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Abstract

This paper proposes a novel context-aware joint entity and word-level relation extraction ap-
proach through semantic composition of words, introducing a Table Filling Multi-Task Recurrent
Neural Network (TF-MTRNN) model that reduces the entity recognition and relation classifica-
tion tasks to a table-filling problem and models their interdependencies. The proposed neural
network architecture is capable of modeling multiple relation instances without knowing the
corresponding relation arguments in a sentence. The experimental results show that a simple
approach of piggybacking candidate entities to model the label dependencies from relations to
entities improves performance.

We present state-of-the-art results with improvements of 2.0% and 2.7% for entity recognition
and relation classification, respectively on CoNLL04 dataset.

1 Introduction

Relation classification is defined as the task of predicting the semantic relation between the annotated
pairs of nominals (also known as relation arguments). These annotations, for example named entity
pairs participating in a relation are often difficult to obtain. Traditional methods are often based on a
pipeline of two separate subtasks: Entity Recognition (ER1) and Relation Classification (RC), to first
detect the named entities and then performing relation classification on the detected entity mentions,
therefore ignoring the underlying interdependencies and propagating errors from the entity recognition
to relation classification. The two subtasks together are known as End-to-End relation extraction.

Relation classification is treated as a sentence-level multi-class classification problem, which often
assume a single relation instance in the sentence. It is often assumed that entity recognition affects the
relation classification, but it is not affected by relation classification. Here, we reason with experimental
evidences that the latter is not true. For example, in Figure 1, relation Work For exists between PER and
ORG entities, ORGBased in between ORG and LOC, while Located In between LOC and LOC entities.
Inversely, for a given word with associated relation(s), the candidate entity types can be detected. For
example, in Figure 2, for a given relation, say Located in, the candidate entity pair is (LOC, LOC).
Therefore, the two tasks are interdependent and optimising a single network for ER and RC to model the
interdependencies in the candidate entity pairs and corresponding relations is achieved via the proposed
joint modeling of subtasks and a simple piggybacking approach.

Joint learning approaches (Roth and Yih, 2004; Kate and Mooney, 2010) built joint models upon com-
plex multiple individual models for the subtasks. (Miwa and Sasaki, 2014) proposed a joint entity and
relation extraction approach using a history-based structured learning with a table representation; how-
ever, they explicitly incorporate entity-relation label interdependencies, use complex features and search
heuristics to fill table. In addition, their state-of-the-art method is structured prediction and not based
on neural network frameworks. However, deep learning methods such as recurrent and convolutional
neural networks (Zeng et al., 2014; Zhang and Wang, 2015; Nguyen and Grishman, 2015) treat relation

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Entity Recognition (ER) = Entity Extraction (EE); Relation Classification (RC) = Relation Extraction (RE)
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Richard Kahn,officer for the American Diabetes Association in Alexandria, Va.

PER    LOC

Located_In

ORG LOC

Work_For

ORGBased_In

ORGBased_In

Figure 1: An entity and relation example (CoNLL04 data). PER:
Person, ORG: Organization, LOC: Location. Connections are: PER
and ORG by Work For; ORG and LOC by OrgBased In; LOC and
LOC by Located In relations.
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Figure 2: Entity-Relation dependencies
(CoNLL04 dataset).

Richard Kahn , officer for the American Diabetes Association in Alexandria , Va .
Richard B-PER, K
Kahn K L-PER, K

, K K O, K
officer K K K O, K

for K K K K O, K
the K K K K K O, K

Ameriacan K K K K K K B-ORG, K
Diabetes K K K K K K K I-ORG, K

Association K Work For K K K K K K L-ORG, K
in K K K K K K K K K O, K

Alexandria K K K K K K K K ORGBased In K U-LOC, K
, K K K K K K K K K K K O, K

Va K K K K K K K K ORGBased In K Located In K U-LOC, K
. K K K K K K K K K K K K K O, K

Table 1: Entity-Relation Table for the example in Figure 1. Demonstrates the word-level relation classification via a Table-
Filling problem. The symbol (K) indicates no relation word pair. Relations are defined on the words, instead of entities. The
diagonal entries have the entity types and K relations to the words itself, while the off-diagonal entries are the relation types.

classification as a sentence-level multi-class classification, and rely on the relation arguments provided
in the sentence. Therefore, they are incapable in handling multiple relation instances in a sentence and
can not detect corresponding entity mention pairs participating in the relation detected.

