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Abstract 

Textual information is of critical importance for automatic user classification in social media. However, 

most previous studies model textual features in a single perspective while the text in a user homepage 

typically possesses different styles of text, such as original message and comment from others. In this 

paper, we propose a novel approach, namely ensemble LSTM, to user classification by incorporating 

multiple textual perspectives. Specifically, our approach first learns a LSTM representation with a 

LSTM recurrent neural network and then presents a joint learning method to integrating all naturally-

divided textual perspectives. Empirical studies on two basic user classification tasks, i.e., gender 

classification and age classification, demonstrate the effectiveness of the proposed approach to user 

classification with multiple textual perspectives.  

1 Introduction 

User attribute classification, also namely user classification for short, is a task which aims to leverage 

user-generated content to automatically predict user’s attributes, such as gender (Wang et al., 2015), 

age (Rao et al., 2010; Sap et al., 2014) and location (Cheng et al., 2010). Recently, the growth of 

online social networks provides the opportunity to perform user classification in a broader context 

(Bollen et al., 2011; Sadilek et al., 2012; Lampos and Cristianini, 2010; Zamal et al., 2012). Basically, 

user classification is a fundamental task not only in sociolinguistic studies, but also in many real 

applications, such as recommender systems, and online advertising (O’Connor et al., 2010; Preotiuc-

Pietro et al, 2015). 
 

Text style User A            Gender: female User B              Gender: male 

Original 

Message 
“Just bought the lipstick, look beautiful?” “The first day, hard work.” 

Retweeted 

Message 

“Seaweed mask, it is so remarkably 

efficient.” 
“Love her, take her to see the sea.” 

Comment 

from others 
“Sister, you’re so pretty!” “Go to see my latest message” 

Comment to 

others 
“Thanks.” “Sister, you’re so pretty!” 

 

Table 1: Some examples of different text styles in two users’ homepages in a social media 
 

Currently, machine learning approaches have dominated the research on user classification where 

statistic classifiers are learned with labeled data and various kinds of features, such as textual features, 
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behavior features, and social connection features (Preotiuc et al., 2015, Lampos et al., 2016). Among 

these features, textual features are most popular and they are good clues to infer the user attributes 

(Zhu et al., 2015; Li et al., 2015). For example, in Table 1, User A publishes a text “Just bought the 

lipstick, look beautiful?” which could be used to infer the user to be a female since females are more 

likely to buy a lipstick.  

However, user-generated text sometimes possesses different styles, especially in social media. For 

instance, in Table 1, a homepage in a social media contains at least four kinds of text, namely Original 

Message, Retweeted Message, Comment From Others, and Comment To Others. Almost all previous 

studies do not distinguish these different styles of text, which might hurt the classification 

performance. For instance, in Table 1, User A has a Comment From Others “Sister, you’re so pretty!” 

and User B has the same text but belongs to a different text style, i.e., Comment To Others. When the 

classifier do not carefully differentiate these text styles but merely mix all textual information together, 

using the sample of User A as training data is more likely to classify User B to be the same gender due 

to the same text “Sister, you’re so pretty!”. Obviously, this is a wrong prediction because User B is a 

male and the word “sister” is used to call someone else. Therefore, a better way to leverage textual 

knowledge in social media should be able to distinguish different styles of text. 

In this paper, we address the above challenge by proposing a novel approach called ensemble 

LSTM recurrent neural network. Specifically, we first consider the features from each style of text as a 

separate textual perspective. Then, we train a Long Short-Term Memory (LSTM) network for each 

textual perspective respectively. Third, we add a merge layer to combine all LSTM representations by 

joint learning so as to fuse all textual knowledge. Empirical studies demonstrate that our approach 

performs much better than many strong baseline approaches. 

Note that the motivation of employing LSTM as our single-perspective learning approach is that 

LSTM equips with a special gating mechanism that controls access to memory cells and it is powerful 

and effective at capturing long-term dependencies (Bengio et al., 1994). This advantage is helpful for 

modeling text and thus this approach has been successfully applied to a variety of NLP tasks, such as 

machine translation (Bahdanau et al., 2015), sentiment analysis (Tang et al., 2015), and sequence 

labeling (Chen et al., 2015). 

The remainder of this paper is organized as follows. Section 2 overviews related work on user 

classification. Section 3 introduces data collection. Section 4 proposes our multi-perspective ensemble 

LSTM approach with multiple textual perspectives for user classification. Section 5 evaluates our 

approach with a benchmark dataset. Finally, Section 6 gives the conclusion and future work. 

