Detecting Context Dependent Messages in a Conversational Environment

Chaozhuo Li', Yu Wuf, Wei Wuf, Chen Xing®, Zhoujun Li’, Ming Zhou'
fState Key Lab of Software Development Environment, Beihang University, Beijing, China
t Microsoft Research, Beijing, China
¢ Nankai University, Tianjin, China
{lichaozhuo,wuyu,lizj} @buaa.edu.cn {wuwei,v-chxing,mingzhou } @ microsoft.com

Abstract

While automatic response generation for building chatbot systems has drawn a lot of attention
recently, there is limited understanding on when we need to consider the linguistic context of
an input text in the generation process. The task is challenging, as messages in a conversational
environment are short and informal, and evidence that can indicate a message is context depen-
dent is scarce. After a study of social conversation data crawled from the web, we observed that
some characteristics estimated from the responses of messages are discriminative for identifying
context dependent messages. With the characteristics as weak supervision, we propose using a
Long Short Term Memory (LSTM) network to learn a classifier. Our method carries out text
representation and classifier learning in a unified framework. Experimental results show that the
proposed method can significantly outperform baseline methods on accuracy of classification.

1 Introduction

Together with the rapid growth of social media such as Twitter and Weibo, the amount of conversation
data on the web has tremendously increased. This makes building open domain chatbot systems with
data-driven approaches possible. To carry on reasonable conversations with humans, a chatbot system
needs to generate proper response with regard to users’ messages. Recently, with the large amount of
conversation data available, learning a response generator from data has drawn a lot of attention (Ritter
et al., 2011; Shang et al., 2015; Vinyals and Le, 2015).

A key step to coherent response generation is determining when to consider linguistic context of mes-
sages. Existing work on response generation, however, has overlooked this step. They either totally
ignores linguistic context (Ritter et al., 2011; Shang et al., 2015; Vinyals and Le, 2015) or simply con-
siders context for every message (Sordoni et al., 2015b; Serban et al., 2015). The former case is easy to
lead to irrelevant responses when users’ input messages rely on the context information in previous con-
versation turns, while the latter case is costly (e.g., on memory and responding time) for building a real
chatbot system and has the risk of bringing in noise to response generation especially when users want to
end the current conversation topic and start a new one. According to our observation, there are two types
of messages in a conversational environment. The first type is context dependent message, which means
to reply to the message, one must consider previous utterances in the dialogue', while the second type is
context independent message, which means even without the previous utterances, the message itself can
still lead to a reasonable response. Table 1 compares the two types of messages using examples. In Case
1, “why do you think so” is a context dependent message. In order to reply to the message, one cannot
ignore its linguistic context “I think it will rain tomorrow”. On the other hand, in Case 2, “Well, what
time is it now” is a context independent message, as one can give a reasonable response without looking
at the previous turns. Distinguishing context dependent messages from context independent messages
is important for building a good response generator. Missing linguistic context for context dependent

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
"Broadly speaking, context may not be limited to linguistic context. For example, a user’s interest could also be a kind of
context. As the first step, in this work, we only focus on “linguistic context”.

1990

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1990-1999, Osaka, Japan, December 11-17 2016.

Table 1: Two types of messages

Case 1 : a context dependent message Case 2 : a context independent message

User : What will the weather be like tomorrow? | User : What are you doing?

Chatbot : I think it will rain tomorrow. Chatbot : I am waiting for you to watch NBA.
User : Why do you think so? User : Well, what time is it now?

messages will lead to nonsense response. For example, “because I love you” could also be a response
for the message “why do you think so” if we only look at the message itself, but it is nonsense appearing
in the dialogue of Case 1. Incorporating context information into context independent messages will
increase the workload of a generation system and has the risk of bringing in noise to the generation pro-
cess. For example, if we consider the context “NBA” for the message “Well, what time is it now”, the
chatbot will probably say something about “NBA” rather than answer the question with a time answer.
Although detecting context dependent messages is crucial for building chatbot systems, there is limited
understanding about it.

