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Abstract

Cross-lingual sentiment classification (CLSC) seeks to use resources from a source language in
order to detect sentiment and classify text in a target language. Almost all research into CLSC
has been carried out at sentence and document level, although this level of granularity is often
less useful. This paper explores methods for performing aspect-based cross-lingual sentiment
classification (aspect-based CLSC) for under-resourced languages. Given the limited nature of
parallel data for under-resourced languages, we would like to make the most of this resource for
our task. We compare zero-shot learning, bilingual word embeddings, stacked denoising autoen-
coder representations and machine translation techniques for aspect-based CLSC. We show that
models based on distributed semantics can achieve comparable results to machine translation on
aspect-based CLSC. Finally, we give an analysis of the errors found for each method.

1 Introduction

Sentiment analysis (SA) seeks to define the underlying sentiment of a text. The best results in SA require
the use of a large number of resources; from tokenizers and parsers to large sentiment lexicons or hand-
annotated corpora. The creation of these resources requires time, effort and a considerable monetary
investment in order to ensure the quality and subsequent usefulness. Therefore, finding a way to perform
sentiment analysis for under-resourced languages without having to repeat these efforts is an interesting
endeavor. Cross-lingual Sentiment Analysis (CLSA) attempts to find methods to do just this. Most
research on CLSA has been at document or sentence level. However, this does not capture the true
granularity of opinionated text. Thus, in this paper we focus on CLSA at aspect-level1

Document- and sentence-level CLSA assume that an entire section of text expresses one sentiment
towards one entity. This, however, is not always true. Aspect-based CLSA allows for multiple opinions
towards multiple entities or aspects. Aspect-based CLSA can be decomposed into three subtasks: en-
tity/aspect extraction, opinion holder extraction and sentiment classification. This last task, known as
Cross-lingual Sentiment Classification (CLSC), has received little attention at aspect-level. Yet it would
greatly benefit companies and government organizations that wish to gather information on the public
opinions of their products or policies. In this paper we will only deal with improving or enabling aspect-
based CLSC and leave the final goal of creating full aspect-based CLSA systems for under-resourced
languages as future work.

Most research in CLSC has used Statistical Machine Translation (SMT) as a way of bridging the gap
between languages, but there are drawbacks to this. First, an SMT system must be available for the lan-
guage combination at hand. This requires a great deal of development and the quality of the sentiment
analysis system used afterwards depends heavily on the quality of the SMT system. Secondly, study
shows that even high quality SMT introduces noise into the data (Balahur and Turchi, 2014; Mohammad

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Here the term ”aspect” refers to a feature of an entity. As an example taken from a hotel review, the sentence ”The rooms
were great, but the service needs to improve” contains two aspects (rooms and service) which pertain to the entity hotel. It is
more useful to know that rooms is positive and service is negative than to know the overall sentiment towards hotel
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et al., 2015). Finally, there are tasks in which systems which use distributed semantic representations to
map between languages outperform SMT systems, e.g. cross-lingual document classification (Klemen-
tiev et al., 2012).

For this reason, a different representation of words and phrases, e.g. distributional vector representa-
tions, could prove to be a more effective approach and enable us to leverage information from resource-
rich languages (English) to perform CLSA in a target language that lacks these resources (e.g. Spanish,
Catalan, Basque).

This paper makes the following contributions:

• According to our knowledge, this is the most complete comparison of several types of distributed
representations and machine translation for cross-lingual sentiment analysis.

• We give an analysis of the errors and possible ways to improve each system.

• We demonstrate that distributed representations can be competitive with machine translation for
CLSC tasks.

2 Related Work

2.1 Monolingual Aspect-based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) is a fine-grained approach to sentiment analysis. Many of
the state-of-the-art ABSA systems in English require sophisticated NLP tools or hand-crafted sentiment
lexicons. Hu and Liu (2004) propose WordNet-based methods for classifying aspect sentiment. Zhu
et al. (2009) use sentiment lexicons. Moghaddam (2010) extracts an aspect and its nearest adjective
and use a k nearest neighbor algorithm in order to estimate the rating of each aspect. Kiritchenko et
al. (2014) use extracted features (part-of-speech tags, parsing features, sentiment lexicons, character-
based information, n-grams) to train a support vector machine (SVM) for sentiment classification. These
language-specific approaches do not lend themselves easily to CLSA because the target language often
lacks the necessary resources.