We tackle the limitations of joint and deep learning methods to detect entities and relations. The
contributions of this paper are as follows:

1. We propose a novel Table Filling Multi-task Recurrent Neural Network to jointly model entity
recognition and relation classification tasks via a unified multi-task recurrent neural network. We
detect both entity mention pairs and the corresponding relations in a single framework with an
entity-relation table representation. It alleviates the need of search heuristics and explicit entity and
relation label dependencies in joint entity and relation learning. As far as we know, it is the first
attempt to jointly model the interdependencies in entity and relation extraction tasks via multi-task
recurrent neural networks.

We present a word-level instead sentence-level relation learning via word-pair compositions utilis-
ing their contexts via Context-aware RNN framework. Our approach has significant advantage over
state-of-the-art methods such as CNN and RNN for relation classification, since we do not need the
marked nominals and can model multiple relation instances in a sentence.

2. Having named-entity labels is very informative for finding the relation type between them, and vice
versa having the relation type between words eases problem of named-entity tagging. Therefore, a
simple approach to piggyback candidate named entities for words (derived from the associated rela-
tion type(s) for each word) to model label dependencies improves the performance of our system. In
addition, the sequential learning approach in the proposed network learns entity and relation label
dependencies via sharing model parameters and representations, instead modeling them explicitly.

3. Our approach outperforms the state-of-the-art method by 2.0% and 2.7% for entity recognition and
relation classification, respectively on CoNLL04 dataset.
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Figure 3: The Table Filling Multi-Task Recurrent Neural Network (TF-MTRNN) for joint entity and word-level relation
extraction. Overlapping circle: Entity labels; Single circle: Relation label. In the above illustration, the word Association at t “
i (where; t “ 0, ..., i, ..., N ) from forward network is combined with each of the remaining words in the sequence (Figure 1),
obtained from backward network at each time step, j “ i, ..., N . Similarly, perform all possible word pair compositions to
obtain Table 1. ORGBased In relation in each word-pairs: (Association, Alexandria) and (Association, Va).

2 Methodology

2.1 Entity-Relation Table

As the backbone of our model we adopt the table structure proposed by Miwa and Sasaki (2014), shown
in Table 1. This structure allows an elegant formalization of joint entity and relation extraction because
both entity and relation labels are defined as instances of binary relations between words wi and wj in
the sentence. An entity label is such a binary relationship for i “ j, i.e., a cell on the diagonal. A relation
label is such a binary relationship for i ‰ j, i.e., an off-diagonal cell. To eliminate redundancy, we
stipulate that the correct label for the pair pwi, wjq is relation label r if and only if i ‰ j, wi is the last
word of a named entity ei, wj is the last word of a named entity ej and rpei, ejq is true.2 We introduce
the special symbol K for “no relation”, i.e., no relation holds between two words.

Apart from the fact that it provides a common framework for entity and relation labels, another ad-
vantage of the table structure is that modeling multiple relations per sentence comes for free. It simply
corresponds to several (more than one) off-diagonal cells being labeled with the corresponding relations.

2.2 The Table Filling Multi-Task RNN Model

Formally, our task for a sentence of length n is to label npn`1q{2 cells. The challenge is that the labeling
decisions are highly interdependent. We take a deep learning approach since deep learning models have
recently had success in modeling complex dependencies in NLP. More specifically, we apply recurrent
neural networks (RNNs) (Elman, 1990; Jordan, 1986; Werbos, 1990) due to their success on complex
NLP tasks like machine translation and reasoning.

To apply RNNs, we order the cells of the table into a sequence as indicated in Figure 4 and label – or
“fill” – the cells one by one in the order of the sequence. We call this approach table filling.

