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Abstract

In Natural Language Generation (NLG), one important limitation is the lack of common bench-
marks on which to train, evaluate and compare data-to-text generators. In this paper, we make
one step in that direction and introduce a method for automatically creating an arbitrary large
repertoire of data units that could serve as input for generation. Using both automated metrics
and a human evaluation, we show that the data units produced by our method are both diverse
and coherent.

1 Introduction

In Natural Language Generation, one important limitation is the lack of common benchmarks on which to
train, evaluate and compare data-to-text generators. In this paper, we make one step in that direction and
introduce a method to automatically create an arbitrary large repertoire of data units which could serve
as input for data-to-text generation. We focus on generation from RDFS data where the communicative
goal is to describe entities of various categories (e.g., astronauts or monuments).

RDF data consists of (subject property object) triples (e.g., (Alan_Bean occupation Test_pilot))
— as illustrated in Figure 1, RDF data can be represented by a graph in which edges are labelled with
properties and vertices with subject and object resources. To construct a corpus of RDF data units which
could serve as input for NLG, we introduce a content selection method which, given some DBPedia
entity, retrieves DBPedia subgraphs that encode relevant and coherent knowledge about that entity.

Our approach differs from previous work on content selection in that it leverages the categorial infor-
mation provided by large scale knowledge bases about entities of a given ontological type. Based on this
ontological knowledge, we learn two types of category-specific bigram models: one model (s-Model) for
bigrams occurring in sibling triples (triples with a share subject) and one model (c-Model) for bigrams
occurring in chained triples (the object of one triple is the subject of the other). The intuition is that
these two models capture different types of coherence, namely, topic-based coherence for the s-Model
and discourse-based coherence for the c-Model.

Using these bigram models of RDF properties, we formulate the content selection task as an Inte-
ger Linear Programming problem and select for a given entity of category C, subgraphs with maximal
probability that is, subgraphs which contain properties that are true of that entity, that are typical of that
category and that support the generation of a coherent text.

We evaluate the impact of our n-gram models on content selection (how well do they help support the
selection of a coherent and diverse set of data units?) using quantitative metrics, a human evaluation and
a qualitative analysis.

2 Related Work

Our approach has similarity with approaches on entity summarisation, content planning from DBpe-
dia data and ILP (Integer Linear Programming) approaches for content planning. There is also a vast
literature on using ILP for natural language processing.
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Entity Summarisation (Cheng et al., 2015) presents an approach which focuses on a task very similar
to ours, namely the task of selecting, for a given entity e, a subgraph of the knowledge graph whose root
is e. The goal is to generate entity summaries that is, sets of facts which adequately summarise a given
entity. The method used extends a standard random surfer model navigating the knowledge graph based
on metrics indicating (i) the informativeness of a fact and (ii) the relatedness between two facts. In this
way, the selected subgraphs are both coherent (solutions which maximise relatedness are preferred) and
informative (facts that helps distinguishing the entity to be summarised from others are preferred).

We depart from (Cheng et al., 2015) both in terms of goals and of methods.

In terms of goals, while (Cheng et al., 2015) aim to produce entity summaries, our goal is to produce a
large set of content units that are varied both in terms of content and in terms of structure. In particular,
one important difference is that we produce trees of varying shapes and depths while the graphs produced
by (Cheng et al., 2015) are restricted to trees of depth one i.e., set of DBpedia triples whose subject is
the entity to be described. As discussed in Section 5.1, this allows us to produce knowledge trees which,
because they vary in shape, will give rise to different linguistic structures and will therefore better support
the creation of a linguistically varied benchmark for Natural Language Generation.

Our approach also departs from (Cheng et al., 2015)’s in that the methods used are very different.
While we use Integer Linear Programming and language models to select DBpedia subgraphs that are
both discourse- and topic-coherent, (Cheng et al., 2015) use a random surfer model, pointwise mutual
information and probabilistic estimates to measure relatedness and informativeness. Generally, the two
methods are complementary using different resources, algorithms and metrics thereby opening interest-
ing possibilities for combination. It would be interesting for instance, to investigate how modifying our
ILP formulation to integrate the relatedness metrics used by (Cheng et al., 2015) would impact results.

