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Abstract 

In community question answering (cQA), the quality of answers are determined by the matching 

degree between question-answer pairs and the correlation among the answers. In this paper, we 

show that the dependency between the answer quality labels also plays a pivotal role. To validate 

the effectiveness of label dependency, we propose two neural network-based models, with dif-

ferent combination modes of Convolutional Neural Networks, Long Short Term Memory and 

Conditional Random Fields. Extensive experiments are taken on the dataset released by the 

SemEval-2015 cQA shared task. The first model is a stacked ensemble of the networks. It 

achieves 58.96% on macro averaged F1, which improves the state-of-the-art neural network-

based method by 2.82% and outperforms the Top-1 system in the shared task by 1.77%. The 

second is a simple attention-based model whose input is the connection of the question and its 

corresponding answers. It produces promising results with 58.29% on overall F1 and gains the 

best performance on the Good and Bad categories. 

1 Introduction 

Community question answering (cQA) provide abundant human-to-human questions and answers, be-

having as a good resource for building automatic question answering systems. For example, many users 

ask about “How to build your body like a model?” in Yahoo Answers3 and also there are many answerers 

who are willing to share their experiences. Answer quality tagging refers to automatically identifying 

whether an answer is good, so as to collect high quality question answer pairs.  

The task is challenging in that one should develop useful features that can effectively bridge the se-

mantic gap between the question and answer (QA) pair. The matching degree on content is the primary 

factor that determines how good an answer is. It can be measured through a series of syntactic and 

semantic features such as overlapped linguistic elements (Berger et al., 2000; Agichtein et al., 2008; 

Punyakanok et al., 2004). For example, if the question and answer have several words shared, the answer 

is likely to be good. However, the content similarity performs well only when both the question and 

answer are well-structured and overlapped, which are rare to see in cQA sentences. 

Many previous studies discover specific features based on the characteristics of cQA systems. For 

instance, opinion leader or experts would probably contribute more good answers than bad, and the 

number of thumbs-up towards an answer may reflect how much the users accept it (Agichtein et al., 

                                                 
1 The first two authors have equal contributions. 
2 Corresponding author 
3 https://answers.yahoo.com/question/index?qid=20070918225025AA5Jz0G 
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2008). The inefficiency of textual similarity can be partly complemented with the help of these specific 

features (Hu et al., 2013; Tran et al., 2015). But the definition and validation of them need too much 

laborious cost and might not be appropriate when transferring to newly built systems. 

In this paper, we focus on a novel concept of contextual feature, the label dependency, which we think 

plays a pivotal role when predicting the answer quality in cQA. Intuitively, being a rational answerer, 

when we decide to answer a question, we face the following situations: 

 If it is a new question (without an answer), just answer it.  

 If it has been answered but all the existed answers are bad, we provide our good answer. 

 If it has been answered and some of the existed answers have already satisfied the asker’s infor-

mation needs, we can choose to answer it from a distinct perspective. 

 Other actions. 

A typical example for cQA is shown in Figure 1 in which A4 and A5 follow several bad or potentially 

good comments. Although A4 and A5 are both good answers, they provide alternative useful infor-

mation. Based on the above assumptions, we say that there are possible soft constraints between the 

quality tags of the answers (i.e. a good answer follows several bad ones). The contextual dependency 

relation can be affected by the relations among the answer contents as well as the interactions between 

answer quality tags.  

Figure 1: Example for cQA thread. 

 

To efficiently model the contextual information, we propose two neural network-based models with 

different combination modes of Convolutional Neural Networks (CNN), Long Short Term Memory 

(LSTM) and Conditional Random Fields (CRF). The first model (ARC-I) is a stacked ensemble of the 

above networks, which can be seen as a combination of RCNN (Zhou et al., 2015) and LSTM-CRF 

(Huang et al., 2015). In ARC-I, LSTM is applied on the sequence of encoded QA matching pairs, with 

CRF on the final layer to memorize transition probabilities over the tag sequence. The main improve-

ment from Zhou et al. (2015) is the addition of backward LSTM and CRF. And the difference from 

Huang et al. (2015) is that we adopt the LSTM-CRF model in comment-level (actually sentence-level 

within this paper) sequence tagging, with the help of CNN sentence modelling (Kim, 2014). 