More specifically, we use a bidirectional architecture (Vu et al., 2016b), a forward RNN and a back-
ward RNN, to fill each cell pi, jq as shown in Figure 3. The forward RNN provides a representation
of the history w1, . . . , wi. The backward network provides a representation of the following context
wj , . . . , w|s|. The figure shows how the named entity tag for “Association” is computed. The forward
RNN is shown as the sequence at the bottom. hfi

is the representation of the history and hbj is the rep-
resentation of the following context. Both are fed into hi,j which then predicts the label L-ORG. In this
case, i “ j. The prediction of a relation label is similar, except that in that case i ‰ j.

2Relation types (excluding K) exist only in the word pairs with entity types: (L-*, L-*), (L-*, U-*), (U-*, L-*) or (U-*,
U-*), where * indicates any entity type encoded in BILOU (Begin, Inside, Last, Outside, Unit) scheme.
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Figure 4: Table Filling/Decoding Order. Filled squares in blue
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ogous to entries in Table 1. (i, j) is the cell index in the table,
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Figure 5: The context-aware TF-MTRNN model.
(...) indicates the remaining word pair composi-
tions (Table 1).

Our proposed RNN based framework jointly models the entity and relation extraction tasks to learn
the correlations between them, by sharing the model parameters and representations. As illustrated in
Figure 3, we use two separate output nodes and weight matrices each for entity and relation classifica-
tion. An entity label is assigned to a word, while a relation is assigned to a word pair; therefore, EE is
performed only when the same words from forward and backward networks are composed.

Dynamics of the proposed TF-MTRNN architecture (Figure 3) are given below:

sRi,jPi:N
“ gpWhRhi,jq; sEi,j“i “ gpWhEhi,jq; hi,j “ hfi

` hbj

hfi
“ fpUfwi `Wfhfi´1

q; hbj “ fpUbwj `Wbhbj`1
q

(1)

where i and j are the time-steps of forward and backward networks, respectively. ith word in the se-
quence is combined with every jth word, where j “ i, ..., N (i.e. combined with itself and the following
words in the sequence). N is the total number of words in the sequence. For a given sequence, sRi,j and
sEi,j represent the output scores of relation and entity recognition for ith and jth word from forward and
backward networks, respectively. Observe that EE is performed on the combined hidden representation
hi,j , computed from the composition of representations of the same word from forward and backward
networks, therefore i “ j and resembling the diagonal entries for entities in Table 1. hfi

and hbj are
hidden representations of forward and backward networks, respectively. WhR and WhE are weights
between hidden layers (hi,j) and the output units of relation and entity, respectively. f and g are activa-
tion and loss functions. Applying argmax to sRi,jPi:N

and sEi,j“i gives corresponding table entries for
relations and entities, in Table 1 and Figure 4.

2.3 Context-aware TF-MTRNN model
In Figure 3, we observe that when hidden representations for the words Association and Va are combined,
the middle context i.e. all words in the sequence occurring between the word pair in composition are
missed. Therefore, we introduce a third direction in the network (Figure 5) with missing context (i.e. in
Alexandria ,) to accumulate the full context in combined hidden vectors (hi,j).

Dynamics of the context-aware TF-MTRNN is similar to Eq. 1, except hbj , in Figure 5:

hbj “ fpUbwj `Wbhbj`1
` Ufhmt“T q

hbj`1
“ fpUbwj`1 `Wbhbj`2

q; hmt “ fpUfwt `Wfhmt´1q
(2)

where hbj is the hidden representation in backward network obtained from the combination of jth word
and contexts from backward network and from missing direction, t “ pi ` 1, ..., T “ j ´ 1q, where i
and j are the time-steps for forward and backward networks, respectively. hmt“i is initialized with zeros
similar to forward and backward networks. There is no missing context when i “ 0 and j “ 0 i.e. wt is
NULL and therefore, we introduce an artificial word PADDING and use its embedding to initialise wt.
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M (TF-MTRNN) and filling an Entity-Relation table. Entity-
relation interdependencies modeled by parameter sharing and
piggybacking (Section 2.4 and Figure 7). NE: Named Entity;
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Words Associated
Relation(s)