Content Planning (Biran and McKeown, 2015) describes a discourse planning approach applied to
the generation of comparison stories from DBpedia data. Given two DBpedia entity e; and ea, they first
select all DBpedia triples whose subject is either e; or eo. Based on the shape of the triples (shared
entities or predicates) and on the property they include, they then enrich this set of DBpedia triples with
discourse relations. For instance, if two triples share the same predicate and object, an expansion relation
is added between the two triples (e.g., “John has a ball. Mary also has a ball”). Discourse planning
then consists in finding a path through the resulting multigraphs of potential relations between DBpedia
triples using an bigram model over discourse relations. Good discourse plans are those which maximise
the probability of a sequence of discourse relations. In this way, the proposed approach determines both
the order of the events and the discourse relation holding between them.

(Lampouras and Androutsopoulos, 2013) present an Integer Linear Programming model of content
selection, lexicalisation and aggregation for generating text from OWL ontologies. The objective func-
tion used in their ILP model maximises the total importance of selected facts and minimizes the number
of distinct elements mentioned in each sentence thereby favouring aggregated sentences i.e., sentences
where repeated elements are avoided through e.g., ellipsis or coordination.

(Bouayad-Agha et al., 2011) introduces an ontology driven content selection procedure in which a base
domain ontology is used to infer new facts. For instance, given the numerical scores of two teams playing
in the same game, a result event will be inferred between the winner and the loser and a causal relation
will be inferred between the number of goals of a given team and this result event. Content selection
proceeds in three steps. First, a set of hand written rules is used to select a subset of the knowledge base.
Second, relevance scores learned from a parallel data/text corpus are used to select the most relevant
individual and relation instances. Third, hand-written templates are used to determine the content to be
included in the generated text.

Our approach differs from these proposals in that it focuses on content selection from typed RDF data.
Using bigram models whose basic units are DBpedia triples, we maximise global coherence by favouring
content where DBpedia properties that often co-occur are selected together. In contrast, (Lampouras
and Androutsopoulos, 2013) assumes that the relevance scores are given. Moreover, while they focus
on selecting content that leads to maximally aggregated content, we focus on selecting content that
is discourse coherent. Like us, (Biran and McKeown, 2015) focus on DBpedia data and use bigram
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models. However their approach investigate discourse planning not content selection and relatedly, the
basic units of their bigram models are discourse relations rather than triples. Our approach also differs
from (Barzilay and Lapata, 2005) in that it is unsupervised and does not require an aligned data-text
corpus.

Finally, the work presented here is closely related to a simpler proposal we introduced in (Mohammed
et al., 2016). It differs from it in that it defines the notions of chain, sibling and mixed models for n-
grams of DBpedia properties; relate them to the notion of topic- and discourse-coherence; and provide a
comparative evaluation of their impact on content selection.

Integer Linear Programming and NLP. Finally, there has been much work in recent years on using
ILP for natural language processing. In particular, (Kuznetsova et al., 2012) proposes an ILP formulation
for the generation of natural image descriptions from visual and text data and (Filippova and Strube,
2008) uses ILP to model sentence compression. The ILP formulation of our content selection method is
most similar to that proposed for sentence compression in (Filippova and Strube, 2008). One important
difference though is both the application (content selection rather than sentence compression) and the
way in which relevance is computed. While (Filippova and Strube, 2008) uses weights derived from a
treebank to determine the relative importance of an edge, we use bigram models over DBpedia properties
to estimate the relative importance of DBpedia triples.

3 Task and Method

Given an entity e of category C and its associated DBpedia entity graph G, our task is to select a (target)
subgraph T, of G, such that:

o T is relevant: the DBpedia properties contained in 7, are commonly (directly or indirectly) asso-
ciated with entities of type C'

* T, maximises fopic-based coherence: DBpedia triples that often co-occur in type C are selected
together

T, supports discourse coherence: the set of DBpedia triples contained in 7; capture a sequence of
entity-based transitions which supports the generation of discourse coherent texts i.e., texts such
that the propositions they contain are related through shared entities.