ARC-II is a novel and much simpler model, with the integration of the attention mechanism. In ARC-

II, the question and its answers are linearly connected in a sequence and encoded by CNN. An attention-

based LSTM is then applied on the encoded sequence. Through attention, the model learns how much 

the question and the context affect the predicting of the current answer. And similar to ARC-I, a CRF 

layer is appended at last. Using a simple attention function (described in Section 3), ARC-II reduces the 

size of the parameter space and trains faster than ARC-I. 

We carried out extensive experiments on the dataset released by the SemEval-2015 cQA shared task.  

By adding bidirectional LSTM (Bi-LSTM) and CRF, we achieve 58.96% on macro averaged F1 (by 

ARC-I) for answer quality tagging, which improves the state-of-the-art neural network-based method 

by 2.82% and outperforms the task winner by 1.77%. ARC-II produces promising results with 58.29% 

on overall F1 and gains the best performance on the Good and Bad categories. The contributions of this 

Q: Where can i buy globe roam sim here in qatar?Can anyone tell me where can i buy 

globe roaming sim? thanks! if your selling globe roaming sim. 

 

A1: vivo bonito, did you just cut and paste that from the Globe Website? (Bad) 

 

A2: i am not working to any either of the smart or globe.. and that was my opinion when 

i bought one family sim pack... to where, at my disappointments.. were not all true 

upon on the run...(sigh)hell network, a misguiding false adverts. (Bad) 

 

A3: i heard that globe’s signal is not good here and besides calling thru roaming will be 

more expensive. anyway, in the souq ull find sim roaming for smart, dont know about 

globe. (Potential) 

 

A4: you can go to filipino souq you cab get it for QR 25. (Good) 

 

A5: ... available at designated retail outlets in the Philippines. u would easily find it while 

processing some of ur papers at POEA Ortigas. (Good) 
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work can be summarized as: 1) experiments show that encoding the label dependency is powerful in 

answer quality tagging; 2) the proposed models achieve state-of-the-art result and considerable improve-

ments on individual categories; 3) as far as we know, this is the first work using the LSTM-CRF archi-

tecture on sentence-level sequence tagging. 

The roadmap of this paper is: in Section 2 we briefly introduce the literature. The proposed models 

are detailedly described in Section 3. Experiments are arranged in Section 4. Discussion and conclusion 

are at last. 

2 Related Work 

2.1 Answer Quality Tagging 

In the literature, methods for answer quality tagging in cQA can be roughly divided into the following 

four groups: sparse feature-based methods, translation models, parsing trees, and deep CNNs. Sparse 

feature-based methods are the mostly widely applied and have the longest research duration. Early stud-

ies such as Agichtein et al. (2008) and Suryanoto et al. (2009), and later studies such as Yih et al. (2013) 

and Hou et al. (2015) all achieved not bad results using simple classifiers with manually constructed 

sparse features. However, feature engineering is time consuming and has low extensibility to other do-

mains.  Translation models relied on large-scale of training pairs and can effectively bridge the semantic 

gap in many cases (Berger et al., 2000; Riezler et al., 2007; Surdeanu et al., 2008). One difficulty is that 

large parallel training dataset is hard to obtain. The similarity computed from parsing trees is a direct 

criterion to measure the semantic correlation between two sentences. Typical works are tree edit distance 

(Punyakanok et al., 2004; Yao et al., 2013) and convolutional tree kernels (Severyn and Moschitti, 2013). 

But one of the drawbacks of parsing tree-based methods is that most existed parsers perform badly in 

low-quality sentences (i.e. spoken style language in cQA or daily dialogues). 

In the research field of deep learning, Deep Belief Networks (DBN) can also be classified into sparse 

feature-based methods since they mainly incorporated sparse encodings for multiple features (Wang et 

al., 2010). The issue of discontinuous word features are later tackled by CNN (Kim, 2014; Hu et al., 

2014), following some applications for answer selection in cQA (Yu et al., 2014; Qiu and Huang, 2015; 

Shen et al., 2015). Zhou et al. (2015)’s work modelled the content correlations using LSTM along QA 

sequences but they ignored the constraints among quality tags. Their method is insufficient in context 

learning also due to the neglect of sequence-level dependency modelling. Joty et al. (2015) proposed a 

graph-cut approach on the judgement of good or bad answers and gains improvement from the baselines. 