2.2 Cross-lingual Sentiment Analysis
Aspect-based CLSA
In under-resourced languages, we lack resources and NLP tools which would allow us to create state-
of-the-art systems similar to those mentioned. Therefore, the ability to leverage resources that already
exist in English to perform sentiment analysis in other languages would be a great advantage. This
would increase the performance of ABSA systems which are built using limited amounts of data in low-
resourced languages and enable the creation of sentiment analysis systems in languages which have none
at the moment.

Similarly, within CLSA, most researchers have worked at document- and sentence-level. In fact, there
are only a handful of articles that deal with aspect-based CLSA. Zhou et al. (2012), Lin et al. (2014) and
Klinger and Cimiano (2015) concentrate on extracting bilingual aspects but offer few ways to improve
classification accuracy. Hass and Versley (2015) used machine translation and word alignment to map
annotated syntactic nodes from English to German.

One of the difficulties at aspect-level is that the opinions attach to specific groupings of words, rather
than a sentence or document. If we use SMT to create a new target language dataset, the opinionated
units (e.g. opinion holder, opinion target, and opinion phrase) may be scattered or reordered. This would
effectively reduce the usefulness of our new data because it would be difficult to project the opinion
labels onto their corresponding word or phrase in the new dataset.

Lambert (2015) deals with this by using constrained SMT to translate the opinionated units within
the context of the sentence. The classifiers trained on this SMT data achieve comparable results to their
monolingual version. However, this is a state-of-the-art SMT system2 which is not available in most
language combinations. For these other languages, it would be useful to find alternative methods which
do not require machine translation.

2The system achieves a BLEU score 45.3 in Spanish-English translation with true-case.
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CLSA via Machine Translation
Advances in machine translation have made it possible to translate data from English to a target language
or vice versa and use this data to train a classifying algorithm. There are reasons to believe that for
well-resourced languages machine translation has reached a level that is useful for sentiment analysis
(Banea et al., 2008; Duh et al., 2011; Balahur and Turchi, 2014; Mohammad et al., 2015). Much of the
work has concentrated on the best combination of translation direction, classifiers and features (Banea
et al., 2008; Banea et al., 2013; Balahur and Turchi, 2014). The advantage of this approach is that it is
straight-forward to use a quality SMT system to create new resources by translating annotated corpora
or sentiment lexicons (Mihalcea et al., 2007).

Nonetheless, there are disadvantages to using directly translated resources. Poor translation intro-
duces a large amount of noise which hurts the performance of the classifier (Balahur and Turchi, 2014;
Mohammad et al., 2015). It is clear that under-resourced languages are particularly susceptible to poor
translation. Even with high quality machine translation, there is still a cross-lingual adaptation problem;
the distribution of words and their polarity do not necessarily hold in cross-lingual contexts (Guo and
Xiao, 2012; Mohammad et al., 2015). Therefore, we must find ways to minimize the undesirable effects
of translation in cross-lingual sentiment analysis.

CLSA via Bilingual View
Another approach is to create a bilingual view of the data. The essence of this approach is to reduce
the noise that translation introduces by presenting classifiers with complementary views. Wan (2009)
creates a bilingual representation of the data through SMT and then uses co-training to take advantage of
classifiers that commit complementary errors. This research seems promising, but there are some reasons
to believe that the benefits of these techniques may have more to do with semi-supervised learning than
cross-lingual transfer (Demirtas and Pechenizkiy, 2013).

Pan et al. (2011) use a bi-view non-negative matrix tri-factorization approach which allows for the
incorporation of sentiment lexicon information. Lu et al. (2011) incorporate a joint bilingual model
which makes use of unlabeled parallel or pseudo-parallel data in order to improve sentiment classification
for both languages simultaneously.

CLSA via Latent View
Zhou et al. (2016) employ stacked denoising autoencoders to create a language independent representa-
tion of their data. This representation was then used as input for a linear SVM classifier.