To implement these constraints, we first build bigram models of properties for DBpedia categories.
We then use these models and Integer Linear Programming to retrieve from DBpedia, entity graphs with
maximal probability.

3.1 Building Bigram Models for DBpedia Categories

For each DBpedia categories (e.g., Astronaut or University), we learn two bigram models s and c, each
designed to capture different aspects of content coherence.

The s(ibling)-model consists of bigrams that are sibling properties in DBpedia. Two properties
are sibling of each other if they occur in triples sharing the same subject. Thus, the DBpedia
graph shown in Figure 1 contains 5 s-bigrams namely, birthPlace-mission, birthDate-mission,
birthDate-birthPlace, country-leader and crewMember—operatorl. The s-model aims to capture
local coherence i.e., topic-based associations between DBpedia properties.

In contrast to the s-model, the c(hain)-model aims to capture discourse coherence i.e., associations
between DBpedia triples that involve a shared entity other than the entity being described. It con-
sists of DBpedia triples that are related by a shared entity. The DBpedia graph shown in Figure 1
contains 4 c-bigrams namely, mission-crewMember, mission-operator, birthPlace-country and
birthPlace-leader.

!Sibling bigrams (S-bigrams) are normalised using alphabetical order. Thus, given the two triples (A mission B), (A
nationality C), the associated S-bigramismission-nationality —notnationality-mission.
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Figure 1: Example DBpedia Graph (To save space subject and object names have been replaced by
capital letters).

3.2 Extracting DBpedia Subgraphs

We use the two bigram models just described and an interpolation (M-Model) of these two models to
select from an entity graph subtrees whose coherence is either topic-based (s-Model), discourse-based
(c-Model) or both (M-Model).

The ILP formulation of the task is as follows.

Representing triples. Given an entity graph G, for the DBpedia entity e of category C' (e.g. Astro-
naut), for each triple t = (s, p, 0) in G, we introduce a binary variable xgo such that:

v 1 if the triple is preserved
Tt = Tg oy =

0 otherwise

Because we use bigrams to capture local and discourse coherence (properties that often co-occur to-
gether), we also have variables y;, 4, for bigrams of triples such that:

1 if the pair of triples is preserved
Yty ta =

0 otherwise

For the s-Model, these binary variables capture pairs of triples which share the same subject. That is, for
each bigram of triples t; = (s1,pl,0l) and {2 = (s2,p2, 02) in G, such that s1 = s2, we introduce a
binary variable y;, ¢,.

Similarly, for the c-Model, we introduce a binary variable y;, 1, for each pair of triples such that the
object of one is the subject of the other. That is, (¢1, t2) is a c-bigram iff ¢t; = (s1,pl,ol), {2 =
(s2,p2,02) and 01 = s2.

Maximising Relevance and Coherence. To maximise relevance and coherence, we seek to find a sub-
tree of the input graph G, which maximises the s-bigram probability (s-Model), the c-bigram probability
(c-Model) or an interpolation of both (M-Model).

For the s- and the c-Model, we maximise the following objective function over the set of all bigrams
Y from the set of triples X:

S(X) = Yyuut - Pltit)) (1)

where y, ¢, is the ILP binary variable for (;,¢;) and P(t;,t;) is the bigram probability for category C'.
Let B, be the set of property bigrams occurring in the entity graphs of all DBPedia entities of category C.
Let count(b,C) be the number of time b occurs in B, then the bigram probability P(b) of b for category
C is defined as follows:

count(b,C)

P(b) =
() ZbieBc count(b;,C)

2
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For the s-Model, only s-bigrams are included in the counts while for the c-Model, only c-bigram
counts. For the v-Model, the objective function to be maximised is defined as:

S(X) = v Xy Yty - Pllity) + (1 =) 27206 - Plixt) 3)

where Yt t; is restricted to s-bigrams and z;, ;, to c-bigrams and -y is a parameter to balance the contri-
bution of local- or discourse- probabilities.