In this paper, we study this important but less explored problem. Instead of answering how to incor-
porate context information, we try to understand when we need the information. Therefore, our effort
is complementary to the existing work on response generation. It can keep the existing generation algo-
rithms context-aware and improve their efficiency and robustness to noise. The task is challenging, as
messages in a conversational environment are usually short and informal, and evidence that can indicate
a message is context dependent is scarce. For example, on 3 million post-response pairs crawled from
Weibo, the average length of messages is 4.65. On such short texts, classic NLP tools such as POS Tag-
ger and Parser suffer from bad performance (Derczynski et al., 2013; Foster et al., 2011) and it is difficult
to explicitly extract features that are discriminative on the two types of messages. More seriously, there
are no large scale annotations available for building a supervised learning procedure.

We consider leveraging the large amount of human-human conversation data available on the web
to learn a message classifier. Our intuition is that a context dependent message has different linguistic
context in different conversation sessions, therefore its responses could be more diverse on content than
responses of a context independent message. To verify this idea, we study the distributions of responses
of messages using conversation data crawled from social media and find that the length distribution of
responses and the word distribution of responses are quite discriminative on the two types of messages.
Based on this observation, for each message in the crawled data, we estimate the average length of
responses, the entropy of the word distribution of responses, and the maximum mass of the word distri-
bution of responses, and take these characteristics as weak supervision signals to learn a classifier. The
classifier takes a message as input and can make prediction for any messages in a real conversation en-
vironment, even though the messages do not appear in the crawled data and characteristics like entropy
are not available for them. We propose using a Long Short Term Memory (LSTM) architecture to learn
the classifier. Our model represents message texts in a continuous vector space using a one-layer LSTM
network. The text vectors are then provided as input to a two-layer feed-forward neural network to per-
form classification. The neural network architecture carries out feature learning and model learning in
a unified framework, and thus can avoid explicit feature extraction which is difficult on short conversa-
tional messages. Our method leverages large scale weak supervision signals extracted from responses in
social conversation data and can reach a satisfactory accuracy with only a few human annotations.

We conduct experiments on large scale English and Chinese conversation data mined from Twitter
and Weibo respectively, and test the performance of our method on thousands of messages annotated
by human labelers. Experimental results show that our method can significantly outperform baseline
methods on accuracy of message classification on both of the two data sets.

We make the following contributions in this paper: 1) proposal of detecting context dependent mes-
sages in a conversational environment; 2) proposal of learning weak supervision signals from responses
of messages using large scale conversation data; 3) proposal of using an LSTM architecture to learn a
message classifier; 4) empirical verification of the proposed method on human annotated data.

1991

2 Related Work

Our work lies in the path of building chatbot systems with data-driven approaches. Differing from tradi-
tional dialogue systems (cf., (Young et al., 2013)) which rely on hand-crafted features and rules to gen-
erate reply sentences for specific applications such as voice dialling (Williams, 2008) and appointment
scheduling (Janarthanam et al., 2011) etc., recent effort focuses on exploiting an end-to-end approach
to learn a response generator from social conversation data for open domain dialogue (Koshinda et al.,
2015; Higashinaka et al., 2016). For example, Ritter et al. (Ritter et al., 2011) employed a phrase-based
machine translation model for response generation. In (Shang et al., 2015; Vinyals and Le, 2015), neu-
ral network architectures were proposed to learning response generators from one-round conversation
data. Based on these work, Sordoni et al. (Sordoni et al., 2015b) incorporated linguistic context into the
learning of response generator. Serban et al. (Serban et al., 2015) proposed a hierarchical neural net-
work architecture to building context-aware response generation. In this paper, instead of studying how
to incorporate context into response generation, we consider the problem that when we need context in
the process. Our work can keep the existing generation algorithms context-aware and at the same time
improve their efficiency and robustness.