Joty et al. (2016) is an improved version of Joty et al. (2015) in which the authors introduced jointly 

learning approaches to capture global dependency. The above two works validated the importance of 

label dependency but they divided the tagging task into two subtasks and built their models in a distinct 

way. 

2.2 Combining Deep Neural Networks and Graphical Models 

Wöllmer et al. (2011) was one of the earliest studies that combine neural networks and graphical models. 

They appended an LSTM layer on top of a Hidden Markov Model in automatic speech recognition. 

However, the LSTM they applied was only a shallow architecture. Only in recent two or three years did 

some researchers begin to explore the combination of deep neural networks and graphical models. 

Huang et al. (2015) proposed the LSTM-CRF model for POS, chunking and NER, and produced state-

of-the-art (or close to) accuracies. Lample et al. (2016) applied character and word embeddings in 

LSTM-CRF and generated good results on NER for four languages. Ma et al. (2016) added a CNN layer 

on word and character embedding and outperformed previous works in POS tagging and NER.  

As far as we know, all the related studies were settled on word-level tasks. In most cases, sentence-

level sequence labelling is quite distinct from the word-level in that the dependencies between adjacent 

sentences are not hard. So that the constraints for tags are weak than word-level tasks, demanding addi-

tional information to reinforce the constraints (i.e. sentence meanings). 
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3 Approach 

3.1 ARC-I 

 
Figure 2: The overview of ARC-I. 

The overview of ARC-I is shown in Figure 2. From input to output, the stack of networks are CNN, Bi-

LSTM, and CRF. In more detail, in the CNN layer, each QA pair is encoded into a fixed length vector 

by parallel CNNs together with a following fully connected layer (denoted as Hidden in the figures). A 

Bi-LSTM layer is put next to learn the correlations along the encoded sequence. A fully connected layer 

and softmax are appended later to generated the predicted tags for the neural network. And at last the 

cost of the whole network is adjusted using the transition probabilities by a CRF layer over the generated 

tags. 

We incorporate forward linear chain CRF. It jointly models the generative probability (from the out-

put of Bi-LSTM) and the transition probability between adjacent tags from a global perspective, and 

thus automatically learns the content correlation and constraints among labels. 

3.2 ARC-II 

 
Figure 3: The overview of ARC-II. αi,j stands for the attention weight of the ith unit focused on the 

jth encoded element.  

 

Encoding the sequence of QA pairs may introduce extra parameters, the optimization of which can cause 

much training time. A concise way is to directly learn from the sequence composed of the question and 

its answers. The model is depicted in Figure 3. In the CNN layer, each question/answer is encoded using 

a single CNN. In the LSTM layer, an attention based Bi-LSTM is applied to learn the context infor-

mation along the sequence. Attention mechanism can tackle the bias problem of RNNs (i.e. LSTM/GRU) 

through computing a weighted distribution of the encoded elements at each time step (Bahdanau et al., 
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2015). The distribution reflects the correlations between the current answer and its context. Similar to 

ARC-I, we also put a CRF layer at last to learn the transitions. To simplify the network, we used a simple 

form of attention: the attention vector is compromised by the similarities between the current answer 

and the contextual sentences (the question and the answers). 

There are also some variants based on the proposed architectures. By removing backward LSTM or 

CRF, we validated the contribution of each module to the final result. By replacing CRF with the previ-

ously predicted label (denoted as LP in the experiment), we tested the superiority of modelling the tag 

sequence softly over hard encoding. In the following subsections, we explain each applied module in 

detail. 

3.3 CNN 

We did not explore deep on sentence modelling such as tuning the depth or dimensions of the nodes, 

instead we simply adopt the architecture from Kim (2014). The input for CNN is the distributed repre-

sentation of a sentence, by mapping each word index into its embeddings which were pre-trained in an 

unsupervised way. Each question or answer is taken as a sentence but not a paragraph due to its length 

limit (<100 words) in the dataset. To simplify calculation, each sentence is padded to the same length n 

with zero vectors.  