2 Related Work 

Over the last decade, many previous studies have been devoted to the research on user classification 

with multiple attributes, such as user gender and user age. 

User gender classification has been extensively studied in several domains, such as Blog (Peersman 

et al., 2011; Gianfortoni et al., 2011), E-mail (Mohanmad et al., 2011), YouTube (Filippova, 2012) 

and Micro-blog (Liu et al., 2013). More recently, some studies focus on some specific application 

scenarios on gender classification, such as multi-lingual gender classification (Ciot et al., 2013; 

Alowibdi et al., 2013), inferring gender by crowd (Nguyen et al., 2014) and interactive gender 

classification (Li et al., 2015).  

User age classification has been studied in two main domains, i.e., blog (Burger and Hender son, 

2006) and social media (Machinnon and Warren, 2006). In the blog domain, Schler et al. (2006) focus 

on textual features extracted from the blog text, such as word context features and POS stylistic 

features. Burger and Henderson (2006) explore some social features, such as location, time, and friend 

features, related to blogger age. Other studies, such as Rosenthal and McKeown (2011) and Goswami 

et al. (2009) explore both the textual and social features in automatic age classification. In the social 

media domain, Mackinnon and Warren (2006) explore some kind of social features, i.e., the 

relationship between users to predict a user’s age and country of residence in a social network. 

Peersman et al. (2011) apply a text categorization approach to age classification with textual features 

only, i.e., word unigrams and bigrams. More recently, Marquardt et al. (2014) propose a multi-label 

classification approach to predict both the gender and age of authors from texts. Specifically, besides 

the word features, they also adopt some sentiment and emotion features in their approach. 
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Figure 1: The framework of multi-perspective ensemble LSTM neural network 

 

 Some other user attributes, such as user location (Cheng et al., 2010), political orientation (Rao et 

al., 2010) and user occupational class prediction (Preotiuc-Pietro et al, 2015) are also popularly 

studied in recent years. Unlike all previous studies, this paper employs a deep learning approach to 

user classification and different styles of textual features are treated separately. 

3 Data Collection 

Our data are collected from Sina Micro-blog1, a famous Micro-blogging platform in China. From the 

website, we crawl each user’s homepage which contains user information (e.g., name, age, gender, 

verified type), and their posted messages. The data collection process starts from some randomly 

selected users, and iteratively gets the data of both their user attributes including gender and age. 

Different styles of text in each user’s homepage are collected and they are: 

1) Original message: the messsages which are originally published by the user; 

2) Retweeted message: the messages which are retweeted by the user; 

3) Comment from others: the comments which are written by other users; 

4) Comment to others: the comments which are written by the user. 

For gender classification, we randomly select 3000 male and 3000 female users for our empirical 

study and for age classification, we randomly focus on two age categories: 80s (birthday between 1980 

and 1989), 90s (birthday between 1990 and 1999), each of which contains 3000 samples. 

Table 2 shows the statistics about the average number of messages each user possessed in his/her 

homepage. From this table, we can see that each style of text has a decent number of messages or 

comments where original message and comment to others have more messages or comments than the 

other two styles. 

 
Gender Age 

Male Female 80s 90s 

Original 

message 
148 158 154 153 

Retweeted 

message 
84 95 86 90 

Comment 

from others 
140 189 175 189 

Comment 

to others 
83 121 105 128 

 

Table 2: Statistics about the average number of messages each user processed in his/her homepage 

4 Our Approach 

We treat the four styles of text as four textual perspectives for user classification and learn a multi-

perspective ensemble LSTM recurrent neural network to make full use of all these perspectives. In 

general, our approach consists of two main components: (1) learning a new representation via a single-

                                                 
1 http://weibo.com/ 
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perspective LSTM recurrent neural network of one type of user perspective. (2) employing a merge 

layer via joint learning to combine four different types of user perspectives. Figure 1 shows the 

framework overview of our approach and the two main components, i.e., single-perspective LSTM 

and multi-perspective ensemble LSTM via joint learning, will be discussed in detail. 