We employ a Recurrent Neural Network (RNN) architecture to learn a message classifier. RNN models
(Elman, 1990), due to their capability of modeling sequences with arbitrary length, have been widely
used in many natural language processing tasks such as language modeling (Mikolov et al., 2010) and
tagging (Xu et al., 2015) etc. Recently, it is reported that Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) as two special RNN models
which can capture long term dependencies in sequences outperform state of the art methods on tasks like
machine translation (Sutskever et al., 2014) and response generation (Shang et al., 2015). In this paper,
we apply the LSTM architecture to the task of context dependent message detection. We append LSTM
with a two-layer feed-forward neural network, thus feature learning and model learning can be carried
out simultaneously.

Our work belongs to the scope of short text classification (Song et al., 2014). Existing applications of
short text classification include query classification (Kang and Kim, 2003), tweet classification (Sriram
et al., 2010), and question classification (Zhang and Lee, 2003). We study a new problem in short
text classification: distinguishing context dependent messages from context independent messages in a
conversational environment. The task is important for building open domain chatbot systems and has
its unique challenges (e.g., new data structure). We tackle the challenges by leveraging the responses of
messages and utilizing an LSTM network to conduct feature learning and model learning simultaneously.

3 Learning to Detect Context Dependent Messages

Suppose that we have a data set D = {(m;,y;)}; where m; is a message composed of a sequence of
words (W, .1, - -, Wm, n;) and y; is an indicator whose value reflects whether m; is context dependent
or not. Our goal is to learn a function g(-) € {—1, 1} using D, thus for any new message m, g(-) predicts
m a context dependent message if g(m) = 1. To this end, we need to answer two questions: 1) how to
construct D; 2) how to perform learning using D.

For the first question, we can crawl conversation data from social media like Twitter and ask human
labelers to annotate the messages in the data. The problem is that human annotation is expensive and time
consuming and therefore we cannot obtain a large scale data set for learning. To solve the problem, we
automatically learn some weak supervision signals using responses of messages in social conversation
data, and take the signals as {y;} in D. For the second question, one straightforward way is first extract-
ing shallow features such as bag-of-words and syntax from messages and then employing off-the-shelf
machine learning tools to learn a model. The problem is that shallow features are not effective enough
on representing semantics in short conversation messages, which will be seen in our experiments. We
propose using a Long Short Term Memory (LSTM) architecture to learn a model from D. The advantage
of our approach is that it can avoid explicit feature extraction and large scale human annotations, and
carry out feature learning and model learning in a unified framework.

1992

3.1 Learning Weak Supervision Using Responses

Instead of requiring human annotations, we consider creating signals that are discriminative on the two
types of messages from large scale social conversation data available on the web. Our intuition is that a
context dependent message has different linguistic context in different conversation sessions, therefore,
its responses could be more diverse on content than responses of a context independent message (one
message may appear multiple times, and therefore it may correspond to multiple responses). Table
2 illustrates our idea with some examples from Twitter. The last column of the table represents the
frequency of the message or the frequency of the response under the message. For each message, we
show the top 5 most frequent responses. From the examples, we can see that a context dependent message
tends to have divergent and uniformly distributed responses corresponding to different linguistic context,
while the responses of a context independent message share relatively similar content and some content
dominates the distribution.

Table 2: Responses of the two types of messages

Context dependent message : why 2196 | Context independent message : Good night 644
Response 1 : [am kidding 7 Response 1 : Good night 47
Response 2 : He can be like mcdaniels for sixer 5 Response 2 : Goodnight 44
Response 3 : Because I say no 5 Response 3 : Night 23
Response 4 : I am tired 5 Response 4 : Sleep well 10
Response 5 : U will become dependent on them 5 Response 5 : Thank you 9

The examples inspire us to investigate some statistical characteristics that can reflect the diversity of
responses. These characteristics could be good indicators of context dependent messages, and we can
construct {y; } in D using the characteristics. We estimate the following statistical characteristics for each
message using its responses, and examine how the characteristics are discriminative on the two types of
messages using 1000 labeled messages from Twitter and Weibo respectively. The details of the labeled
data will be described in our experiments.

