Evaluation Strategies for Computational Construction Grammars

Tania Marques Katrien Beuls
School of Informatics Artificial Intelligence Lab
University of Edinburgh Vrije Universiteit Brussel
Edinburgh EH8 9AB United Kingdom Pleinlaan 2 B-1050 Brussels Belgium
tmarques@inf.ed.ac.uk katrien@ai.vub.ac.be
Abstract

Despite the growing number of Computational Construction Grammar implementations, the field
is still lacking evaluation methods to compare grammar fragments across different platforms.
Moreover, the hand-crafted nature of most grammars requires profiling tools to understand the
complex interactions between constructions of different types. This paper presents a number of
evaluation measures, partially based on existing measures in the field of semantic parsing, that
are especially relevant for reversible grammar formalisms. The measures are tested on a grammar
fragment for European Portuguese clitic placement that is currently under development.

1 Introduction

Computational Construction Grammar allows computational linguists to formalize their hypotheses and
intuitions about certain linguistic phenomena and explore how these representational choices affect the
processing of natural language utterances (Schneider and Tsarfaty, 2013). In this sense, it follows in the
footsteps of Generalized Phrase Structure Grammar (GPSG) (Gazdar et al., 1985), Lexical Functional
Grammar (Bresnan et al., 2016), Head-Driven Phrase-Structure Grammar (HPSG) (Pollard and Sag,
1994) and Combinatory Categorial Grammar (CCG) (Steedman, 2000). Yet, different from these other
approaches, it adheres to the principles of Construction Grammar (CxG) (Goldberg, 2005; Ostman and
Fried, 2005; Hoffmann and Trousdale, 2013).Therefore, constructions are treated as first-class citizens in
the grammatical organisation of a language. They are viewed as learned mappings between form (sounds,
morphemes, syntactic categories) and function (semantics, pragmatics, etc.). Because there is no strict
separation between the lexicon and the grammar, semi-productive idioms like “X let alone Y are treated
in the same way with lexemes and core syntactic patterns (Fillmore et al., 1988). We can distinguish three
main computational frameworks that are currently active within the Construction Grammar community:
Embodied Construction Grammar — ECG (Bergen and Chang, 2005), Fluid Construction Grammar —
FCG (Steels, 2004; Steels, 2011) and more recently Template Construction Grammar — TCG (Barres
and Lee, 2014).

The evaluation of computational construction grammars is currently not reaching further than proof-
of-concept grammar fragments that show how to implement a certain language phenomenon and demon-
strate the resulting grammar by means of web demonstrations or its use in a simulation-based robotic
environment (Trott et al., 2015). There are two reasons for the lack of widely used evaluation metrics in
CxG: (i) Different from data-driven approaches, construction grammars are not built automatically from
annotated treebanks and therefore do not reach a wide coverage in the traditional sense. Instead, both
ECG and FCG allow the grammar writer to test a number of sentences automatically when loading the
grammar fragment and return the average base parse for these (geometric mean of the number of parses
per sentence). (ii) Different from syntactic parsers that concentrate on the syntactic accuracy of the syn-
tax trees that their grammars derive, computational construction grammars focus on semantic accuracy
as a metric that better meets their objectives. However, semantic accuracy is harder to measure than syn-
tactic accuracy because it requires textual corpora annotated with large formal meaning representations
that are agreed upon by different grammar developers.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1137

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1137-1146, Osaka, Japan, December 11-17 2016.

jumped-22

meaning: {event-precedes(?ev-886, 7now-60),
jump-arg-1(?ev-886, ?actor-1151),
action(jump, ?ev-886), felix-13
topic(26V886, 2actor-1151)) r:f:ent, T

dependents: ([} meaning: {individual(felix, ?actor-1151)}

sem-cat: N i HEalise!
sem-class: action form: {string(felix=13, "felix")}
syn-cat:

lexical-aspect: punctual
lex-class: proper-noun

time-sphere: past function: inal
sem-function: predicating-expression :;': unction: nomina

syn-cat:

person: 3

lex-class: verb ||]

hrase-type: vp number: sg
zgr' . gender: m

person: 3 55m-catl; i

number: sg sem—;: as:: m' Mf ua .
tense: simple-past iS;l’:unl_l-l;sIIOn. referring-expression
is-finite: + T+

is-animate: +
is-countable: +
is-concrete: +

syn-valence: {subject(felix-13)}

sem-valence: {agent(?ev-888, ?actor-1151)}

args: [?actor-1151]

form: {string(jumped-22, "jumped"),
meets(felix-13, jumped-22)}

referent: ?ev-886

Figure 1: Resulting transient structure after parsing “Felix jumped”. Features cut across argument struc-
ture, information structure and functional structure.

The field of computational CxG is reaching a certain level of maturity in terms of linguistic phenomena
that are treated and publications that accompany grammars (e.g. (van Trijp, 2015) for FCG and (Trott
et al., 2015) for ECG), and has clearly demonstrated the feasibility of implementing the constructional
approach in a full-fledged computational framework (Schneider and Tsarfaty, 2013). The time has come
to evaluate these implementations so that they can be compared within the field and benchmarks can
be created. We therefore suggest a number of metrics for parsing (comprehending an utterance into a
meaning representation) and production (formulating an utterance from a meaning representation) of a
test suite that addresses a specific linguistic phenomenon. Because computational CxG fragments are
hand-crafted precision grammars rather than data-driven approaches, broad-coverage newspaper corpora
are not interesting test beds for evaluation since they are not constrained towards the phenomena of study.
Rather, we suggest to compile a test suite of sentences taken from linguistic research in the area that the
grammar is focusing on.

