
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1591–1600, Osaka, Japan, December 11-17 2016.

Weighted Neural Bag-of-n-grams Model:
New Baselines for Text Classification

Bofang Li∗ , Zhe Zhao∗, Tao Liu, Puwei Wang†, Xiaoyong Du
School of Information, Renmin University of China

Key laboratory of Data Engineering and Knowledge Engineering, MOE
{libofang,helloworld,tliu,wangpuwei,duyong}@ruc.edu.cn

Abstract

NBSVM is one of the most popular methods for text classification and has been widely used as
baselines for various text representation approaches. It uses Naive Bayes (NB) feature to weight
sparse bag-of-n-grams representation. N-gram captures word order in short context and NB fea-
ture assigns more weights to those important words. However, NBSVM suffers from sparsity
problem and is reported to be exceeded by newly proposed distributed (dense) text representa-
tions learned by neural networks. In this paper, we transfer the n-grams and NB weighting to
neural models. We train n-gram embeddings and use NB weighting to guide the neural models
to focus on important words. In fact, our methods can be viewed as distributed (dense) counter-
parts of sparse bag-of-n-grams in NBSVM. We discover that n-grams and NB weighting are also
effective in distributed representations. As a result, our models achieve new strong baselines on
9 text classification datasets, e.g. on IMDB dataset, we reach performance of 93.5% accuracy,
which exceeds previous state-of-the-art results obtained by deep neural models. All source codes
are publicly available at https://github.com/zhezhaoa/neural_BOW_toolkit.

1 Introduction

Text representation is a core technology for many NLP tasks. Most text representation approaches fall
into one of the two classes: sparse and distributed (dense) representations. One of the most popular sparse
representations is bag-of-words (BOW), where each dimension represents the number of occurrences of
a word in a text. Though simple, BOW enjoys the advantages of being efficient and surprisingly effective.
Until now, BOW representation still serves as baselines on a range of NLP tasks.

In distributed representation, texts are represented by low-dimensional real vectors. Recently, there has
been a surge of work proposing to learn distributed text representation through neural networks. There
exists two lines of researches in neural models. The first is order/syntax-aware models, such as Convo-
lutional Neural Networks (CNNs) (Kim, 2014; Kalchbrenner et al., 2014; Zhang et al., 2016), Recurrent
Neural Networks (RNNs) (Dai and Le, 2015) and Recursive Neural Networks (RecNNs) (Socher et al.,
2011; Socher et al., 2012). In these models, words are firstly embedded into low-dimensional real vec-
tors (word embeddings) as the input, and then order/syntax-aware compositions upon words are learned
by neural networks (Goldberg, 2015). Another line is neural bag-of-words models, where unordered
compositions are learned upon word embeddings (Iyyer et al., 2015). The simplest neural bag-of-words
model is word embeddings average. Compared to order/syntax-aware models, they are much more ef-
ficient in training (Iyyer et al., 2015) but lose the accuracies due to the ignorance of the order/syntax
information.

To the best of our knowledge, most of the neural models map isolated words (uni-grams) to embed-
dings. Sometimes, consecutive words (n-grams), such as ‘not like’ and ‘as good as’ can convey semantics
that are difficult to be obtained by simple compositions of individual words (Mikolov et al., 2013b). A
natural extension is to embed n-grams into low-dimensional real vectors, e.g. the embedding of bi-gram

∗Equal contribution. † Corresponding author.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:

http://creativecommons.org/licenses/by/4.0/

1591

‘not like’ should be close to the embedding of word ‘dislike’. The introduction of the n-gram embed-
dings takes the word order in short context into consideration, and can further enrich the semantics of
text representations.

A distinct characteristic of neural models is their automatic feature extraction ability. Most neural
models directly learn compositions upon word embeddings, and are reported to be powerful enough
to learn high-quality distributed representations without human intervention. However, in sparse case,
heuristic weighting techniques designed by humans are shown to be able to bring significant improve-
ments over raw BOW representation (Wang and Manning, 2012; Martineau and Finin, 2009). For ex-
ample, in sentiment classification, word ‘amazing’ is much more important than words like ‘movie’ and
‘of’, and should be given more weight in sparse BOW representation. Weighting technique has been
successfully applied to sparse representation, but is still seldom used in neural models. Intuitively, neural
models can also benefit a lot from knowing the importance of words in advance to guide the training
processes.

