10 33.14 5.04
FERTDEC 27.51 32.44 4.93
RECATT + FERTDEC 28.87 33.76 4.89

Table 1. BLEU scores w/o UNK replacement and the improvement from UNK replacement.

SAER AER
RNNSEARCH 54.75 44.13
RECATT 52.88 42.51
FERTDEC 52.70 42.37
RECATT + FERTDEC 52.40 42.11

Table 2. AER & SAER scores, lower is better.

Figure 7. FERTDEC resolved the prob-
lem of missing translation problem that is
shown in Figure 3. Figure 8. FERTDEC resolved the problem

of repeated translation shown in Figure 4.

6.2.2 Alignment Quality

To analyze the effect of our extentions to the attention mechanism in detail, we evaluate the quality of
attention-generated alignment by computing the AER (Och and Ney, 2003) and smoothed-AER (Tu et al.,
2016) scores on a manually aligned Chinese–English alignment dataset (Haghighi et al., 2009), which
contains 491 sentence pairs. We force the model to generate the correct target sentence and evaluate
the attention-generated alignment matrix. From the results shown in Table 2, we can see that all three
proposed methods achieved better alignment quality, compared with the original attention method.
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6.3 Qualitative Analysis
In this section we qualitatively evaluate how our models addressed the problems analyzed in Section 3.
All examples shown are from the test set.

Incorrect Reordering In Figure 2 we can see, RECATT generated the correct alignment on the exam-
ple sentence shown in Figure 1: “will not” is correctly aligned to “不会” (means “will not”) and “next
year” is correctly translated after “the election to be held” instead of “riot in iraq”. The meaning of the
source sentence is correctly preserved in the translation.

Missing Translation As shown in Figure 7, FERTDEC resolved the missing translation problem of
RNNSEARCH on the same sentence shown in Figure 3. All the information from the source sentence is
captured by the translation.

Repeated Translation In Figure 8 we can see that, FERTDEC resolved the the repetition problem of
RNNSEARCH shown in Figure 4. “东方 快车” (means “midnight express”) is repeatedly focused on
and translated into “night of the midnight of the night”. As shown on the right, FERTDEC produces both
the correct alignment and the correct translation “midnight express”.

7 Conclusions and Future Work

In this paper we demonstrated how distortion and fertility models can improve the quality of alignment
learned by attention mechanism in encoder-decoder models. We proposed recurrent attention mechanism
RECATT as implicit distortion models, and FERTDEC as an implicit fertility model. We conducted
various experiments and verified that our proposed methods can improve translation quality by generating
better alignment. Compare to the original attention-based encoder-decoder, our best result achieved an
improvement of over 2 BLEU points on large-scale Chinese–English translation task.

Our RECATT model is a simple yet effective extension to the attention mechanism, and potentially we
can design more complicated mechanisms to model the distortion even better. The key observation is,
in RECATT, only the previous context vector is used to provide information about previous alignments,
and in effect only the alignment of the previous target word is considered. To extend this short-term
information to a long-term one so that the model is aware of all previous alignments, we designed a
attention unit that contains a recurrent neural network to encode all previous context vectors. The hidden
state vector of this RNN should contain all the information about previous alignments. However in our
experiment, this model and several variants did not perform as well as RECATT. But we still think that
trying to provide more information about previous alignments, as a natural extension to this work, has
the potential of improving both the alignment and translation accuracy.
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