Entropy: the first characteristic we investigate is the entropy of the word distribution of responses,
which is a common measure for diversity. Given a word distribution P = (p1, p2, ..., pn), the entropy
of the distribution is defined as

n

E(P) = —pilog,(p:)- 1)

i=1
The maximum of the entropy is logs(n) which is reached when the distribution is uniform. Then, a
large entropy means a word distribution covers many words (i.e., n is big) and is close to a uniform
distribution. Therefore, a context dependent message should have a larger entropy on responses than
a context independent message (see the comparison in Table 2). We normalize the entropy to [0, 1] by

%, where max(E) and min(E) represent the maximum entropy and the minimum entropy
in the data set. Figure 1(a) shows the comparison of the two types of messages on normalized entropy
using the Twitter labeled data. In the figure, each value on the x-axis represents an interval with a fixed
length 0.05. For example, 0.50 means an interval [0.5, 0.55). Each value on the y-axis represents the per-
centage of messages in a specific interval. For example, among messages falling in the interval [0.95, 1),
nearly 80% are labeled as context dependent and only about 20% are labeled as context independent.
From the figure, we can see that entropy is discriminative on the two types of messages: context de-
pendent messages distributes on large entropy areas, while context independent messages tend to have
smaller entropy.

M(P): in addition to entropy, another characteristic that might reflect the diversity of responses could
be the maximum mass of the word distribution of responses, as in diverse responses, words should be
uniformly distributed (stopwords are removed), while in less diverse responses, there may exit dominant
words (e.g., “night” in Table 2). Given a word distribution P = (p1, p2, ..., pn), we define a character-
istic as

M(P)=1-— maxp; 2

1<i<n

Figure 1(b) compares the two types of messages on M (P) using the Twitter labeled data, in which values

1993

B2 Context Dependent
BB Context Independent

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 70.150.20.250.30.350.4 0.450.50.55 0.6 0.65 0.7 0.75 : 0 0.1 0.2 0.3
Entropy (Normalized) M(p) Average Length (Normalized)

(a) Comparison on entropy (b) Comparison on M (P) (c) Comparison on average length of re-
sponses

Figure 1: Comparison of the two types of messages on three characteristics.

on the x-axis and y-axis have the same meaning as those in Figure 1(a). From the figure, we can see that
similar to entropy, M (P) is useful on distinguishing the two types of messages. Context dependent
messages have larger M (P) than context independent messages.

Average length of responses: finally, we consider the length distribution of responses. Since re-
sponses of context dependent messages are more diverse on content, they might be longer than responses
of context independent messages. We calculate the average length of responses for each message and
normalize it to [0, 1] in the same way as entropy. Figure 1(c) compares the two types of messages on
average length of responses using the Twitter labeled data, where values on the x-axis represent intervals
with a length 0.1. The result supports our claim and clearly indicates that average length is discriminative
on the two types of messages.

We combine the three characteristics using a linear SVM classifier learned with the 1000 labeled
messages and take the output of the SVM (a real value) as {y;} in D. By this means, we can create
a large scale training data set with only a little human labeling effort. Here, as a reference, we also
report the classification accuracy of the three characteristics and the SVM classifier on the 1000 labeled
data. Each characteristic corresponds to a threshold tuned on the 1000 labeled data with 5-fold cross
validation. If a value of a characteristic of a message is larger than the threshold, then the message will
be predicted as context dependent. Table 3 shows the classification accuracy of 5-fold cross validation
(average of 5 results), where SVM (com) refers to the SVM classifier. Details of experiment setting will
be described in Section 4. From Table 3, we can see that the numbers are consistent with Figure 1(a),
1(b), and 1(c).