In this paper, both n-grams and weighting techniques are introduced into the neural bag-of-words
models. In fact, our models can be regarded as a neural or distributed counterparts of NBSVM (Wang and
Manning, 2012). In NBSVM, these two techniques are shown to be very useful for sparse representations
and strong baselines are achieved on a range of text classification tasks. In our work, we show how to
transfer these two techniques to distributed representations, and discover that they are also very effective
in distributed case.

We evaluate our models on 9 text classification tasks. Significant improvements are witnessed when
n-gram and weighting techniques are introduced into neural bag-of-words models. As a result, new
strong baselines are achieved on 5 document-level datasets and 4 sentence-level datasets. Most recently,
state-of-the-art results on NLP tasks are dominated by deep neural models: CNNs exploit convolutional
filters to extract n-grams features from texts; RNNs are reported to be able to capture long-distance
patterns from natural languages. RecNNs even take syntactic information into consideration. In theory,
these models are very powerful since complex compositionalies are learned upon word embeddings.
However, experimental results in this paper give us further insights: though n-gram features have been
studied in the NLP literature for decades and are usually viewed as baselines, they can still outperform
features learned by the newly proposed deep neural models in many datasets if we can make use of
them correctly. At least in text classification tasks, complex deep neural models do not show obvious
superiority over our n-grams models on accuracies. What is more, deep neural models always require
much more computational resources compared to bag-of-words (n-grams) models.

2 Related Work

Bag-of-words (n-grams)
Bag-of-words (n-grams) models treat a text as a set of words (n-grams), which ignore the fact that texts
are essentially sequential data (Pang et al., 2002). Though the order information contained in word
sequences is discarded, bag-of-words (n-grams) models are surprisingly effective, and also enjoy the ad-
vantages of being efficient and robust. They have been widely used in various kinds of NLP tasks such as
information retrieval, question answering and text classification. Usually, sparse BOW features require
weighting techniques to achieve better performance, where important words are given more weights
while unimportant words are given less weights. For example, NBSVM (Wang and Manning, 2012) uses
the ratio of the number of words in positive texts and negative texts to weight words, and achieves com-
petitive results on a range of text classification tasks. However, traditional sparse BOW representations
take each word or n-gram as a unit and ignore the internal semantics of them. As a result, they tend to
generalize poorly compared with the newly proposed distributed representations.

Recently, distributed text representations are widely used in NLP tasks. The most fundamental work
in the distributed representation literature is word embedding. In word embedding algorithms, syntactic
and semantic information of words is encoded into low-dimensional real vectors and similar words tend
to have close vectors (Bengio et al., 2003; Collobert et al., 2011; Mikolov et al., 2013a; Mikolov et
al., 2013b). To obtain text embedding from word embedding, the simplest way is word embeddings

1592

(vectors) average (VecAvg). This method belongs to neural bag-of-words models based on the fact that
VecAvg also treats text as a set of words and discards order information totally. Other popular neural
bag-of-words models include Deep Average Network (DAN) (Iyyer et al., 2015) and Paragraph Vector
(PV) (Le and Mikolov, 2014). DAN constructs multiple neural layers upon the average of word vectors
in the text. They show that more discriminative features can be extracted by deepening the layers of the
neural networks. In PV, text embedding are trained to be useful to predict the words in the text. These
neural bag-of-words models are reported to perform better than sparse BOW representations, and inherit
the advantages of BOW models of being efficient and robust.
Complex Compositionality
Recently, many deep neural models are proposed on the basis of compositionality: the meanings of the
expressions depend on their constituents. These models can learn complex compositionality upon words
and achieve state-of-the-art results on a range of NLP tasks. Kim (2014) proposes to use convolutional
neural networks (CNNs) to extract text features. N-grams information is extracted by convolutional
layers and the most distinct features are selected by max pooling layers. Recurrent Neural Networks
(RNNs) are sequential models and are suitable for texts data in nature. Hidden layers of RNNs can
preserve the historical sequential information, and can be used as the representations of the texts (Dai and
Le, 2015). However, both CNNs and RNNs are essentially ‘flat’ models, where structural information
(e.g. syntactic parse tree) from texts are generally ignored. Socher et al. (2011) propose to use Recursive
Neural Networks (RecNNs) to learn syntactic-aware compositionality upon words. They recursively
combine neighbor nodes on parse trees in a bottom-up fashion until the root is reached.