We denote the k-dimensional embedding for word j in a sentence as
k

jz  , and thus the sentence 

can be represented by: 

1: 1 2 ...n nz z z z                                                             (1) 

where   is the concatenation operator and zi:h stands for {zi, zi+1, …, zi+h-1}, i=0,1,…,n-h+1. The basic 

CNN operations for sentence modelling include convolution and max-pooling. Convolution is achieved 

by applying a fixed length sliding window (filter) 
m h kw   

 on each word position i, such that n-h+1 

convolutional units are generated by:  

:( ), 0,1,..., 1m m m

i i i hc w z b i n h                                                   (2) 

where σ is the activation function such as Sigmoid or ReLU (Dahl et al., 2013) and bm is the bias factor 

for the mth layer. 

    Max-pooling is more popular than mean-pooling in sentence modelling due to the characteristics of 

natural language. A d-max-pooling is to select the maximum unit in every adjacent d convolutional units. 

1 1( , ,..., ), 0, , 2 ,...m m m m

i j j j dc max c c c j d d                                     (3) 

Following Kim (2014), we applied three convolution filters with lengths 3, 4 and 5 (with the embed-

ding dimension as the width of the filter), each of which is followed by a max pooling layer to select the 

most effective structures. Feature maps of size 100 are applied to learn the representations from multiple 

perspectives.The flattened output vectors for each filter are concatenated as the output of the CNN layer. 

3.4 LSTM 

LSTM can learn long-distance dependencies through the additions of the input gate, forget gate, output 

gate and memory cell into each recurrent unit. The architecture employed in this paper is analogous to 

the one introduced by Graves et al. (2013). The input to each LSTM unit is xt and the output is ht. The 

output can be computed through Equations 4-8. 

1( )t xi t hi t ii W x W h b                                                          (4) 

1( )t xf t hf t ff W x W h b                                                        (5) 

1 1( )t t t t xc t hc t cc f c i W x W h b                                                  (6) 

1( )t xo t ho t oo W x W h b                                                       (7) 

( )t t th o c                                                                  (8) 

where τ and θ are usually set as the tanh function. Ws and bs are weights and biases for each gate. The 

gate functions can decide what should be passed or retained, thus control whether certain information 

can be propagated or overwritten across the recurrent network.  
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    In our models, LSTM is applied over the sequence generated by CNN. To bidirectional sequence 

dependencies, a backward LSTM is arranged over the reverse sequence. We denote the encoded result 

by forward LSTM as ench , backward LSTM as ench and the concatenation of them as [ , ]enc encench h h .  

3.5 Attention-LSTM 

Attention mechanism is firstly introduced by Bahdanau et al. (2015) in machine translation. By applying 

attention in an encoder-decoder framework, the model can figure out the contributions of the encoded 

elements to the generation of the current unit, using an automatic alignment model. Attention is later 

popularized in other tasks, such as QA (Hermann et al., 2015) and relation extraction (Liu et al., 2016).  

Assume the encoded sequence (question+answers) by LSTM is ( 1)n d

ench    where d is the output 

dimension of LSTM. For the ith answer (encoded as si), the context vector ci is computed as a weighted 

sum of the annotations {hj} (hj stands for the jth element in henc): 
1

1

n

i ij j

j

c h




                                                                       (9) 

and the weight αij is computed by 

1

1

exp( )

exp( )

ij

ij n

ikk

e

e









                                                                 (10) 

where  
T

ij i je s h                                                                       (11) 

   In ARC-II, we degenerate Eq. 11 into simply computing the similarity between sentences, that is 
T

ij i je h h  . Thus, the attention context for an answer derives from the similarity with the question as 

well as the associations with other answers. The correlation with previous answers reflect the infor-

mation of dependency while the correlation with later answers perhaps convey the information of com-

ments. 