Consistency Constraints. We ensure consistency between the triple and the bigram variables so that
if a bigram is selected then so are the corresponding triples (eq. 5). Conversely, eq. 6 requires that if two
triples ¢; and t; are selected then so is the corresponding bigram yti,tjz

Vi,j (yi,j S I, and yi,j S :Bj) (5)

Yij+(1—z)+(1—z5)>1 6)

Ensuring Discourse Coherence (Tree Shape). Solutions are constrained to be trees by requiring that
each object has at most one subject (eq. 7) and all triples are connected (eq. 8).

Voe X, ab, < 1 (7)
S7p
D 1 D
Voe X, af, — X ab, > 0 (8)
S,p u,p

where X is the set of triples that occur in the solution (except the root node). This constraint makes
sure that if o has a child then it also has a head.

Restricting the size of the resulting tree. Solutions are constrained to contain « triples:
dal, = a )
x

4 Experimental Setup

We test our approach on 3 DBPedia categories chosen to be diverse in that they represent different levels
of animacy namely, Monument, University and Astronaut. These provide with different sets of DBPedia
properties for the evaluation.

Building bigram models of DBpedia properties. To build the bigram models, we extract from DB-
pedia the graphs associated with all entities of those categories up to depth 5 and separately extract
c-bigrams and s-bigrams. Table 1 shows some statistics for these graphs. We build the c-Model and the
s-Model using the SRILM toolkit.

Building Entity Graphs. For each of the three categories, we take 5 randomly chosen entities and
extract their DBpedia graph up to depth 23. Table 2 shows some statistics for these entities.

Note that these constraints do not require that every selected triple be part of at least one bigram containing that triple. We
have only recently added this constraint (eq. 4) to further improve topic coherence.

Vi,jst.i=torj=t, x; <:Zyi,j )

31t would of course be possible to extract deeper graphs using but this would required building higher order n-gram models
and data sparsity might degrade results. Here, we leave this point open for further research.
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Entity A M U
dl d2|dl d2|dl d2
el 14 24113 18| 6 20
Category Entities Triples Properties e2 21 32120 21|13 21
Astronaut 110 1664033 4167 e3 16 28| 7 14| 6 10
Monument 500 818145 6521 e4 12 24 6 14 9 16
University 500 969541 7441 e5 15 22| 4 11|27 34

Table 2: Size in number of triples for each En-
tity Graph for each category (A = Astronaut, M
= Monument, U = University) and depth (d1 =
Depth 1 and d2 = Depth 2).

Table 1: Category Graphs

Selecting Data Units. To ensure that our content selection procedure produces varied data with respect
to both form and content, we run the ILP program on entities belonging to three DBPedia categories
(Astronaut, University, Monument) and using each of the bigram models (s-Model and c-Model) and
their combination (M-Model). Using different DBPedia categories ensures that the selected data units
vary in terms of RDF resources (entities and properties). Using the different bigram models permit
producing data units exhibiting different levels of topic- and discourse-coherence. The intuition is that
the s-Model will yield data units where topic-based coherence dominates, the c-Model discourse data
units emphasizing transition-based, discourse coherence and Mm-Model data units which display a balance
between topic-based and discourse coherence. We set «y to 0.4 (eq.3), after running several experiments
we observed that this weight balanced the solutions favouring c-bigrams which in general have smaller
probability values than s-bigrams.

We run the ILP with « (the number of triples occurring in the solution) ranging from 3 to 10 and input
entity graphs with depth 1 and 2.

5 Evaluation

Our goal is to generate a large corpus of data units which could be used as a basis to build a data-to-text
benchmark for training, testing and comparing data-to-text generators. In the evaluation, we therefore
focus on assessing (i) the diversity and (ii) the coherence of the selected data units.

5.1 Diversity

As discussed in the preceding sections, the three ILP models generate solutions with slightly different
properties. This can be viewed as a controlled sampling procedure. Using the different ILP models, we
can sample subgraphs of the same entity graph which have the same size but are markedly distinct.