Most recently, many researchers have focused on using the combinations of neural networks to achieve
better text representations. Sutskever et al. (2014) propose to use multi-layer LSTM networks for text
representation and significant improvement is achieved on machine translation when more layers of
neural networks are added. Lai et al. (2015) use RNN-CNN for text representations, where RNN layer
is used for extracting word sequences information and the most distinct features are selected by max-
pooling layer. Tai et al. (2015) model the texts through tree-structured LSTM, which can be viewed
as the combination of RecNN and RNN. To take the relationships among sentences in a document into
consideration, some works have been done to learn document representation hierarchically (Kiros et
al., 2015). For example, in (Li, 2014), RecNN is used for learning sentence embedding from word
embedding, and RNN is used for learning document embedding from sentence embedding. Denil et al.
(2014), Lin et al. (2015), Li et al. (2015b) and Tang et al. (2015) respectively propose to use CNN-CNN,
RNN-RNN, LSTM-LSTM and CNN-LSTM to represent documents hierarchically.

These models are very powerful in theory since they exploit extensive information of texts such as
word order, syntax and even relations among sentences. However, for text classification, a relatively
simple task in the NLP community, deep neural models do not show their superiority over our n-grams
models according to our experimental results. It still requires further explorations to demostrate if deep
neural models can really exploit complex information beyond n-grams, or if complex information is
really useful for text classification. What is more, most deep neural models require intensive training
resources and usually need careful hyper-parameter tuning for specific datasets.

3 Models

In the following subsections, we present the framework of exploiting n-grams and weighting techniques
for neural bag-of-words models. We use Paragraph Vector (PV) model (Le and Mikolov, 2014)1 as a
concrete case to illustrate the way of introducing these two techniques. Our method can be applied to
other neural bag-of-words models straightforwardly.

Paragraph Vector (PV) is a popular method for text representation. In PV, text embedding is trained to
be useful to predict words in the text. Formally, the objective is to maximize the conditional probabilities
of words given their texts:

1Concretely, PV-DBOW (a variant of PV) is used in our paper.

1593

Figure 1: Illustration of the original Paragraph
Vector model. The model only considers the
uni-grams and they are equally treated in the
model.

Figure 2: Illustration of n-gram PV model,
where n-grams are predicted by the text embed-
ding.

Figure 3: Illustration of weighted PV model,
where important words are given more attention
during the training process.

Figure 4: Combination of n-gram and weighting
techniques. Text embeddings are trained to be
useful to predict important n-grams during the
training process.

|T |∑
i=1

|ti|∑
j=1

logP (wi,j |ti) (1)

where ti={wi,1,wi,2,......,wi,|ti|} denotes the ith text and T={t1,t2,......,t|T |} denotes the whole dataset. In
this paper, the conditional probability is defined by negative sampling (Mikolov et al., 2013b), which
speeds up the training process significantly. Figure 1 clearly shows that, in PV, each word is predicted
separately and the words in a text are equally treated.

3.1 N-gram Embedding

As we have mentioned above, n-grams can reflect semantics that can not be captured by looking at words
individually. To introduce n-grams information into the neural models, a natural extension is to train n-
gram embeddings (Li et al., 2015a). Each text is regarded as a set of n-grams (e.g. n = 1, 2, 3) and each
n-gram is assigned a randomly initialized vector. The length of the text t is denoted by |t|. Obviously,
text t consists of |t| uni-grams, |t|-1 bi-grams and |t|-2 tri-grams.

During the training process, text embeddings are trained to be useful to predict n-grams in the text (as
shown in figure 2). The following objective is optimized:

|T |∑
i=1

N−1∑
n=0

|ti|−n∑
j=1

logP (wi,j∼j+n|ti) (2)

where N denotes the number of consecutive words considered. When N equals to 3, uni-
grams, bi-grams and tri-grams are predicted by the text. wi,j∼j+n denotes n+1 consecutive words
wi,j , wi,j+1,, wi,j+n. Word order in short context is captured by including n-grams information.