3.6 CRF 

CRF has been shown superior in many sequence labelling tasks (Lafferty et al., 2001;Sha and Pereira, 

2003; Quattoni et al.,2004). Given an observation sequence X={x1, x2, …, xn}, CRF jointly models the 

probability of the entire sequence of labels Y={ y1, y2, …, yn } by using the discriminative probability to 

yi given xi and the transition probability between adjacent labels. The original probability model of CRF 

is written as: 

1

1

' '

1

' ( ) 1

( , , )

( | ; , )

( , , )

n

i i i

i

n

i i i

y X i

y y X

p Y X W b

y y X











 




 

                                               (12) 

where 
', ',( ', , ) exp( )T

i i y y i y yy y x W x b    are potential functions, and ( )X denotes the set of possible la-

bel sequences given X. 

In this work, the observed variable is the encoded sequence (QA sequence) generated by Bi-LSTM. 

A CRF layer is followed to capture the dependencies between adjacent labels via a state transition matrix. 

Therefore, Equation 12 is transformed into a simpler form by replacing the potential functions by the 

outputs of Bi-LSTM. Formally, we denote the outputs of Bi-LSTM as M={m1, m2, …, mn} so as to 

differentiate from the input of the whole network X (the original word ids). By applying softmax, we 

obtain the predicted score for each answer on each category.  

( | ) , , 0,1, 2

T
i j j

T
i k k

m w b

i i m w b

k

e
P y j m j k

e




  


                                              (13) 

By adding the transition probability from state yi-1 to yi, the probability of the sequence M is:   

1

1 1

( , ) ( | ) ( | )
n n

i i i i

i i

S M Y P y j m T y j y k

 

                                             (14) 

So the probability for the sequence Y can be yielded by applying a softmax over all possible tag se-

quences: 

1236



 

( , )

( , ')

' ( )

( | )
s M Y

s M y

y M

e
p Y M

e





                                                             (15) 

3.7 Training 

We pre-trained the word embeddings with word2vec (Miklov et al., 2013) using the continuous bag-of-

words model and the embedding dimension is 100. To achieve fixed length sentence representations 

(100 in this work), we padded each sentence with zero vectors. The embeddings were not fine-tuned 

during training because of performance decline in the experiments. We add a dropout layer after CNN 

with the dropout rate 0.1. The parameters are optimized using AdaDelta (Zeiler, 2012) and the learning 

rate is initialized as 0.01. The settings for CNN are the same as those by Kim (2014). Following Zhou 

et al. (2015), we set the dimension of the gates as 360. However, we did not follow the settings of CNN 

in Zhou et al. (2015)’s work since we found that the settings by Kim (2014) can produce better results 

when adding Bi-LSTM and CRF. We train the network using a complete end-to-end process. The im-

plementation is under the help of Theano (Al-Rfou et al., 2016) and the tagger codebase4. 

4 Experiments 

4.1 Experimental Settings 

We carried out the experiments on the dataset released by SemEval-2015 cQA shared task (Nakov et al., 

2015). The statistics of the dataset are listed in Table 1. The questions and answers are crawled from 

Qatar Living Forum. The word embeddings are pre-trained on the untagged cQA data5. Each answer is 

manually tagged as Good, Bad or Potential according to its quality in which Potential means the answer 

is potentially useful to the questioner.  

  The evaluation metrics include macro averaged precision, recall and F1 over the target categories, 

denote as Prec., Recall, and F1 in this section. We also reported the F1s on individual categories to see 

whether the models work well on certain labels. The models are trained on the training set, tuned on the 

development set and tested on the testing set. 

 

 No. of Threads (Q) No. of Answers (A) Avg. Length 

Train 

Dev 

Test 

2600 

300 

329 

16541 

1645 

1976 

6.36 

5.48 

6.01 

 

Table 1. Statistical data for SemEval-2015 cQA dataset. 

 

We compare our models with five baselines: 1) The Top-1 system in the shared task which includes 

almost all the previous popular features, such as translation models and word-based topic models (Tran 

et al., 2015). This is the state-of-the-art work in the literature. 2) The Top-2 system in the shared task 

which employs multiple syntactic and semantic features, with ensemble learning as its classification 

schema (Hou et al., 2015). 3) The state-of-the-art neural network-based system that has an analogous 

architecture as the proposed models, differing in an insufficient modelling of answer correlation and 

label dependency (Zhou et al., 2015). 4) A global inference model using graph-cut algorithm but only 

on binary classification (Good or Bad) (Joty et al., 2015). 5) An improved version of (Joty et al., 2015) 

which jointly models the dependencies between tags and learns comment-level classifiers. The main 

idea of the latter two methods is to divide the tagging task into two subtasks: comment-level tagging 

and pairwise similarity measuring. However, they still depend on laborious feature engineering. 