To better assess the degree to which the solutions generated by our models differ from each other,
we compute two metrics designed to capture both the overlap between the solutions produced and the
number of distinct shapes found.

Number of Distinct Solution Shapes. The shape of the trees extracted from an entity graph will impact
the possible syntactic structure of the corresponding text. For instance, trees such as (l1a) where the
subject entity is shared by two triples, will naturally induce the use of an adjective modifier (1b). In
contrast, trees such as (1d) where the object entity of a triple is the subject of another triple naturally
suggests the use of a participial or a relative clause (1d-e).

(1) a. (Alan_Bean occupation Test_pilot) (Alan_Bean nationality USA)
b. Alan Bean was an American test pilot

C. (Alan_Bean mission Apollo-12) (Apollo_12 operator NASA)
d. Alan Bean flew on the Apollo 12 mission operated by NASA

€. Alan Bean flew on the Apollo 12 mission which was operated by NASA

More generally, to ensure a good linguistic coverage, a benchmark should contain a large number of
distinct input shapes. We approximate the shape of an input unit U, describing the entity e by using a
classification which combines (i) the number D, of triples ¢ € U, whose subject is e, (ii) the number
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O, of subject entities ¢’ € U, other than e and (iii) the number I, of triples ¢ € U, whose subject is not
e. That is, an input shape is defined as a triple (D, O, I.) indicating the number D, of triples directly
connected to the entity e being described, the number O, of subject entities other than this entity and the
number [, of triples indirectly connected to e.

When considering the 10 best solutions produced by the Mm-Model on the entity graphs of the 15 entities
mentioned above, the total number of distinct input shapes is 75 with a minimum, a maximum and an
average number of instances per input shape of 1, 24 and 5.31 respectively.

Overlap. To assess the degree to which the solutions produced by our approach differ from each other
we compute the average overlap between solutions for the same configuration both within and across
models. A configuration is defined by the number of triples appearing (3 to 10) in the solution, the depth
of the input graph (1 or 2) and the model used (s-Model, c-Model or M-Model). For each configuration,
the average overlap is defined as W where s;, s; are solutions produced in that configuration,
N is the number of distinct pairs produced by that configuration and the overlap, O(s;, s;), between two
solutions is the ratio between the number of property they share and the number of triples contained in
(i, 85)*.

Table 6 (left) shows the results for the three models given 16 configurations and 3 DBpedia categories.
The 16 configurations correspond to solutions of size 3 to 10 on graphs of depth 1 and 2.

With an average overlap within and across models ranging from 0.18 to 0.31, these results indicate a
good level of diversity whereby the c-Model and the M-Model are found to be slightly better at providing
solutions with small overlap (avg. 0.24 and 0.26 respectively) than the s-Model (avg. 0.31).

Similarly, Table 6 (right) shows that the overlap across models is relatively low (Min: 0.18, Max: 0.24)
indicating that solutions produced for the same configuration by different models are usually markedly
distinct (no more than a quarter or a small half of the triples are shared between any two solutions).

In sum, by modifying the ILP parameters to select various numbers of triples, we can generate solu-
tions of different sizes whilst the 3 ILP models permit producing solutions with relatively small overlap
both within and across models. That is, our content selection method can be used to automatically create
a graduated benchmark for natural language generation in which the inputs are of increasing size and
exhibit a good level of semantic variability. Using crowdsourcing, these RDF input could be associated
with appropriate verbalisations whereby annotators could be gradually trained to verbalise the data by
exposing them to input of gradually increasing length.

5.2 Coherence

Because they are retrieved from DBpedia, the data units selected by our approach are semantically co-
herent overall. In particular, the triples that are directly connected to the entity being described are all
relevant. However when selecting a subtree of the input entity graph, the coherence between siblings and
between chained triples may decrease. For instance, given the entity graph shown in Figure 1, subgraph
(2a) is more topically-coherent that subgraph (2b). Similarly, subgraph (2c) is more discourse-coherent
that subgraph (2d).