1594

3.2 Naive Bayes Weighting
Intuitively, some n-grams are more important and should be paid more attention during the training
process. In this paper, we only consider calculating weights of n-grams for binary classification. Without
loss of generality, we use ‘positive’ and ‘negative’ to denote the name of two classes. Following works
done by Wang and Manning (2012) and Martineau and Finin (2009), we use Naive Bayes feature to
assign weight for each word. The weight of word w is calculated as follows:

(
(#POS(w) + α)/|POS|
(#NEG(w) + α)/|NEG|)

β∗b#POS(w)/|POS|>#NEG(w)/|NEG| c (3)

where b·c =

{
1 · is True
−1 · is False

where #POS(w) denotes the number of positive texts that contain n-gram w, and #NEG(w) denotes the
number of negative texts that contain n-gram w. α and β are two hyper-parameters for smoothing ratios
(both of them are set to be 0.5 in this paper). |POS| and |NEG| denote the number of positive and
negative texts respectively (including pseudo count α). To this end, words that have uneven distributions
over classes are given more weights. Naive Bayes weighting is shown to be effective in sparse represen-
tation. To introduce weighting techniques into distributed case, weighted objective function is optimized
to train text embeddings:

|T |∑
i=1

N−1∑
n=0

|ti|−n∑
j=1

Weight(wi,j∼j+n)logP (wi,j∼j+n|ti) (4)

where Weight(•) denotes the weight of n-gram •. As a result, text embeddings are trained to predict
those important n-grams in larger probabilities rather than those words that have little discriminative
information for classification. Figure 3 and 4 respectively demonstrate the overview of introducing
weighting techniques into uni-gram and n-gram Paragraph Vector. The way we exploit n-grams and
weighting information can be easily used in other neural bag-of-words models. For example, we can
use the weighted average of n-gram embeddings as the input of the DAN neural networks (Iyyer et al.,
2015).

In summary, this section introduces n-grams and NB weighting into neural bag-of-words models.
These two techniques have shown their effectiveness on sparse representation in NBSVM. In the follow-
ing Experiment Section, we demonstrate the effectiveness of n-grams and NB weighting for distributed
representations.

4 Experiments

4.1 Datasets and Training Protocols
We evaluate our models on five document-level and four sentence-level text classification datasets. The
details of the datasets are shown in table 1. The pre-processing of texts and the train/test, cross-validation
splits strictly follow the implementation in NBSVM2.

Our models are trained by stochastic gradient descent (SGD). The hyper-parameter setting follows the
implementation in (Mesnil et al., 2014) 3 except that the training iterations are determined by validation
set. When the training process is finished, the text representations are fed into a logistic regression
classifier. Following the work done by Mesnil et al. (2014), we also combine the outputs of logistic
classifiers (for sparse and dense representations) via linear interpolation. The weights are determined by
validation set.

It is common to use pretrained vectors (Kim, 2014) and additional unlabeled texts (Mesnil et al., 2014;
Li et al., 2015a)4 to assist the training when size of the dataset is small. IMDB is a relatively large-scale

2https://github.com/sidaw/nbsvm
3https://github.com/mesnilgr/iclr15
4Mesnil et al. use the unlabeled data in their published implementation.

1595

dataset and does not require pretrained vectors. For the rest of eight tasks, we use word2vec vectors to
initialize the uni-grams. The additional unlabeled texts are added to RT-2k and RTs datasets, the details
of which will be discussed in the following subsections.

Unless otherwise noted, we don’t perform any data specific hyper-parameter tuning.