For cross-lingual document classification, Prettenhofer and Stein (2011) use structural correspondence
learning in order to find ’pivot’ features. They use these features to create a representation of each
document. These latent representations that encode the relationships betweens pivots and non-pivots are
then used to train a linear classifier. Klementiev et al. (2012) create bilingual distributed representations
as proposed by Bengio et al. (2003). They used these word vectors to classify cross-lingual documents.

The last two techniques are not entirely comparable to the first, since they perform cross-lingual doc-
ument classification and not sentiment analysis. However, approaches which use latent representations
are interesting because they have the potential to avoid some of the errors which are introduced by trans-
lation. To our knowledge, many techniques for creating latent bilingual representations (Chandar et al.,
2014; Gouws et al., 2015; Vulić and Moens, 2016) have not been applied to CLSA. However, these
techniques could provide a straightforward way to bridge the language gap.

3 Methodology

3.1 Datasets

The data used to train the sentiment analysis models are the English and Spanish OpeNER sentiment
corpora (Agerri et al., 2013). We take a subset of these corpora which deal only with hotel reviews.
Each review has annotations for opinion holders, opinion targets and opinion sentiment. We refer to
this triplet (opinion holder, opinion target, opinion sentiment) as an opinion unit. The sentiment can be
strong positive, positive, negative, or strong negative. A neutral category is not included. As such, when
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training a classifier, rather than training on the complete sentence, we use the opinion unit. Table 1 shows
the statistics for these corpora.

OpeNER Corpora English Spanish
Training Examples 2780 2991

Strong Pos 23.38% 29%
Pos 46.08% 50.34%
Neg 25.61% 17.41%

Strong Neg 4.93% 3.01%
Test examples 929 999

Strong Pos 23.36% 29.23%
Pos 46.07% 50.34%
Neg 25.62% 17.42%

Strong Neg 4.95% 3.00%

Table 1: Statistics of OpeNER Corpora

The corpora used to create the word embeddings are an English and Spanish Wikipedia corpus. These
were taken from Wikipedia dumps in January 2016 and preprocessed to remove html markup and low-
ercase all words. We then performed sentence and word tokenization. We did not remove punctuation
because this is often useful information for sentiment analysis. Table 2 gives the statistics for these
corpora.

Wikipedia Corpora English Spanish
Number of sentences 118,900,197 26,777,415

Number of tokens 2,055,786,401 506,612,108

Table 2: Statistics of Wikipedia Corpora

The English-Spanish part of the Europarl v7 corpus3 (Koehn, 2005) is used as parallel data. It contains
around 2 million aligned sentences from the European Parliament. Table 3 shows the statistics for this
corpus.

Europarl v7 Corpus English Spanish
Number of sentences 1,965,734 1,965,734

Number of tokens 49,093,806 51,575,784

Table 3: Statistics of Europarl v7 Corpus

3.2 Experiments
We performed a set of experiments in order to test different approaches for aspect-based CLSA. Each
experiment requires a different amount of parallel data.

Representation of Training and Test Data for Sentiment Classification
For all experiments we use the same train and test split shown in Table 1. For each experiment, we trained
a classifier on the English training data, performed the cross-lingual transfer on the Spanish test data and
used this new data to test our classifier, as in Figure 1. One difficulty encountered when using vector
representations is that the opinion units are variable length. This means that to train a classifier either we
find a fixed-length representation for all opinion units or we use a classifier that accepts variable-length
input. We decided to take an averaging approach, which has shown promise in other works (Iyyer et al.,
2015). For each opinion unit we took the arithmetic mean of the words that compose the opinion unit,

3http://www.statmt.org/europarl
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as shown in Figure 2, in order to create a fixed-length vector representation for each sentence. We then
use these vectors to train a classifier. For the SMT transfer methods, we trained the classifier on unigram
features. In all experiments, we used the sequential minimal optimization (SMO) classifier from the
WEKA toolkit (Hall et al., 2009).

Figure 1: The process of cross-lingual sentiment classification. We assume that the opinion units have
already been determined. The English train set is used to train a classifier. The Spanish test set is mapped
accordingly and the classifier is tested on this cross-lingual test set.

Figure 2: The representation of an opinion unit. For each word on in the opinion unit, we take its vector
representation and average these vectors in order to create a fixed-length vector avg =

∑n
i=1

oi
n , which

we can use to train our classifier.