(2) a. (A birthDate E) (A birthPlace F)
b. (A birthDate E) (A mission B)
(A mission B) (B crewMember C)

d. (A birthPlace F) (F leader G)

We compare our approach with a baseline where a subtree of DBpedia triples is randomly selected
from the entity graph using an automatic metric and a human evaluation.

*Since the S-Model is designed to favour sibling or topically related triples but not triples related by a shared entity, we
disregard in all evaluation counts the solutions of depth 2 produced by the S-Model. Conversely, we exclude from the evaluation
counts the solutions of depth 1 produced by the C-Model.
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- Mig Ma; (/)\Xi # S‘ISS BL s-Model || c-Model m-Model
M s Model 0 175 031 271 C3 6 18 1 2
BL 0 2 073 218 M2 15 11 20 13
C-Model 0 194 0.59 382
d2 M-Model 0 125 043 152 Ld) 10 2 9 15
S-Model  0.07 129 0.54 123 Avg  1.87 2.52 2.27 2.43
Table 3: Averaged number of irrelevant prop- Table 4: Coherence scores for the different
erty descriptions for solutions of depth 1 (d1) models (C = Coherent, M = Medium, L = Less
and 2 (d2) on the Astronaut category. coherent).

Number of Irrelevant Triples. We quantify the number of irrelevant triples contained in solutions pro-
duced by the different models by first, manually labelling each property present in the Astronaut graph as
relevant or irrelevant and second, counting the number of irrelevant properties occurring in the solutions
produced by the baseline and the 3 ILP models. In practice, irrelevant properties are properties that are
indirectly related to the entity being described. For instance, the 1eader property shown in Figure 1 is
much less relevant when describing an astronaut than the crewMember or the mission property.

Table 3 shows the results. The baseline consistently shows a higher number of irrelevant properties
indicating that our method is efficient in filtering them out. For depth 2, the v-Model shows the best
results. The lower score (higher number of irrelevant properties) of the s-Model shows that selecting
triples based on sibling bigrams only, fails to eliminate indirectly related triples which are irrelevant to
the entity being described. Sibling properties are selected for entities related to the entity being described
which are not relevant in context. For instance, in Figure 1, the s-bigram leader-country has little
relevance when describing the target entity A. For the c-Model, examination of the distribution per
solution size shows that the number of irrelevant properties increases with the solution size. This is
explained by the fact that as the number of triples in the solution increases, the number of c-bigrams to be
selected increases leading to the selection of bigrams (e.g., birthPlace-1leader) with lower probability.

Human Evaluation. Using the Crowdflower platform, we ran a human evaluation to compare the
coherence of the solutions produced by the different models. The annotators were shown two data units
of the same size but produced by different content selection models and were asked to rate the coherence
of each dataset as coherent (3), medium (2) or less coherent (1).

To assess the impact of the s-Model on topic-based coherence, we compared the s-Model with the
baseline. The evaluation was carried out on 23 pairs of data units ranging from size 3 to 10 and de-
scribing entities of all three categories. We collected 10 judgements for each pair (230 judgements total).
Similarly, we compare the M-Model and the c-Model to assess the extent to which the M-Model is success-
ful in combining discourse- and topic-based coherence. Table 4 summarises the results. For all models,
the scores are much higher than for the baseline indicating that the bigrams we learn successfully model
coherence. The s-Model has the highest coherence, which is unsurprising as only graphs of depth 1 are
considered and properties that are directly related to the entity being described are by definition rele-
vant. The c-Model and mu-Model also achieve relatively high scores thereby confirming the good results
obtained with the other metrics (number of irrelevant properties)’.

Qualitative Analysis. Table 5 shows some example output produced by the variants of our model
which illustrate the main differences between the baseline and the three ILP models.

The baseline model tends to generate solutions with little cohesion between triples. Facts are enumer-
ated which range over distinct topics. BL solutions also often include properties such as “source” which
are generic rather than specific to the type of entity being described.