Candidate Entities
L-PER U-PER L-LOC U-LOC L-ORG U-ORG B/I-*

Kahn Work For 1 1 0 0 1 1 ... 0

Association
ORGBased In
ORGBased In

Work For
1 1 2 2 3 3 ... 0

Alexandria
ORGBased In,

Located In
0 0 2 2 1 1 ... 0

Va
ORGBased In,

Located In
0 0 2 2 1 1 ... 0

Figure 7: Piggybacking approach to model label depen-
dencies from relations to entities. We do not list all words
due to space limitation. * indicates any entity type. High-
light for counts indicate candidate entity importance for
corresponding words.
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Figure 8: State Machine driven Multi-task Learn-
ing. ER:Entity Recognition; RC:Relation Classifica-
tion; lr:learning rate; ER ´ V alidBestF1:Best entity
recognition F1 score on validation set.

2.4 Piggybacking for Entity-Relation Label Dependencies

Having named-entity labels is very informative for finding the relation type between them, and vice versa
having the relation type between words eases problem of named-entity tagging. We model these label
interdependencies during the end-to-end relation extraction in Figure 6, where the input vector at time
step, t is given by -

inputt “ tCRE , EER,Wembu (3)

where CRE is the count vector to model relation to entity dependencies, EER is the one-hot vector for
predicted entities to model entity to relation dependencies and Wemb is the word embedding vector.
Therefore, the input vector at each time step, t is the concatenation of these three vectors.

To model entity to relation dependency, the TF-MTRNN model, M for NER (Figure 6) first computes
entity types, which are represented by diagonal entries of entity-relation table. Each predicted entity type
EER (filled blue-color boxes) is concatenated with its corresponding word embedding vector Wemb and
then input to the same model, M for relation classification.

To model relation to entity dependency, we derive a list of possible candidate entity tags for each word
participating in a relation(s), except for K relation type. Each word associated with a relation type(s) is
determined from relation classification (RC) step (Figure 6). Figure 7 illustrates the entity type count
vector for each word of the given sentence (Figure 1). For example, the word Alexandria participates in
the relation types: ORGBased In and Located In. Possible entity types are {U-ORG, L-ORG, U-LOC,
L-LOC} for ORGBased In, while {U-LOC, L-LOC} for Located In. We then compute a count vector
CRE from these possible entity types. Therefore, U-LOC and L-LOC each with occurrence 2, while
U-ORG and L-ORG each with occurrence 1 (Figure 7). The candidate entity types as count vector (filled-
yellow color box) for each word is piggybacked to model, M for entity learning by concatenating it with
corresponding word embedding vector Wemb. This simple approach of piggybacking the count vectors
of candidate entities enables learning label dependencies from relation to entity in order to improve entity
extraction. In addition, multi-tasking by sharing parameters and adapting shared embeddings within a
unified network enables learning label interdependencies.
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2.5 Ranking Bi-directional Recurrent Neural Network (R-biRNN)

Ranking loss has been used in neural architectures (dos Santos et al., 2015) and (Vu et al., 2016b) to
handle artificial classes. In our experiments, for a given sentence x with class label y`, the competitive
class c´ is chosen the one with the highest score among all competitive classes during SGD step. The
basic principle is to learn to maximize the distance between the true label y` and the best competitive
label c´ for a given data point x. We use the ranking loss to handle the two artificial classes i.e. ‘O’ and
K in entity and relation types, respectively. The ranking objective function is defined as-

L “ logp1` exppγpm` ´ sθpxqy`qqq ` logp1` exppγpm´ ` sθpxqc´qqq;
c´ “ arg max

cεC;c‰y`
sθpxqc

(4)

where sθpxqy` and sθpxqc´ are the scores for positive y` and the most competitive c´ classes. γ controls
the penalization of the prediction errors while hyperparameters m` and m´ are the margins for the true
and competitive classes. We set γ “ 2,m` “ 2.5,m´ “ 0.5, following (Vu et al., 2016b).