Zero-shot learning
Since we were interested in using the least amount of parallel data possible, we started with zero-shot
learning. This is an approach which attempts to map between two monolingual vector representations
using a “translation matrix” W. The desired effect is that the dot product of a Spanish word vector and W
would be similar to the word vector of its English translation, as in Equation 1.

Rinteresante ◦W ≈ Rinteresting (1)

One could then perform a search for the most similar English vector and use this as a feature for
classification. The only parallel data necessary is a bilingual dictionary. Given a pair of translated words
and their associated vector representations {xeng, xspa}, we minimize the cost function in Equation 2 for
our training vocabulary of length n:

min
W

n∑
i=1

‖ xeng − xspa ◦W ‖2 (2)

Following Mikolov et al. (2013b) we created two sets of monolingual word embeddings using the
Europarl v7 corpus (Koehn, 2005). We used the Skip-gram model (Mikolov et al., 2013a) and created
300 dimensional vectors using a window of 5 words, and 10 negative samples. We compiled a bilingual
dictionary by taking the 8000 most common words in the English Wikipedia and translating them using
Bing Translator4. Although Bing gives several options, we take only the first translation for use in our

4http://www.microsofttranslator.com/
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bilingual dictionary. We then removed errors and ambiguous words and arrived at a final number of 4518
word pairs to train the matrix. Finally, we used stochastic gradient descent to optimize the translation
matrix W. After creating the transition matrix W, we tested the effectiveness of this matrix translation to
enable CLSC.

For each opinion unit in the corpora, we created a fixed-length vector representation, as shown in
Figure 2. We now had a dataset with training instances such as {xi : yi}, where xi was a 300 dimension
vector and yi was its corresponding label (Strong Positive, Positive, Negative, Strong Negative).

As a baseline, we trained and tested an SVM on the Spanish data from the OpeNER corpus as the
Spanish test set has the same opinion units as the cross-lingual test set. We did the same with the English
data, although this is not truly comparable5. Results are shown in Table 4.

We then created the cross-lingual test set by applying our translation matrix W to the Spanish test set.
In order to find the most similar vector from the English word embeddings, we used a k nearest neighbor
algorithm with cosine as the distance metric. Finally, we used the mean of the word embeddings as
mentioned above to create the final fixed-length representation. We tested on the cross-lingual test set.
The results are shown in Table 4.

From the results it is clear that our zero-shot approach did not yield any effective results. This may
be a result of several factors. Mikolov et al. (2013b) were able to leverage a simple mapping strategy
between word embeddings created from large monolingual datasets in order to fill the gaps in translation
dictionaries. Given the poor results of this experiment, it seems unlikely that this same strategy can
effectively capture the complex relationship between target and source language word vectors in a way
that is useful for sentiment analysis. This is likely due to the different purposes of the mapping strategy
in each approach. In Mikolov et al. (2013b), the success of this technique depended largely on using a
small subset of the vocabulary and pairing it with other approaches. In our approach, however, all of the
weight of correctly classifying a phrase fell on the accuracy of the mapping scheme. Therefore, it seems
that any error in the mapping resulted in the propagation of error during classification.

Another problem that arose is that there were some words whose vector representation always ap-
peared as the nearest neighbor of many other words, although they were not semantically similar with
any of them. This problem is known as hubness and is an intrinsic problem with high-dimensional vector
space. Our work seems to confirm the research of Lazaridou et al. (2015) and Georgiana Dinu et al.
(2015), who showed that hubness is compounded when trying to create a linear mapping between two
sets of word embeddings.

Bilingual Word Embeddings
The next set of experiments required the use of parallel sentences to create bilingual word embeddings
(BWEs). Following the work of Luong et al. (2015), we created bilingual word embeddings using the
Bilingual Skip-gram algorithm, which uses the Skip-gram model (Mikolov et al., 2013a) with an added
bilingual objective. This algorithm creates vector representations in which words that appear in parallel
sentences have similar representations. We used the Bilingual Skip-gram algorithm to train English and
Spanish word vectors on the Europarl corpus (Koehn, 2005) and the corpus of parallel sentences in the
hotel domain used in the work of Lambert (2015). We created the alignment using 3 iterations of the
Berkley Aligner6. We then created 300 dimensional vectors with a window of 5 words, 10 negative
samples and ran the algorithm for 3 epochs. This process gave us two sets of word embeddings in which
words that often appear in parallel sentences have similar vector representations.