Type Dataset #(train+, train−, test+, test−) CV |t| |V|

document-level

IMDB (12500,12500,12500,12500) N 231 392K
RT-2k (1000,1000) 10 787 51K
AthR (399,315,400,313) N 345 22K

Xgraph (491,486,489,487) N 261 32K
BbCrypt (497,496,497,495) N 269 25K

sentence-level

RTs (5331,5331) 10 21 21K
CR (2406,1366) 10 20 5713

MPQA (3316,7308) 10 3 6229
Subj. (5000,5000) 10 24 24K

Table 1: Datasets statistics. #(train+,train-,test+,test-): the number of positive and negative samples in
train, test set respectively. For datasets that use cross-validation to evaluate models, column 3 only lists
the number of positive and negative samples. CV: the number of cross-validation splits. N denotes
train/test split. |t| denotes the average length of text samples. |V | denotes the vocabulary size.

4.2 Comparison of Models on IMDB Dataset
IMDB dataset is one of the most popular benchmarks in text classification. A large amount of models
are evaluated and compared on this dataset. In table 2, we compare our neural bag-of-words models with
NBSVM. We can observe that dense representations consistently outperform their sparse counterparts.
The n-grams and NB weighting are effective for both sparse and dense representations. Four percent
improvement in accuracies is witnessed when n-grams and NB weighting are considered in dense repre-
sentation. The best result is achieved by the ensemble of dense and sparse represntations (Mesnil et al.,
2014).

In table 3, we compare our models with state-of-the-art methods which are dominated by deep neural
models. To better compare different methods, we divide the existing models into three groups according
to how they exploit information in the texts. Models in the first group treat a text as a bag of words
or n-grams. Models in the second group treat texts as sequential data. In the third group, structural
information such as syntactic parse tree and relationships among sentences is taken into consideration.
In theory, accuracy should benefit from the sequential and structural information of texts. However, we
surprisingly find that our models outperform other approaches, even though only n-gram information is
exploited in our models.

Models Sparse Dense
Unigram 86.95 88.97

Unigram+NB 88.29 90.10
Bigram 89.16 91.27

Bigram+NB 91.22 92.20
Trigram 91.4 92.14

Trigram+NB 91.87 92.95
Ensemble 93.51

Table 2: Comparison of sparse
and dense representations. Dense
representations consistently out-
perform sparse representations.
N-grams and NB weighting are
effective in both sparse and dense
cases

Group Model Accuracy

bag-of-words

NBSVM-tri(Mesnil et al., 2014) 91.87
Paragraph Vector(Mesnil et al., 2014) 88.73

DAN(Iyyer et al., 2015) 89.40
DV-tri(Li et al., 2015a) 92.14

our model 92.95
our ensemble 93.51

sequential

word2vec-LSTM(Dai and Le, 2015) 90.00
SA-LSTM(Dai and Le, 2015) 92.76

seq2-bown-CNN(Johnson and Zhang, 2015a) 92.33
CNN+unsup3-tv(Johnson and Zhang, 2015b) 93.49

Ensemble(Mesnil et al., 2014) 92.57

structural
DCNN(Denil et al., 2014) 89.40

BENN(Li, 2014) 91.00
RecRNN-RNN(Li, 2014) 87.00

Table 3: Comparison of state-of-the-art approaches,
which are grouped according to how they exploit texts
informtaion

1596

4.3 Comparison of Models on Document-level Datasets

In this subsection, we continue evaluating our methods on document-level datasets. RT-2k dataset con-
tains 2000 movie reviews. Texts in RT-2k and IMDB are both movie reviews and are classified ac-
cording to whether they are positive or negative. Consequently, texts in IMDB are suitable alternative
as additional unlabeled texts for RT-2k. AthR, XGraph and BbCrypt are classification pairs from 20-
newsgroups. In these datasets, pretrained word2vec vectors are used to initialize uni-gram embeddings.
N-gram embeddings are initialized randomly. To the best of our knowledge, state-of-the-art results on
these four document-level datasets are still achieved by NBSVM. In table 4, we compare our models
with their sparse counterparts NBSVM. We discover that dense representations benefit a lot from n-gram
and weighting techniques. However, dense representations do not perform consistently better than sparse
representations.

Not surprisingly, ensemble of the dense and sparse models achieves the best results.