Further, to validate the role of each component, we compare several sub-networks based on the pro-

posed architectures. The sub-networks are denoted as CNN+LSTM (without backward LSTM and CRF), 

CNN+LSTM+CRF (without backward LSTM), CNN+Bi-LSTM (without CRF), and CNN+Bi-

LSTM+CRF (with all components). To test the importance of CRF in modelling label dependency, we 

                                                 
4 https://github.com/glample/tagger 
5 http://alt.qcri.org/semeval2015/task3/index.php?id=data-and-tools 
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replace CRF with the previously predicted label (LP) which is encoded using one-hot format and ini-

tialized with zero vectors. The naming rule for LP-based models is similar to those for CRF. The pa-

rameters were trained on the training set, and tuned on the development set. Finally, the optimal set of 

parameters were tested on the testing set.  

4.2 Multiclass Tagging 

ARC-I The results for multiclass (Good, Bad and Potential) tagging are shown in Table 26. From the 

fourth column, we see that the best F1 value is achieved by ARC-I with CNN+Bi-LSTM+CRF, which 

outperforms the state-of-the-art (Tran et al., 2015) by 1.77% and the best neural network-based method 

on this dataset (Zhou et al. 2015) by 2.82%. Meanwhile, the optimal values on precision and recall are 

also generated by this setting. The results imply the importance of both Bi-LSTM (for content depend-

ency) and CRF (for label dependency).  

We also notice that the addition of LP gains improvement for both the two variants (LSTM vs. Bi-

LSTM), but in varying degrees. Without backward LSTM, LP enhance the baseline by 1.63%, while on 

the other side, the improvement is about 0.2%.One possible explanation is that backward LSTM plays 

a more important part than the constraint from the previous label. The F1 values by both the settings 

with CRF outperform the baselines heavily, and are also better than other settings without label depend-

ency, indicating the effectiveness of applying CRF. It is also remarkable that the optimal overall preci-

sion overpasses 60%, which is a significant improvement over the baselines (2.5%). A good precision 

is helpful in many real world applications such as QA knowledge base building. 

 
Methods Prec. Recall F1 F-Good F-Bad F-Pot. 

Baselines  

(Tran et al., 2015) 

(Hou et al., 2015) 

(Zhou et al., 2015) 

57.31 

57.83 

56.41 

57.20 

56.82 

56.16 

57.19 

56.41 

56.14 

78.96 

76.52 

77.31 

78.24 

74.32 

75.88 

14.36 

18.41 

15.22 

ARC-I  

CNN+LSTM 55.74 55.86 55.75 78.29 77.66 11.30 

CNN+LSTM+LP 57.26 57.72 57.32 76.37 77.32 18.28 

CNN+LSTM+CRF 58.97 58.41 58.61 78.91 77.06 19.87 

CNN+Bi-LSTM 57.61 56.98 56.75 79.13 78.44 12.70 

CNN+Bi-LSTM+LP 57.22 56.84 56.96 78.23 76.11 16.17 

CNN+Bi-LSTM+CRF 60.33 58.86 58.96 79.80 78.63 18.46 

ARC-II  

CNN+LSTM 58.45 57.07 56.48 79.84 78.84 10.76 

CNN+LSTM+LP 56.34 56.67 55.23 81.71 79.95 4.04 

CNN+LSTM+CRF 59.62 57.98 57.92 81.29 79.07 13.39 

CNN+Bi-LSTM 56.47 56.06 55.43 80.63 77.68 7.96 

CNN+Bi-LSTM+LP 56.89 56.73 56.39 80.78 78.11 10.28 

CNN+Bi-LSTM+CRF 59.83 58.41 58.29 81.22 79.60 14.05 

 

Table 2: Experiment results by the proposed models and baselines. The optimal value for each col-

umn is marked bold. F-Pot stands for the F1 value for the Potential category. 