Table 3: Classification accuracy on 1000 labeled data

Weibo | Twitter
Entropy 72.6% | 70.5 %
M(P) 72.6 % | 69.8 %
Average length of responses | 72.8 % | 68.5 %
SVM (com) 738 % | 71.2 %

3.2 Model Learning

We head for learning ¢(-) using D constructed in Section 3.1. Note that g(-) only takes a message m as
input, and thus can make prediction for any messages in a real chatbot system even though the messages
are not in D and their entropy, M(P), and average length of responses are not available. Our idea is that
we first learn a regression model by fitting {y;} in D through minimizing the sum of squared residuals
and then construct g(-) by comparing the output of the regression model with a threshold. We can obtain
the threshold by tuning it on a few labeled data (e.g., the 1000 labeled data). The key is how to learn the
regression model. We propose using a Recurrent Neural Network (RNN) architecture to embed messages
into a continuous vector space and learning a regression model with the embedding of messages using a
feed-forward neural network. The RNN model, which is capable of embedding sequences with arbitrary

1994

length, can encode the order of words and the semantics of a message into a vector representation which
has been recently proven effective on capturing similarity of short texts (Sordoni et al., 2015a). We take
the output vector given by RNN as a feature representation of a message and feed it to a feed-forward
neural work. By this means, we can conduct feature learning and model learning in a unified framework
and jointly optimize the two components.

Feed Forward
LSTM Framework @ @ @ Neural Network
Y 'y
oyl 2
. GD) &3
LSTM Unit fi i u 0 (%) in—%00 0 () O
o] (0] [ew] [] o
h h, 3
\ |r 'y L al®) @
@)
Word
Embedding % (OO O] (00 0] ~(©00) ©
Message -

Figure 2: The architecture of our method

Given a message m which consists of n words, the RNN model reads the words one by one, and
updates a recurrent state h; for the ¢-th word w; by

he = f(ht*hxt)a hO = Oa (3)

where hy € R%, 2, € R% is the vector representation of wy, and f is non-linear transformation. h;
acts as an encoding of the semantics of the word sequence up to position ¢, and the final output h,, is
a representation of message m. Both x; and h; are learned in the optimization of the RNN model. We
select the Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) as f, since it can
model long term dependencies in sequences with affordable complexity. LSTM controls the learning
of the representation of a sequence by gates. Specifically, at position ¢, LSTM controls the information
that should be kept from previous states by an input gate ;, and the information that should be forgotten
by a forget gate f;. After memorizing and forgetting, the information is stored in a memory cell ¢;. ¢
generates the recurrent state h; through an output gate o;. The specific parameterization of LSTM is
given by

i =o(WPz + UDhy_y +b)
fo= O’(W(f>l't +UDn, + b(f))

o =o(W % + U Ry +b)

Up = tanh(W(“)a:t +UWh_y + b(“))
ct =it @ur + fi @ c_1)

ht = 0; ® tanh(cy),

u)

where o (-) is a sigmoid function and tanh(-) is a hyperbolic tangent function. W®, W), 1w (@) 1y
€ Ridnxdw (@) (f) gl y) ¢ Rinxdn and @), p(F), p0) p(w) ¢ Rdnx1 gre parameters. ® means
element-wise multiplication. After we get the final state h,,, we feed it to a two-layer feed-forward neural
network to get an output s which is defined by

s =by + Wo (tanh(b1 + Wlhn)) s “4)
where by € R%&*L W, € R%*dn W, € R4 and by € R are parameters. Figure 2 illustrates the
architecture of our method.

For each m; in D, we calculate an s; using Equation (4) as an estimation of y;. We then learn the

parameters of the LSTM network and the feed-forward network by minimizing the sum of the squared
residuals. Formally, our learning approach can be formulated as

N
arg min Z:(yZ —s;)2.)
s p—

1995

After we obtain the parameters, we can calculate an s,,, for any message m using Equation (4). We then
tune a threshold 7" with a few labeled messages. The classifier g(-) is given by

1 ifse>T
g(m) _{ —1 otherwise ©)

The gradients of the objective function (5) are computed using the back-propagation through time
(BPTT) algorithm (Williams and Peng, 1990). We share the code for model learning at https:
//github.com/whatsnamel991/coling2016.