Models RT2k AthR XGraph BcCrypt
Sparse Dense Sparse Dense Sparse Dense Sparse Dense

Unigram 86.3 87.6 82.6 79.0 85.1 89.2 98.3 98.9
Unigram+NB 87.8 88.7 87.9 84.0 91.2 90.2 99.7 99.2

Bigram 87.4 89.2 83.7 81.1 86.2 90.5 97.7 99.1
Bigram+NB 89.5 90.5 87.7 86.1 90.7 90.8 99.5 99.7

Ensemble 91.4 88.0 92.0 99.7

Table 4: Comparison of sparse and dense representations on document-level datasets.

4.4 Comparison of Models on Sentence-level Datasets

In this subsection, we demonstrate the effectiveness of our models on four sentence-level datasets: RTs,
MPQA, CR and Subj. Pretrained word2vec vectors are used to initialize uni-gram embeddings. For
RTs, data in IMDB dataset are used as additional unlabeled texts. From table 5, it can be observed
that comparable results are achieved by dense and sparse representations. Similar with the conclusions
obtained in above subsections: both n-grams and NB weighting improve the accuracies significantly.
Ensemble of dense and sparse representations gives the best results.

In table 6, we make comparisons of state-of-the-art models, which are grouped according to their
ways of exploiting text information. From the first row of table 6, we can observe that traditional PV
performs poorly on sentence-level datasets compared to other state-of-the-art models. When n-grams,
NB weighting and pretrained word embeddings are introduced, decent accuracies are achieved by PV.
We can also observe that deep neural models show their superiority over bag-of-words models. Since
n-grams information contained in sentence-level texts is limited, sequential and structural information
is important for achieving better accuracies on these datasets. Nevertheless, most deep neural models
in table 6 can not be extended to document-level texts. In contrast, our models can be used for texts of
variable length.

Models RTs MPQA CR Subj.
Sparse Dense Sparse Dense Sparse Dense Sparse Dense

Unigram 76.2 77.3 86.1 81.7 79.0 79.1 90.8 90.5
Unigram+NB 78.1 78.7 85.3 81.1 80.5 80.3 92.4 92.0

Bigram 77.7 78.5 86.7 82.0 80.8 80.1 91.7 91.2
Bigram+NB 79.4 79.5 86.3 82.1 81.8 81.1 93.2 92.8

Ensemble 80.8 86.8 82.5 93.6

Table 5: Comparison of sparse and dense representations on sentence-level datasets.

1597

Group Model RTs MPQA CR Subj.

bag-of-words

Paragraph Vector(Kiros et al., 2015) 74.8 74.2 78.1 90.5
NBSVM-bi(Wang and Manning, 2012) 79.4 86.3 81.8 93.2

DAN(Iyyer et al., 2015) 80.3 - - -
cBoW(Zhao et al., 2015) 77.2 86.4 79.9 91.3

our model 79.5 82.1 81.1 92.8
our ensemble 80.8 86.8 82.5 93.6

sequential
CNN(Kim, 2014) 81.5 89.6 85.0 93.4

RNN(Zhao et al., 2015) 77.2 90.1 82.3 93.7
BRNN(Zhao et al., 2015) 82.3 90.3 82.6 94.2

structural
combine-skip(Kiros et al., 2015) 76.5 87.1 80.1 93.6

GrConv(Zhao et al., 2015) 76.3 84.5 81.3 89.5
AdaSent(Zhao et al., 2015) 83.1 93.3 86.3 95.5

Table 6: Comparison of state-of-the-art approaches on sentence-level datasets.

4.5 Further Discussions

From tables in the above subsections, we can observe that n-gram features are still competitive if we
can take full advantages of them. For document-level datasets, the ensemble of dense and sparse rep-
resentation even outperforms the complex deep neural models which take complex compositions into
consideration. For sentence-level datasets, competitive results are achieved by our models when pre-
trained vectors or additional unlabelled data is added.

When taking efficiency and robustness into consideration, our n-gram models are better choices. Since
our models are essentially bag-of-n-grams models, they only require a fraction of time compared to deep
neural models. Our models are also robust for both sentence and document level datasets. In contrast,
many deep neural models can not be extended to document-level datasets. Besides that, they usually
require careful dataset-specific hyper-parameter tuning for better performance. While in our models,
experimental setting is universal to all datasets except that the number of iterations are determined by
validation set.