4.1 Single perspective LSTM   

In this study, we apply the implementation used by (Graves, 2013). The LSTM units at each time step 

t  are defined to be a collection of vectors in 
d
: an input gate 

ti , a forget gate 
tf , an output gate 

to , 

a memory cell 
tc  and a hidden state 

th .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The framework of single perspective LSTM 

 

Figure 2 illustrates the model architecture of our single-perspective LSTM where only one single 

LSTM layer is used. The input contains the representation of one type of textual perspective. 

According to the transition mode above, the input propagates through LSTM layer, Fully-connected 

layer and Dropout layer. The computing functions are given as following: 

 
T

h h b                                                                          (1) 

   *g h D p                                                                   (2) 

Where   is the non-linear activation function, employed “relu” in our model and h  is the output 

from LSTM layer. D  denotes the dropout operator and p  denotes a tune-able hyperparameter (the 

probability of retaining a hidden unit in the network). 

4.2 Multi-perspective Ensemble LSTM via Joint Learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The framework of our multi-perspective ensemble LSTM approach 
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In order to distinguish the four types of textual perspectives and make full use of them legitimately, we 

propose a multi-perspective ensemble LSTM via joint learning to incorporate classification knowledge 

in original message, retweeted message, comment from others and comment to others separately. 

Figure 3 shows the framework of our multi-perspective ensemble LSTM approach where 
1g , 

2g , 
3g  

and 
4g  are four LSTM representations learned from four single-perspective LSTM neural networks 

with four styles of textual perspectives. 

The merge layer is designed to combine four types of user representation with a standard 

concatenation operation, i.e.: 

 1 2 3 4; ; ;g g g g g                                                             (3) 

Finally, a softmax output layer is used for classification. The model’s prediction predlabel  is the 

class whose probability is maximal, specifically: 

 argmax , , ,pred ilabel P Y i x W U V                                          (4) 

 In our joint learning, the training objective is the penalized cross-entropy error, i.e.: 

2 2 2

1 1

log
cn m

i i i i iF F F
i i

J t y W U V  

     


    

 
     

 
                               (5) 

Where cn
t  is the one-hot represented ground truth and cn

y  is the estimated probability for 

each class by softmax. (
cn  is the number of target classes; m  is the number of textual perspectives). 

In addition, W , U  and V  represent the corresponding weight matrices connecting them to the gates. 

F
  denotes the Frobenius norm of a matrix.  , , ,i f o c  ,  , , ,i f o c   and  , ,i f o   are the 

set of different gates (for W ’s, U ’s and V ’s, respectively).   is a hyperparameter that specifies the 

magnitude of penalty on weights. 

To train our ensemble LSTM, we use Stochastic Gradient Descent with mini-batches. The set of 

parameters to learn is the set  , ,W U V   in each single LSTM RNN of user perspective. The 

gradients  /J    are achieved through the back propagation algorithm (a special case of the chain-

rule of derivation). Specifically, in terms of iW 
, the update equation is given by: 

: i i i
i i

i i i i

g h hJ g
W W

g g h h W

 





 

   
     

    
                                         (6) 

Where i

i

h

W 




in LSTM unit will be computed via back propagation though time (BPTT). In the same 

spirit, iU 
and iV 

 could be obtained as following: 

: i i i
i i

i i i i

g h hJ g
U U

g g h h U

 





 

   
     

    
                                         (7) 

: i i i
i i

i i i i

g h hJ g
V V

g g h h V

 





 

   
     

    
                                          (8) 

5 Experiments 

In this section, we empirically evaluate the performance of our approach to user classification in social 

media. 

5.1 Experimental Settings 

Dataset: (1) Gender classification: the dataset contains 3000 male and 3000 female users and each 

user has four styles of text: original message, retweeted message, comment from others and comment 

to others. We randomly select 4200 (70%) users as training data, 600 (10%) users as development data 

and use the remaining 1200 (20%) users as test data. (2) Age classification: the data set contains 3000 

80s (between 1980 and 1989) users and 90s (between 1990 and 1999) users and each user has four  
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Parameter and Description Value 

Size of total unigram features 30000 

Dimension of the LSTM layer output 128 

Dimension of the fully-connected layer output 64 

Dropout rate 0.5 

Epochs of iteration 10 

 

Table 3: Parameters setting in LSTM RNN 
 

 ME CNN Parallel CNN LSTM 

Original message 0.843 0.843 0.849 0.863 

Retweeted message 0.784 0.793 0.788 0.791 

Comment from others 0.825 0.798 0.818 0.823 

Comment to others 0.736 0.743 0.754 0.776 

Average 0.797 0.794 0.802 0.813 

 

Table 4: Performance comparison of different approaches with single textual perspective 

(Gender Classification) 
 

styles of text: original message, retweeted message, comment from others and comment to others. We 

randomly select 4200 (70%) users as training data, 600 (10%) users as development data and use the 

remaining 1200 (20%) users as test data. 