4 Experiments

4.1 Experiment Setup

We constructed the conversation data for experiments from Weibo and Twitter. In each of the two social
media, two persons can communicate by replying to each other under a post. We crawled sequences
of reply with posts and extracted triples like “(context, message, response)” as experimental data. In a
triple, “message” is a reply, “context” is the sentence in the previous turn of the message (a reply or a
post), and “response” is the sentence in the next turn (reply to the message). Note that in this work, we
restrict the context of a message to a single sentence. This is a simplification of context in conversation.
In real conversation, context could be more complicated and we leave the discussion of it as future work.

We crawled 5.9 million English triples from Twitter, and 3.1 million Chinese triples from Weibo.
The numbers of distinct messages in the Twitter data and in the Weibo data are 92,755 and 112,175
respectively. On average, each Twitter message has 63.26 responses (some messages like “hello” can
have many different responses) and each Weibo message has 27.52 responses. The average word length
of Twitter message is 3.39 and the word average length of Weibo message is 4.65. English sentences
were stemmed and stop words were removed, and Chinese sentences were segmented.

We constructed D = {(m;, y;)})*, in Section 3.1 in the following way: we first calculated entropy,
M (P), and average length of responses for each message using the 5.9 million English triples and 3.1
million Chinese triples. Then from these data, we randomly sampled 1000 English triples and 1000
Chinese triples as validation sets. For each triple in the validation data, we hid the response and recruited
human judges to label if the message is context dependent or not. Note that we hid responses when
labeling messages because this is more close to the real case. In a real chatbot system, one has to
determine if a message is context dependent or not before generating a response. Each judge labeled
a message with 1 if it is context dependent, otherwise the judge labeled the message with —1. Each
message got three labels and the majority of the labels was taken as the final decision for the message. In
the Weibo data, there are 412 positive examples and 588 negative examples. In the Twitter data, the two
numbers are 440 and 560, respectively. With the two validation data sets, we learned two SVM classifiers
in order to combine the three characteristics as described in Section 3.1. Parameters of SVMs were tuned
by 5-fold cross validation. Finally, we assigned a y; to each m; in the 112, 175 Twitter messages and
92,755 Weibo messages by the output of the SVM classifiers, and formed D for both English data and
Chinese data. We trained LSTM models using D.

To evaluate the performance of different models, we crawled another 3000 Chinese context-message
pairs and 1000 English context-message pairs from Weibo and Twitter respectively, and followed the
same way as the validation data to judge if the messages are context dependent or not. We used these
data to simulate real context-message pairs in chatbot systems. In the Weibo data, there are 2715 unique
messages and 1983 messages are not in D. The numbers of positive examples and negative examples are
1472 and 1528 respectively. In the Twitter data, the number of unique messages is 875 and 366 messages
are not included by D. The numbers of positive and negative examples are 464 and 536 respectively.
Note that for messages that are not included by D, their characteristics (i.e., entropy, M (P), and average
length of responses) are not available, and we can only use classifiers whose features are extracted from
messages (like our LSTM models) to make prediction. This is close to a real situation in chatbots, and
we took the two data sets as test sets.

We considered the following methods as baselines:

1996

Length: intuitively, short messages tend to be context dependent (e.g., “why” in Table 2). Therefore,
we employed length of a message as a baseline. A message shorter than a threshold will be predicted as
a context dependent message.

MDF: given a word, we estimated the number of messages that contain the word and named it “docu-
ment frequency” (DF). We constructed a list of words associated with DF using D. For a new message,
we calculated the minimal DF of words in the message using the list. A context dependent message like
“why do you think so” may consist of common words, and thus correspond to a high minimal DF. We
considered minimal DF as a baseline. A message with a minimal DF larger than a threshold will be
predicted as a context dependent message.

SVM (Length+MDF): we linearly combined Length and MDF by learning an SVM classifier on the
validation data.

SVM (classification): we extracted unigrams, bigrams, and frequencies of POS tags as features
from a message, and learned a linear SVM classifier on the validation data with these features.
POS tags for Chinese data were obtained using Stanford Parser (http://nlp.stanford.edu/
software/lex-parser.shtml) and POS tags for English data were obtained using TweetNLP
(http://www.cs.cmu.edu/~ark/TweetNLP/).