The unified architecture (Figure 3) can be viewed as being comprised of two individual models, each
for NER and RE (Figure 6). We illustrate that the R-biRNN (Figure 12 in Appendix A) is integrated in
TF-MTRNN (Figure 3) and therefore, the unified model leverages R-biRNN (Vu et al., 2016b) effective-
ness for entity extraction, where the full context information is availed from the forward and backward
network at each input word vector along with the ranking loss at each output node. Figure 12 corresponds
to the diagonal entries for named entities in Table 1 and enables entity-entity label dependencies (Miwa
and Sasaki, 2014) via sequential learning.

3 Model Training

3.1 End-to-End Relation Extraction

In CoNLL04, more than 99% of the whole word pairs lie in the no relation class. Therefore, named-
entity candidates are required to choose the candidate word pairs in relation learning. In Figure 6 and
Figure 9, we demonstrate the joint and pipeline approach for end-to-end relation extraction.

In Figure 6, the candidate relation pairs are chosen by filtering out the non-entities pairs. Therefore,
in entity-relation table, we insert ‘no relation’ label for the non-entities pairs and RC is not performed.
Note that a word pair is chosen for RC in which at least one word is an entity. It allows the model M
to correct itself at NER by piggybacking candidate named entities (Figure 7). In addition, it reduces a
significant number of non-relation word pairs and does not create a bias towards the no relation class.
However, in Figure 9, the two independent models, M1 and M2 are trained for NER and RC, respectively.
In pipeline approach, the only relation candidates are word pairs with (U-*, U-*),(L-*, L-*) or (U-*, L-*)
entity types. Therefore, only w1 and w5 from word sequence are composed in M2 for RC subtask.
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CoNLL04 Dataset
Features NER RE

P R F1 P R F1
se

pa
ra

te

basic .865 .902 .883 .360 .403 .376
+POS .877 .906 .892 .440 .376 .395
+CF .906 .914 .910 .454 .390 .410
+CTX .499 .434 .453

pi
pe

lin
e basic .641 .545 .589

+POS .663 .555 .604
+CF .661 .585 .621
+CTX .736 .616 .671

jo
in

t

basic .885 .889 .888 .646 .531 .583
+POS .904 .908 .906 .673 .531 .594
+CF .913 .914 .914 .691 .562 .620
+CTX .745 .595 .661
+p’backing .925 .921 .924 .785 .630 .699
+ensemble .936 .935 .936 .832 .635 .721

Figure 10: CoNLL04 dataset: Performance on test set for NER
and RE; RE in pipeline always used predicted NEs. POS: part-
of-speech; CF: capital features; CTX: context awareness (Fig-
ure 5); p’backing: piggybacking predicted and candidate enti-
ties in RE and NER, respectively; ensemble: majority vote.

Figure 11: T-SNE view of the semantic entity-relation
space for the combined hidden representations of each word
pair composition. Relations: (0:LIVEIN, 1:ORGBASEDIN,
2:LOCATEDIN, 3:WORKFOR, 4:KILL, 5:NORELATION).
Entity-pair and relation denoted by E1-RELATION-E2
and/or count in [0-5]. 5: misclassified entity-pairs.

3.2 Word Representation and Features
Each word is represented by concatenation of pre-trained 50-dimensional word embeddings3 (Turian et
al., 2010) with N-gram, part-of-speech (POS), capital feature (CF: all-capitalized; initial-capitalized)
and piggybacked entity vectors (Section 2.4). The word embeddings are shared across entity
and relation extraction tasks and are adapted by updating them during training. We use 7-gram
(wt´3wt´2wt´1wtwt`1wt`2wt`3q obtained by concatenating corresponding word embeddings.

3.3 State Machine driven Multi-tasking
Multi-task training is performed via switching across multiple tasks in a block of training steps. However,
we perform switches between ER and RC subtasks based on the performance of each task on the common
validation set and update learning rate only when task is switched from RC to ER (Figure 8). ER is the
task to start for multi-tasking andER/RC is switched in the following training step, when their V alidF1
score is not better than BestV alidF1 score of previous steps on the validation set.

4 Evaluation and Analysis

4.1 Dataset and Experimental Setup
We use CoNLL044 corpus of Roth and Yih (2004). Entity and relation types are shown in Figure 2. There
are 1441 sentences with at least one relation. We randomly split these into training (1153 sentences) and
test (288 sentences), similar to Miwa and Sasaki (2014). We release this train-test split at https://
github.com/pgcool/TF-MTRNN/tree/master/data/CoNLL04. We introduce the pseudo-
label K “no relation” for word pairs with no relation.