To train our classifier, we used our learned English embeddings and take the average of the vectors in
each opinion unit in the English train set. We performed the same procedure with the learned Spanish
embeddings and the Spanish test set. The results are shown in Table 4.

The results given by the bilingual word embeddings are not optimal, but are promising enough to
warrant more research. There are problems with bilingual word embeddings which would need to be
addressed in order to improve their usefulness for CLSC. First, there is the problem of ambiguity that
affects all word embeddings. One way to correct this problem would be to disambiguate the word

5The monolingual English test set does not have the same examples as the Spanish one.
6https://code.google.com/archive/p/berkleyaligner/
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senses prior to creating the word embeddings. Cheng et al. (2014) show that this technique improves the
performance of distributional models for learning compositional models of meaning and it may improve
the performance for sentiment analysis as well.

Secondly, due to the fact that they have similar distributions, antonyms are often given similar vector
representations. This is not a problem for POS-taggers or parsers, but it is detrimental to sentiment
analysis systems based on word embeddings because these words have opposing polarities and should
therefore have different vector representations. To remedy this, one could add a classification task in
the problem formulation that would better separate these antonyms into differing vector spaces (Tang et
al., 2014). Another option is to decompose the word vectors into interpretable subspaces, train them to
differentiate for a certain property, and use only these spaces as features (Rothe and Schütze, 2016).

Stacked Denoising Autoencoders
Following the work of Zhou et al. (2016) we trained a stacked bilingual denoising autoencoder (SDBA)
on parallel sentences from the Europarl corpus. This approach aims to encode the parallel sentences into
a common latent space. Given a vocabulary of length n, the autoencoder maps the sentences, which are
represented as n-dimensional one-hot vectors, to a lower dimensional representation. These representa-
tions are then used to reconstruct the original sentences. In order to keep the autoencoder from simply
learning the identity function, the lower dimensional representation of one of the sentences is corrupted,
which causes the autoencoder to look for discriminative features to help reconstruct the original sen-
tences. In this way, the autoencoder learns to find a lower dimensional representation that encodes as
much information as possible needed to reconstruct the bilingual sentences.

We created source and target language autoencoders with 1000 hidden units, which were then mapped
to 500 hidden units. The corruption level was set to 0.5. The 500 source and 500 target hidden units
were then concatenated and normalized to unit length and fed to the bilingual autoencoder, again with
the corruption level set to 0.5. After the autoencoder had been trained, we could use the learned weights
to force any of our data into a latent bilingual space.

We then created our training data by mapping the opinion units from the English train set to this lower
dimensional latent representation, which was a 500 dimensional vector. We trained a classifier on the
mapped English training set. We tested on the similarly mapped Spanish test set. The results are shown
in Table 4.

The stacked denoising autoencoder approach gave reasonably good results, despite the fact that it was
designed for sentence-level CLSA. There are still ways which we could adapt this approach to aspect-
based CLSA. By using word alignment, we could split sentences into parallel or pseudo-parallel n-grams
and train the autoencoder with this data. This may improve its performance at aspect-level.

Statistical Machine Translation
For the final experiment we used statistical machine translation as a means of bridging the gap between
languages. We compared Google Translate7, a highly developed SMT system, as well as Constrained
SMT (see section 2.2). First, we trained our monolingual English classifier and used Google Translate to
create our cross-lingual test set. In this case, we translated only the opinionated phrases. This technique
has the disadvantage that translation is done without context. We compared this with the Constrained
SMT approach in Lambert (2015). This technique allows us to translate the opinion units in context, but
without reordering or scrambling them. The language model used in this approach was trained with hotel
domain data. All of this improved the quality of translation and resulted in more accurate CLSC results.

Finally, we trained our classifier on unigram features from the monolingual English training set. We
created test sets by translating the Spanish test data with each SMT system. The results are shown in
Table 4.