Representations: Each message text is treated as a bag-of-features and transformed into binary 

vectors encoding the presence or absence of each feature. The features include word unigrams, and 

two kinds of complex features, i.e., F-measure and POS sequence pattern features, which yield the 

state-of-the-art performance in user classification (Mukherjee and Liu, 2010). 

Classification algorithms: (1) The maximum entropy (ME) classifier implemented with the public 

tool, Mallet Toolkits2 . (2) The random forest classifier and adaboost classifier implemented with the 

public tool, scikit-learn3 . (3) The CNN classifier implemented with the help of the tool Keras4. (4) The 

LSTM classifier implemented with the help of the tool Keras. 

Parameters Setting: (1) The most important parameter of RF and ABC is estimators, which is set 

500 via fine-tuning. (2) The parameters of LSTM are set as shown in Table 3.  

Evaluation Measurement: The performance is evaluated using the standard accuracy measurement. 

5.2 Experimental Results 

Experimental Results on Single Textual Perspective 

For thorough comparison, four approaches with single perspective are implemented: 

 ME: the maximum entropy classifier with all the parameters default. 

 CNN: the basic bow-CNN is proposed in (Johnson and Zhang, 2014). 

 Parallel CNN: the extension of bow-CNN, which has two or more convolution layers in parallel 

to learn multiple types of embedding of small text regions, proposed in (Johnson and Zhang, 

2014). 

 LSTM: the single perspective LSTM introduced in Section 4.1. 

Table 4 shows the performance comparison of four approaches to gender classification. From this 

table, we can see that the text style of original message performs best among all four styles of text no 

matter what classification approach is used. On average, CNN and Parallel CNN performs better than 

ME. Among the four approaches, LSTM perform best. Significance test shows that our LSTM 

approach significantly outperforms the other four approaches (p-value<0.05). 

Table 5 shows the performance comparison of four approaches to age classification. From the table, 

we can see that the text style of original message performs best among all four styles of text no matter  

                                                 
2 http://mallet.cs.umass.edu/ 
3 http://scikit-learn.org/stable/ 
4 https://github.com/fchollet/keras  
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 ME CNN Parallel CNN LSTM 

Original message 0.793 0.775 0.763 0.794 

Retweeted message 0.707 0.699 0.733 0.745 

Comment from others 0.736 0.761 0.757 0.759 

Comment to others 0.745 0.751 0.744 0.760 

Average 0.745 0.747 0.749 0.765 

 

Table 5: Performance comparison of different approaches with single textual perspective  

(Age Classification) 
 

Approach RandomForest Adaboost 
Voting 

LSTM 

Weighted_Sum 

LSTM 
Ensemble 

LSTM (Ours) 

Accuracy 0.791 0.803 0.853 0.885 0.908 

 

Table 6: Performance comparison of five approaches with multiple textual perspective 

(Gender Classification) 
 

Approach RandomForest Adaboost 
Voting 

LSTM 

Weighted_Sum 

LSTM 
Ensemble 

LSTM (Ours) 

Accuracy 0.763 0.744 0.801 0.816 0.823 

 

Table 7: Performance comparison of five approaches with multiple textual perspective 

(Age Classification) 
 

what classification approach is used. Similar to the results in gender classification, LSTM still perform 

best in age classification. Significance test shows that our LSTM approach significantly outperforms 

the other three approaches (p-value<0.05). 

Experimental Results on Multiple Textual Perspectives 

For thorough comparison, several ensemble learning approaches with multiple perspectives are 

implemented: 

 RandomForest: a popular ensemble learning approach proposed by Strobl et al. (2007). In our 

implementation, we train multiple decision tree classifiers and employ random forest algorithm to 

combine them.  

 Adaboost: a popular ensemble learning approach proposed by (Zhu et al., 2009). In our 

implementation, we mixture the data of all perspective and use each word feature to form a weak 

classifier and then combine all feature classifier with adaboost algorithm. 