To tune hyperparameters, we split (80-20%) the training set (1153 sentences) into train and validation
(dev) sets. All final models are trained on train+dev. Our evaluation measure is F1 on entities and
relations. An entity is marked correct if NE boundaries and entity type5 are correct. A relation for a
word pair is marked correct if the NE boundaries and relation type are correct. However, in separate
approach, a relation for a word pair is marked correct if the relation type is correct.

3with a special token PADDING. Also, used when there is no missing context.
4conll04.corp at cogcomp.cs.illinois.edu/page/resource_view/43
5For multi-word entity mention, an entity is marked correct if atleast one token is tagged correctly.
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Roth&Yih Kate&Mooney Miwa&Sasaki TF-MTRNN

P R F1 P R F1 P R F1 P R F1

Person .891 .895 .890 .921 .942 .932 .931 .948 .939 .932 .988 .959

Location .897 .887 .891 .908 .942 .924 .922 .939 .930 .974 .956 .965

Organization .895 .720 .792 .905 .887 .895 .903 .896 .899 .873 .939 .905

(Average) .894 .834 .858 .911 .924 . 917 .919 .927 .923 .926 .961 .943

Live In .591 .490 .530 .664 .601 .629 .819 .532 .644 .727 .640 .681

OrgBased In .798 .416 .543 .662 .641 .647 .768 .572 .654 .831 .562 .671

Located In .539 .557 .513 .539 .557 .513 .821 .549 .654 .867 .553 .675

Work For .720 .423 .531 .720 .423 .531 .886 .642 .743 .945 .671 .785

Kill .775 .815 .790 .775 .815 .790 .933 .797 .858 .857 .894 .875

(Average) .685 .540 .581 .672 .607 .622 .845 .618 .710 .825 .664 .737

Table 2: State-of-the-art comparison for EE and RE on CoNLL04 dataset.

4.2 Results

Figure 10 shows results for NER6 and RE. All models use n-grams for n “ 7 (Section 3.2). Embedding
dimensionality is 50. The notation “+” (e.g., +POS) at the beginning of a line indicates that the model of
this line is the same as the model on the previous line except that one more model element (e.g., POS) is
added. The separate NER model performs NER only. The separate RE model performs RE only, without
access to NER results. The pipeline RE model takes the results of the separate NER model and then
performs RE. The joint model is trained jointly on NER and RE. For compactness, we show the results
of two different models (an NER model and an RE model) in the separate part of the table; in contrast,
results for a single model – evaluated on both NER and RE – are shown in the joint part.

We make the following observations based on Figure 10. (i) All of our proposed model elements (POS,
CF, CTX, piggybacking, ensemble) improve performance, in particular CTX and piggybacking provide
large improvements. (ii) Not surprisingly, the pipeline RE model that has access to NER classifications
performs better than the separate RE model. (iii) The joint model performs better than separate and
pipeline models, demonstrating that joint training and decoding is advantageous for joint NER and RE.
(iv) Majority voting7 (ensemble) results in a particularly large jump in performance and in the overall
best performing system; F1 is .936 for NER and .721 for RE, respectively.

4.3 Comparison with Other Systems

Our end-to-end relation extraction system outperform the state-of-the-art results. We compare the entity
and relation extraction performance of our model with other systems (Roth and Yih, 2007; Kate and
Mooney, 2010; Miwa and Sasaki, 2014). (Roth and Yih, 2007) performed 5-fold cross validation on the
complete corpus (1441 sentences), while (Miwa and Sasaki, 2014) performed 5-cross validation on the
data set, obtained after splitting the corpus. We report our results on the test set from random split (80-
20%) of the corpus, similar to (Miwa and Sasaki, 2014). Since, the standard splits were not available, we
cannot directly compare the results, but our proposed model shows an improvement of 2.0% and 2.7%
in F1 scores for entity and relation extraction tasks, respectively (Table 2).