The constrained SMT approach is the most accurate approach and shows that, given a more refined
treatment of less parallel data, one can achieve CLSA systems which are comparable to monolingual
ones. It is interesting that Google Translate has a better BLEU score than constrained SMT8, but the

7http://translate.google.com/
8Google Translate scores a 48.6 BLEU in English-Spanish true-case, versus 45.3 for constrained SMT.
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performance on the classification task was lower. It also showed poorer results than the bilingual stacked
denoising autoencoder.

Equal amounts of parallel data
Each of the previous experiments rely on different amounts of parallel data for optimal performance.
Since we are interested in their performance on under-resourced languages, we ran all experiments again
with the minimal amount of parallel data (measured at 15.9M English words). The results shown in
Table 4 show that, despite a general decrease in precision, recall and F1, the performance of bilingual
word embeddings remains stable with less data. The stacked denoising autoencoder, however, performs
poorly with this amount of data.

4 Results

English Spanish Zero-shot Const. SMT BWEs SBDA Google SMT
Parallel Data - - 4518 15.9M 15.9M 15.9M -

Precision - - .453 .779 .49 .254 -
Recall - - .310 .758 .468 .4 -

F1 Score - - .351 .755 .473 .338 -
Accuracy - - 48% 75.76% 62% 55% -

Parallel Data 0 0 4518 15.9M 49M 49M ?
Precision .824 .803 .517 .779 .632 .682 .670

Recall .822 .809 .503 .758 .598 .590 .568
F1 Score .820 .800 .434 .755 .567 .633 .615
Accuracy 82.22% 80.86% 50.25% 75.76% 59.76% 74.5% 72.81%

Table 4: Results of Crosslingual Experiments: Precision, recall and F1 are the weighted averages of all
classes. The amount of parallel data is measure in the number of English tokens used in training the
transfer method.

5 Discussion

Role of Parallel Data
It is interesting to see that there is not a direct correlation between the amount of parallel data used and
the results. Constrained SMT uses less data than bilingual word embeddings or stacked denoising au-
toencoders and still outperforms both. However, this approach uses higher quality, in-domain data as
well as tuning parameters which adapt it to this domain. The trend within representation and distribu-
tional approaches has been to use larger and larger datasets , but these results seem to suggest that using
smaller, task-specific in-domain datasets which are automatically discovered from larger datasets may
be key in improving performance in CLSC.

Representation
Besides using the average of the vectors in the opinion unit as a representation, we also experimented
with summation and using Long Short-term Memory networks (LSTMs) as a way to deal with the dif-
ferent lengths of the opinion units for our vector-based methods. Although it lacks a strong theoretical
motivation, summation is often used in distributional semantics as a baseline for combining vectors
(Giorgiana Dinu and Baroni, 2014). Summation led to results that were slightly worse than averaging.
This is likely due to the fact that longer opinion units result in vectors which are a magnitude larger than
shorter opinion units. We discuss LSTMs below.

Classifiers
Apart from the SVM classifiers used in all experiments, we conducted further experiments using deep
feed-forward networks during the zero-shot and bilingual word embeddings experiments. We used the
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DAN model (Iyyer et al., 2015), with three hidden layers of 300 dimensions. This model performed
better on the zero-shot learning experiments, but similar to SVMs on all other experiments.

We also experimented with an LSTM with a 400 dimensional hidden layer. The final state of the
LSTM is used to output a softmax probability over the four classes. The results, however, were not
competitive with the SVM for zero-shot learning or bilingual word embeddings. We believe the loss
of information during transfer did not allow the LSTM to detect the same features during testing that it
found while training. We also suspect that the dataset was not large enough to train an LSTM easily. This
may limit the usefulness of LSTMs in cross-lingual settings where the dataset used to train the model is
small. Given larger training sets, this effect may decrease.

6 Conclusion and Future Work

We have presented a comparison of aspect-based CLSA approaches using different amounts of parallel
data. The results show that a simple zero-shot learning approach is currently ineffective for CLSA. We
show that distributional vector representations are more promising and produce results that are compara-
ble to simple SMT baselines, but still require more research.

In future work, we plan to investigate the role of prior disambiguation and ways to add sentiment-
specific information to bilingual word embeddings. We believe this will make bilingual word embeddings
more useful for aspect-based CLSA. Another approach that could improve the performance is to use
ensemble classification, where we combine SMT and word vector information. Finally, we will extend
these techniques to Catalan and Basque.
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