 

ARC-II ARC-II has considerable improvement from the baselines. We notice that with the full net-

work components, it outperforms (Zhou et al., 2015) by 2.15% and (Tran et al. 2015) by 1.10%. Similar 

trends in the addition of LP or CRF also indicate the importance of label dependency and the superiority 

of CRF to LP. We also test the model without the attention part, but got very bad results, regardless of 

                                                 
6 The result files can be downloaded from https://github.com/o0laika0o/CNN-LSTM-CRF-for-cQA-answer-tagging 
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the addition of backward LSTM. It is mainly due to the loss of the question information from the se-

quence. We think using attention over the post sequence is a neat way to capture relations from both the 

question and the context.  

A statistical test (t-test) is further conducted to evaluate the significance of the improvements by the 

CRF-based methods (compared with the existed state-of-the-art by Tran et al. (2015)). The results show 

that the improvement of ARC-I with Bi-LSTM and CRF is mildly significant (p<0.08), and all the other 

three CRF-based results are statistically significant (p<0.05). 

4.3 Binary Classification 

 
Methods Prec. Recall F1 Acc 

(Joty et al., 2015) 

(Joty et al., 2016) 

ARC-I 

ARC-II 

78.30 

77.3 

81.54 

82.29 

82.93 

86.2 

81.29 

82.22 

80.55 

81.5 

81.28 

82.22 

79.80 

80.5 

81.33 

82.24 

Table 3: Results for binary classification. 

 

The last two competitors’ methods are binary classification, which removes the Potential class from 

the original target category set. Determining Good or Bad is a more direct way for the answer selection 

task and is much closer to real world applications. Joty et al. (2015) and Joty et al. (2016) gain improve-

ments from baselines and the latter one is the state-of-the-art work on binary classification.  

We carried out experiments on binary classification and show the results in Table 3. It is notable that 

we have much better precision and accuracy than their methods. And ARC-II gets the best F1, which 

outperforms (Joty et al., 2016) by 0.72%. We may say that ARC-II is more appropriate for binary clas-

sification albeit it is inferior in predicting the Potential class (seen from Table 2, even 4.04% in F1 for 

Potential while around 80% for Good and Bad). From this perspective, although the overall F1 for mul-

ticlass tagging is not the best, ARC-II has its unique advantage.  

5 Discussion 

We can draw a conclusion that backward LSTM and CRF are both good contributors and complement 

each other in determining the quality tags and CRF plays a more important part. The backward LSTM 

intends to capture the comments to the previous answers (i.e. a negative comment perhaps follows a bad 

answer) and we notice that it improves the original model by 1% in ARC-I. However, in ARC-II, the 

improvement is not as obvious as the former, mainly due to that the attention mechanism already takes 

the future steps into account. The employment of CRF brings over 2% promotion from the baselines 

and can be seen as the most vital factor (the role of LSTM is not so significant which can be drawn from 

Zhou et al. (2015)). For ARC-II, we also tried other forms of attention such as using more parameters 

to replace the element-wise dot in this work, but failed to get better results. We think a possible expla-

nation is that the explosive parameters cannot be effectively trained given the current size of the training 

corpus.  

   From Table 2, we also recognize that the addition of LP is helpful in some cases but in other cases the 

improvement is not obvious or even LP does bad to the result (CNN+LSTM+LP for ARC-II). The com-

parisons between methods with LP and CRF prove that soft constraints are more powerful than hard 

constraints. Moreover, it is noticed that in most cases, label dependency can boost the performance on 

Potential, which indicates that this class rely more on the contextual information. 

6 Conclusion 

 This paper introduces two models for answer quality tagging in cQA, one with a hierarchical architec-

ture from input to output, and the other with attention mechanism integrated. Through the combination 

of CNN, Bi-LSTM and CRF, we focus on the modelling of context information, including content cor-

relation and label dependency. Experiments show that we achieve the state-of-the-art overall precision, 

recall, F1, as well as the best performance on individual classes. Through the comparisons on label de-

pendency, we discover that CRF is superior to others by learning global constraints. Future development 

may rise from the import of extra features, such as the user metadata, and a thorough pre-processing 
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towards the noisy input. With adjustment to the architectural elements or training procedures, we believe 

the models can be incrementally improved further. 
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