 Voting LSTM: we first use each single textual perspective to train a LSTM classifier and then 

use the voting rule (Kuncheva and Rodriguez, 2014) to combine the obtained label outputs from 

all single-perspective LSTM classifiers.  

 Weighted_Sum LSTM: we first use each single textual perspective to train a LSTM classifier 

and then use weighted sum rule (Marler and Arora, 2010) to combine the obtained probability 

outputs from all single-perspective LSTM classifiers. 

 Ensemble LSTM (Our approach): our joint learning approach as introduced in Section 4.2. 

Table 6 shows the performance comparison of all approaches to gender classification when multiple 

textual perspectives are used. From this table, we can see that, using multiple textual perspectives does 

not always outperform the best performed approach with a single textual perspective. For instance, 

when RandomForest and Adaboost are used, the performance of using multiple textual perspective are 

0.791 and 0.803 respectively, which are worse than that of using the Original message perspective 

with LSTM classifier, i.e., 0.863. Our ensemble LSTM approach performs best and it performs much 

better than both the best-performed single perspective LSTM (as shown in Table 4) and other strong 

ensemble strategies with multiple textual perspectives, such as Voting LSTM and Weighted_Sum 

LSTM. Significance test shows that our ensemble LSTM approach significantly outperforms other 

approaches when multiple textual perspectives are used (p-value<0.05). 
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Table 7 shows the performance comparison of all approaches to age classification when multiple 

textual perspectives are used. From this table, we can see that our ensemble LSTM approach performs 

best and it is also performs better than other strong ensemble strategies with multiple textual 

perspectives, such as Voting LSTM and Weighted_Sum LSTM. Significance test shows that our 

ensemble LSTM approach significantly outperforms other approaches when multiple textual 

perspectives are used (p-value<0.05). 

5.3 Effectiveness Analysis and Case Study 

In order to further illustrate the superiority of our approach, we give a case study as following. Table 8 

shows the selected features sorted by the feature selection method of information gain (IG) (Li et al., 

2009) when the task of gender classification is considered. We extract the features from the original 

message text and the retweeted message text separately.  

This table shows the top-10 IG features from the original message text and their ranks in the 

retweeted message text. N  denotes the sequence number of the feature in the selected features. fF  

denotes the feature frequency in all samples of female. mF  denotes the feature frequency in all 

samples of male. For instance, the sequence number of emoticon “rabbit” in original message is the 

first, the feature frequency in all samples of female is 5871, and the feature frequency in all samples of 

male is 1872. It is observed that this feature is usually used by a woman. From the table, we can see 

that many ‘good’ features in original message, such as emoticon [rabbit], 亲亲 (kiss) and讨厌 (hate), 

are not ranked top in retweeted message. If we merely merge all styles of text, some ‘good’ features in 

one textual perspective would not be as effective as in the scenario when they are separately treated.  
 

Feature 
Original message Retweeted message 

N   fF   
mF   N  fF   

mF   

表情符-兔子 (emoticon 

[rabbit]) 
1 5871 1872 154 1553 960 

亲亲  (kiss) 2 3700 978 104 1186 606 

闺蜜  (ladybro) 3 588 103 1 1186 313 

NBA 4 53 467 10 120 500 

足球  (football) 5 169 1144 5 328 1561 

球队  (team) 6 31 378 3 135 810 

讨厌  (hate) 7 1854 773 797 1470 943 

进球 (goal) 8 23 296 6 96 607 

委屈 (grievance) 9 2358 802 -- -- -- 

男神 (dream guy) 10 1163 331 26 843 334 

 

Table 8: The top-10 IG features from the original message text and their ranks in the retweeted 

message text 

6 Conclusion 

In this study, we propose a novel approach, namely ensemble LSTM, to user classification, which 

jointly learns textual features from different textual perspectives. Our contributions lie in two main 

aspects: First, the proposed LSTM approach with a single textual perspective performs much better 

than traditional approaches, such as ME and CNN, for user classification. Second, the proposed 

ensemble LSTM approach significantly outperforms both the approaches which use only one single 

textual perspective and several other ensemble approaches. 

In our future work, we attempt to apply bidirectional LSTM in user classification to utilize both the 

bi-directional contexts. Moreover, in addition to the textual features, we would like to merge social 

features to further improve performance. What’s more, we will apply our proposed multi-perspective 

ensemble LSTM model in some other tasks of user classification, such as user occupation 

classification and so on. 
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