5 Conclusion

In this paper, we propose a framework of introducing n-grams and Naive Bayes weighting into neu-
ral bag-of-words models. These two techniques are effective for neural models and new strong base-
lines are achieved when they are used together. Though many state-of-the-art results in NLP tasks are
achieved by deep neural models, we discover that for text classification, n-grams information is suf-
ficient to achieve state-of-the-art accuracies. Moreover, our models inherit efficiency and robustness
from bag-of-words representations: they only require a fraction of computational resources compared
to deep neural models, and at the same time perform consistently well on a range of datasets with-
out specific hyper-parameter tunings. Our source codes are organized as a text classification toolkit at
https://github.com/zhezhaoa/neural_BOW_toolkit. We recommend to use the ensem-
ble of dense and sparse representations implemented in our toolkit in real-world challenges.

Acknowledgements

This work is supported by National Natural Science Foundation of China with grant No. 61472428, the
Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of
China No. 14XNLQ06. This work is partially supported by ECNU-RUC-InfoSys Joint Data Science
Lab and a gift from Tencent.

1598

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language

model. Journal of Machine Learning Research, 3:1137–1155.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa. 2011.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537.

Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems, pages 3079–3087.

Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil Blunsom, and Nando de Freitas. 2014. Modelling, visualis-
ing and summarising documents with a single convolutional neural network. CoRR, abs/1406.3830.

Yoav Goldberg. 2015. A primer on neural network models for natural language processing. CoRR, ab-
s/1510.00726.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal Daumé III. 2015. Deep unordered composition
rivals syntactic methods for text classification. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing, Volume 1: Long Papers, pages 1681–1691.

Rie Johnson and Tong Zhang. 2015a. Effective use of word order for text categorization with convolutional neural
networks. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 103–112.

Rie Johnson and Tong Zhang. 2015b. Semi-supervised convolutional neural networks for text categorization via
region embedding. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems, pages 919–927.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling
sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Volume
1: Long Papers, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing, A meeting of SIGDAT, a Special Interest Group of
the ACL, pages 1746–1751.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba, and San-
ja Fidler. 2015. Skip-thought vectors. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems, pages 3294–3302.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networks for text classifi-
cation. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2267–2273.

Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings
of the 31th International Conference on Machine Learning, pages 1188–1196.

Bofang Li, Tao Liu, Xiaoyong Du, Deyuan Zhang, and Zhe Zhao. 2015a. Learning document embeddings by
predicting n-grams for sentiment classification of long movie reviews. CoRR, abs/1512.08183.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015b. A hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, Volume 1: Long Papers, pages 1106–1115.

Jiwei Li. 2014. Feature weight tuning for recursive neural networks. CoRR, abs/1412.3714.

Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou, and Sheng Li. 2015. Hierarchical recurrent neural network
for document modeling. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 899–907.

Justin Martineau and Tim Finin. 2009. Delta TFIDF: an improved feature space for sentiment analysis. In
Proceedings of the Third International Conference on Weblogs and Social Media.

Grégoire Mesnil, Tomas Mikolov, Marc’Aurelio Ranzato, and Yoshua Bengio. 2014. Ensemble of generative and
discriminative techniques for sentiment analysis of movie reviews. CoRR, abs/1412.5335.

1599

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations
in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality. In Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems, pages 3111–3119.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? sentiment classification using machine
learning techniques. CoRR, cs.CL/0205070.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning. 2011. Semi-
supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 151–161.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL, pages 1201–
1211.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing
Systems, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-
structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing, Volume 1: Long Papers, pages 1556–1566.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated recurrent neural network for sentiment
classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 1422–1432.

Sida I. Wang and Christopher D. Manning. 2012. Baselines and bigrams: Simple, good sentiment and topic
classification. In The 50th Annual Meeting of the Association for Computational Linguistics, Volume 2: Short
Papers, pages 90–94.

Rui Zhang, Honglak Lee, and Dragomir R. Radev. 2016. Dependency sensitive convolutional neural networks for
modeling sentences and documents. In NAACL HLT 2016, The 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA,
June 12-17, 2016, pages 1512–1521.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015. Self-adaptive hierarchical sentence model. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pages 4069–4076.

1600