6Our NER model reports 86.80% F1 score, comparable to 86.67% from (Lample et al., 2016) on CoNLL03 shared task
using the standard NER evaluation script with strict multi-word entity evaluation, and adapted for BILOU encoding.

7Randomly pick one of the most frequent classes, in case of a tie
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4.4 Word pair Compositions (T-SNE)
Using t-SNE (der Maaten and Hinton, 2008), we visualize the hidden representations obtained on the
composition of hidden vectors of every two words (word pair) in the sentence via TF-MTRNN model.
In Figure 11, we show all data points i.e. word pair compositions, leading to natural relations (except
K denoted by 5). We observe that the entity mention pairs with common relation types form clusters
corresponding to each relation in the semantic entity-relation space. We observe that the relation clusters
with common entity type lie close to each other, for example, KILL has (PER, PER) entity pairs, which is
close to relation cluster LIVEIN and WORKFOR, in which one of the entities i.e. PER is common. While,
KILL relation cluster is at a distance from LOCATEDIN cluster, since they have no common entity.

4.5 Hyperparamter Settings
We use stochastic gradient descent with L2 regularization with a weight of .0001. The initial learning
rate for entity and relation extraction is .05 with hidden layer size 200. The learning rate update and
task switching is driven by the state machine (Figure 8). Models are trained for 40 iterations performing
stochastic gradient descent. We initialize the recurrent weight matrix to be identity and biases to be
zero. We use Capped Rectified Linear units (CappedReLu) and ranking loss with default parameters
(section 2.5). The entity vectors CRE and EER are initialized with zero when NER is performed for
the first time in entity and relation extraction loop (Figure 6). The models are implemented in Theano
(Bergstra et al., 2010; Bastien et al., 2012).

5 Related Work

Recurrent and convolutional neural networks (Zeng et al., 2014; Nguyen and Grishman, 2015; Zhang
and Wang, 2015; Vu et al., 2016a) have delivered competitive performance for sentence-level relation
classification. Socher et al. (2012) and Zhang and Wang (2015) proposed recurrent/recursive type neu-
ral networks to construct sentence representations based on dependency parse trees. However, these
sentence-level state-of-the-art methods do not model the interdependencies of entity and relation, do not
handle multiple relation instances in a sentence and therefore, can not detect entity mention pairs for
the sentence-level relations. Our approach is a joint entity and word-level relation extraction capable to
model multiple relation instances, without knowing nominal pairs.

Existing systems (Roth and Yih, 2004; Kate and Mooney, 2010; Miwa and Sasaki, 2014) are com-
plex feature-based models for joint entity and relation extraction. The most related work to our method
is (Miwa and Sasaki, 2014); however they employ complex search heuristics (Goldberg and Elhadad,
2010; Stoyanov and Eisner, 2012) to fill the entity-relation table based on structured prediction method.
They explicitly model the label dependencies and their joint approach is not based on neural networks.
Multi-task learning (Caruana, 1998) via neural networks (Zhang and Yeung, 2012; Seltzer and Droppo,
2013; Dong et al., 2015; Li and J, 2014; Collobert and Weston, 2008) have been used to model rela-
tionships among the correlated tasks. Therefore, we present a unified neural network based multi-task
framework to model the entity-relation table for end-to-end relation extraction.

6 Conclusion

We proposed TF-MTRNN, a novel architecture that jointly models entity and relation extraction, and
showed how an entity-relation table is mapped to a neural network framework that learns label interde-
pendencies. We introduced word-level relation classification through composition of words; this is ad-
vantageous in modeling multiple relation instances without knowing the corresponding entity mentions
in a sentence. We also introduced context-awareness in RNN network to incorporate missing informa-
tion, and investigated piggybacking approach to model entity-relation label interdependencies.

Experimental results show that TF-MTRNN outperforms state-of-the-art method for both entity and
relation extraction tasks.
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Appendix A. R-biRNN discussed in section 2.5.
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Figure 12: R-biRNN. Disintegrating TF-MTRNN (Figure 3) to illustrate that it is comprised of R-biRNN for entity learning.
(...) indicates remaining words in the sentence (Figure 1).
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