In contrast, s-Model solutions often contain sets of topically related properties (e.g., birth date and
birth place) while c-Model solutions enumerate facts (affiliations, mascot, president, battle) about related

>The average confidence score produced by Crowdflower for the ratings is 0.63. Running a Fisher's exact test we obtain
that the difference between the BL and the S-Model is statistically significant with p-value < 0.002. In contrast, C-Model and
M-Model models are not significantly different, p-value < 0.1674.
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Example Solutions

Elliot_See | almaMater | University_of_Texas_at_Austin

Elliot_See | status | “Deceased”

Elliot_See | deathPlace | St._Louis

Elliot_See | source | ”See’s feelings about being selected as an astronaut”
Elliot_See | birthDate | ”1927-07-23"

BL (d1,n5)

Elliot_See | almaMater | University_of_Texas_at_Austin
Elliot_See | status | "Deceased”

Elliot_See | deathPlace | St._Louis

Elliot_See | birthDate | ”1927-07-23”

Elliot_See | birthPlace | Dallas

S-Model (d1,n5)

Elliot_See | almaMater | University_of_Texas_at_Austin

Elliot_See | rank | United_States_Navy_Reserve
University_of_Texas_at_Austin | affiliations | University_of_Texas_System
University_of_Texas_at_Austin | mascot | Hook_’em_(mascot)
University_of_Texas_at_Austin | president | Gregory_L._Fenves
United_States_Navy_Reserve | battle | War_on_Terror

C-Model (d2,n6)

Elliot_See | deathDate | ”1966-02-28”

Elliot_See | deathPlace | St._Louis

Elliot_See | rank | United_States_Navy_Reserve

Elliot_See | almaMater | University_of_Texas_at_Austin
University_of_Texas_at_Austin | affiliations | University_of_Texas_System
University_of_Texas_at_Austin | athletics | Big_12_Conference

M-Model (d2,n6)

Table 5: Example content selections for the Astronaut entity Elliot_See.

entities (University of Texas, Austin and United States Navy Reserve). The m-Model lies in between,
producing solutions that include both information about related entities and topic-grouped (death date,
death place) facts about the entity being described.

Depth 2 Depthl vs. Depth 2
Depth 1 Depth 2 :
b P C-Model | 5-Model _ 5-Model
S-Model | C-Model M-Model
M-Model | C-Model M-Model
n3 0.18 0.16 0.24
n3 0.21 0.10 0.12
n4 0.29 0.21 0.35
n4 0.25 0.15 0.19
n5 0.29 0.23 0.27
n5 0.25 0.16 0.19
n6 0.27 0.23 0.23
n6 0.23 0.17 0.21
n7 0.34 0.25 0.27
n7 0.25 0.19 0.25
n8 0.36 0.26 0.24
n8 0.26 0.20 0.23
n9 0.34 0.27 0.25
n9 0.26 0.21 0.22
nl0 0.39 0.30 0.25
X 031 034 036 nl0 0.25 0.27 0.20
VE: : : : Avg. | 024 0.18 0.20

Table 6: Quantifying the overlap between solutions (left) and between models (right).

6 Conclusion

We presented a method for selecting content from DBpedia data which leverages the n-gram informa-
tion provided by large scale knowledge bases about entities of distinct ontological type. Based on the
DBpedia graphs associated with entities of a given ontological type, we learn domain- specific n-gram
models of DBpedia properties. To capture both discourse and topic-based coherence, we derive these
n-grams either from chain or from sequence configurations of triples. As a result, we can extract content
units based either on topic similarity, on elaboration-based discourse transition or on both. Using various
metrics, we showed that our method supports the selection of content units that are both coherent and
diverse.
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We are currently working on exploiting this content selection procedure to semi-automatically con-
struct a large data-to-text resource for training and testing RDF verbalisers. To associate the RDF subtrees
we produce with the verbalisations required by supervised learning and evaluation, we plan to explore
different methods including, the automatic generation of output using existing symbolic generators, the
manual and semi-automatic validation of these automatically generated texts and the verbalisation of
data units by humans, using crowdsourcing.
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