SVM (regression): instead of learning a classifier from annotations in the validation data, we fitted
{y;} in D by learning an SVM regression model using the same features as SVM (classification) and
made predictions on new messages by a threshold.

All SVM models were learned using SVM-Light (http://svmlight. joachims.org/). We
employed classification accuracy as an evaluation metric.

4.2 Parameter Tuning

For Length and MDF, the only parameter is a threshold. We tuned the thresholds on the validation
data. For all SVM models, we selected the trade-off parameter in SVM from {0.01,0.1, 1,10, 100}
by 5-fold cross validation on the validation data. SVM (regression) also needs a threshold. We tuned
it on the validation data. The parameters of LSTM include the dimension of word vectors d,,, the
dimension of hidden states dj,, and the dimension of the first layer of the feed-forward network ds. We
set dy, = dp, = 256, and d; = 100. Besides these parameters, we also set a dropout rate 0.1 in the
learning of the feed-forward network as regularization.

Table 4: Accuracy on two test sets Table 5: Comparison between LSTM, SVM (classi-
Weibo | Twitter fication), and SVM (regression)
Length 626 % | 61.3% Example context : Have you heard
MDF 621% | 58.6 % Taylor S\'Nift’s new song?
message: Yep, I have heard

SVM (Length+MDF) | 63.0% | 62.2 % it on Saturday night.
SVM (classification) | 66.8 % | 65.4 % ésftﬁ(- con:ex: fie(lijendeéu :

- regression context independen
SVM (regression) 643 % | 68.3 % SVM (classification) | context independent
LSTM 75.6 % | 73.4 % LSTM context dependent

4.3 Quantitative Evaluation

Table 4 reports quantitative evaluation results on the test data. From the results, we can see that our
methods outperform baseline methods. The improvement over the best performing baseline methods
(i.e., SVM (classification) on Webio and SVM(regression) on Twitter) is statistically significant (sign
test, p-value < 0.01).

Length and MDF are characteristics of messages. The results tell us that these characteristics are not so
discriminative on the two types of messages. The reason is easy to understand: we may think that context
dependent messages tend to be short and consist of common words, but the fact is that short messages
composed of common words could be context independent (e.g., “Good night” in Table 2) while long
messages like “Yep, I have heard it on Saturday night” (see the example in Table 5) could be context

1997

dependent. Both SVM (classification) and SVM (regression) perform worse than our LSTM model,
indicating that shallow features are not effective enough to represent the semantics in short conversation
messages. Our method outperforms the baseline methods on both data sets. The results verified our idea
on leveraging responses for context dependent message detection, and demonstrates the power of big
data and the advantage of LSTM on capturing semantics in short messages.

4.4 Qualitative Evaluation

We use an example to further explain why our method is effective on distinguishing the two types of
messages. Table 5 compares LSTM with SVM (classification) and SVM (regression). Both SVM (clas-
sification) and SVM (regression) rely on shallow features such as bag of words and pos tags to perform
learning. These features, however, are not effective on representing the semantics of short messages. The
representation is easily to be biased by some specific words like “Saturday night” in the example. There-
fore, both SVM (classification) and SVM (regression) failed on this case. On the other hand, LSTM
models term dependencies in sequences with a memorizing-forgetting mechanism. It can capture the
semantics in the message “Yep, I have heard it on Saturday night.” and identify that it is similar to mes-
sages like “Yes, I did” and “Yes, I have”. For example, the cosine of the vector of “Yep, I have heard it
on Saturday night.” and the vector of “Yes, I have” given by LSTM is 0.63. Since messages like “Yes, I
did” and “Yes, I have” are common context dependent messages, LSTM can successfully recognize that
the message in the example is also context dependent.

5 Conclusion

We propose learning a LSTM network with weak supervision signals estimated from responses of mes-
sages to detecting context dependent messages in a conversational environment. Evaluation results show
that the proposed method can significantly outperform baseline methods on distinguishing the two types
of messages.

Acknowledgement

This work was supported by Beijing Advanced Innovation Center for Imaging Technology (No.BAICIT-
2016001), the National Natural Science Foundation of China (Grand Nos. 61370126, 61672081), Na-
tional High Technology Research and Development Program of China (No.2015AA016004),the Fund of
the State Key Laboratory of Software Development Environment (No.SKLSDE-2015ZX-16).

References

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. EMNLP.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. 2013. Twitter part-of-speech tagging for all:
Overcoming sparse and noisy data. In RANLP, pages 198-206.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179-211.

Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner, Joseph Le Roux, Stephen Hogan, Joakim Nivre, Deirdre
Hogan, and Josef Van Genabith. 2011. # hardtoparse: Pos tagging and parsing the twitterverse. In AAAI 2011
Workshop on Analyzing Microtext, pages 20-25.

Ryuichiro Higashinaka, Nozomi Kobayashi, Toru Hirano, Chiaki Miyazaki, Toyomi Meguro, Toshiro Makino, and
Yoshihiro Matsuo. 2016. Syntactic filtering and content-based retrieval of twitter sentences for the generation
of system utterances in dialogue systems. In Situated Dialog in Speech-Based Human-Computer Interaction,

pages 15-26. Springer.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735-1780.

1998

Srinivasan Janarthanam, Helen Hastie, Oliver Lemon, and Xingkun Liu. 2011. The day after the day after tomor-
row?: a machine learning approach to adaptive temporal expression generation: training and evaluation with
real users. In Proceedings of the SIGDIAL 2011 Conference, pages 142—151. Association for Computational
Linguistics.

In-Ho Kang and GilChang Kim. 2003. Query type classification for web document retrieval. In SIGIR, pages
64-71. ACM.

Makoto Koshinda, Michimasa Inaba, and Kenichi Takahashi. 2015. Machine-learned ranking based non-task-
oriented dialogue agent using twitter data. In 2015 IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology (WI-IAT), volume 3, pages 5-8. IEEE.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. 2010. Recurrent neural
network based language model. In INTERSPEECH 2010, 11th Annual Conference of the International Speech
Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045-1048.

Alan Ritter, Colin Cherry, and William B Dolan. 2011. Data-driven response generation in social media. In
EMNLP, pages 583-593. Association for Computational Linguistics.

Tulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2015. Building end-to-
end dialogue systems using generative hierarchical neural network models. arXiv preprint arXiv:1507.04808.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. arXiv
preprint arXiv:1503.02364.

Ge Song, Yunming Ye, Xiaolin Du, Xiaohui Huang, and Shifu Bie. 2014. Short text classification: A survey.
Journal of Multimedia, 9(5):635-643.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen, and Jian-Yun Nie.
2015a. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion. In Proceedings
of the 24th ACM International on Conference on Information and Knowledge Management, pages 553-562.
ACM.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan. 2015b. A neural network approach to context-sensitive generation of conversa-
tional responses. arXiv preprint arXiv:1506.06714.

Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and Murat Demirbas. 2010. Short text
classification in twitter to improve information filtering. In SIGIR, pages 841-842. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104-3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversational model. arXiv preprint arXiv:1506.05869.

Ronald J Williams and Jing Peng. 1990. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural Computation, 2(4):490-501.

Jason Williams. 2008. Demonstration of a pomdp voice dialer. In Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics on Human Language Technologies: Demo Session, pages 1-4.
Association for Computational Linguistics.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015. Ccg supertagging with a recurrent neural network. In
ACL’15, volume 2, pages 250-255.

Stephanie Young, Milica Gasic, Blaise Thomson, and John D Williams. 2013. Pomdp-based statistical spoken
dialog systems: A review. Proceedings of the IEEE, 101(5):1160-1179.

Dell Zhang and Wee Sun Lee. 2003. Question classification using support vector machines. In SIGIR, pages
26-32. ACM.

1999