Before explaining the actual metrics we designed, our contribution first argues, in Section 2, for the
usefulness of including CxG in computational linguistics. Section 3 then draws parallels between the
fields of semantic parsing and computational construction grammar in terms of semantic representations,
before Section 4 presents metrics we propose to evaluate grammars in the latter formalism. The case
study then shows the use of these metrics in a sample grammar for European Portuguese in Section 5.
Finally, Section 6 concludes.

2 Why Constructions?

Computational CxG views production and comprehension in terms of a chain of consecutive operations
over a linguistic structure, called the transient structure, a feature structure consisting of units that are
made up of non-typed feature-value pairs, which maintains a temporary state of knowledge. A sequence
of transient structures on a particular execution chain is called a linguistic pathway (Steels, to appear).
One of the characteristics of CxG is its “insistence on simultaneously describing grammatical patterns
and the semantic and pragmatic purposes to which they are dedicated” (Fillmore et al., 1988) so transient
structures, as well as constructions, need to be able to represent information from a multitude of different
perspectives. A construction schema, or in short, a construction, is an abstract schema that can be used
to “expand any aspect of a transient structure from any perspective and it can consult any aspect of this
transient structure to decide how to do so” (Steels, to appear).

The result of construction application is thus a transient structure from which semantic or formal
information can directly be extracted, without additional steps. Figure 1 shows the resulting transient

1138

structure after parsing the intransitive sentence “Felix jumped” with a dependency-style grammar. The
meaning features of both units form together the complete understanding of the sentence. Through
variable equalities, Felix is linked to the first argument of the jump action and the topic of the sentence.
Of course, the meaning predicates in this example are merely illustrative here and are subject to choices
that the grammar engineer makes.

Not only the resulting transient structure can be valuable in the evaluation procedure but also the
constructions that built the structure should be considered. In the case of “Felix jumped”, a two-word
utterance, at least five constructions have been at work to construe its interpretation. Two lexical con-
structions covering the words themselves, one tense construction to situate the event in the past (and
indicate that it is not the adjective “jumped”), one argument structure construction linking the Felix
to the actor or the jumping event (intransitive) and one information structure construction identifying
“Felix” as the topic of the sentence.

3 Semantic Parsing

Semantic parsers — similar to Computational Construction Grammar implementations — are not interested
in building well-formed syntactic trees but instead map sentences into formal meaning representations
(Mooney, 2007). They are used in domains such as question answering, where natural-language ques-
tions are converted into formal queries, and are typically built over databases with unsupervised (e.g.
(Poon and Domingos, 2009)) or supervised (e.g. (Berant et al., 2013)) learning algorithms. To go be-
yond simple query formulation towards complex knowledge extraction, a recent approach by (Parikh et
al., 2015) uses distant supervision methods to learn a semantic parser from a database of complex events
and unannotated texts.

While testing, the retrieved meanings are compared to a gold standard annotation to calculate the
precision and recall of the parser. Three main ways to calculate precision and recall can be distinguished,
ranging from less to more fine-grained analyses:

1. The retrieved meaning/formulated query is correct when it matches the gold standard. Recall is
then the number of correct meanings divided by the number of sentences. Precision is the number
of correct meanings divided by the number of sentences for which the parser produced a meaning.
An example of a system that employs this measure is the Cocktail system (Tang and Mooney, 2001).

2. Instead of using a binary measure, one can calculate the overlap in attribute-value pairs between the
retrieved meaning and the gold standard. Recall is then the percentage of recovered attribute-value
pairs per sentence, averaged over the test set. An example of a semantic parser that calculates this
overlap is the (Zettlemoyer and Collins, 2007) parser for the ATIS flight info domain.

3. The Smatch score (Cai and Knight, 2013) measures the overlap between meaning representations
while taking into account variable bindings. It is determined by calculating the maximum possible
F-scores for alternative bindings. This calculation process can be seen in Table 1 for a small ex-
emplifying sentence “a boy is”, with the following gold standard and parsed meanings (in Abstract
Meaning Representation):

gold standard meaning: instance(?x, boy) N\ attribute(?x, single) N instance(?y, be) N\ attribute(?y,
currently-being) N is(?y, ?x)

parsed meaning: instance(?a, boy) N attribute(?b, single) N instance(?b, be) N is(?a, ?a)

Matched Precision Recall F-Score

x=ay=b 2 2/4 2/5 0.44
x=by=a 1 1/4 1/5 0.22
S-score: 0.44

Table 1: Calculation of the normal Smatch score.

1139

(boy ?x-100)

(single ?x-100)

(unique ?x-100)

(good ?x-100)

(being ?y-109 ?x-100)

(currently-being ?y-109) /(;mwg ?z-120)

(be ?y-109) (rare ?2-120)

Figure 2: Fully connected meaning after parsing the sentence “A good boy is rare”.

Given the existing variables, there are two possible bindings. The ?x is either bound to ?a or ?b,
and the same is true for ?y. There are 5 relations in the gold standard, but only 4 in the generated
meaning. Replacing the variables with ?x = ?a; ?y = ?b gives two matches between the meanings:
instance(?x, boy) = instance(?a, boy) and instance(?y, be) = instance(?b, be). This makes the
precision 2/4 and the recall 2/5, leading to an F-score of 0.44, which is the maximum amongst all
the possible bindings. Therefore, 0.44 is also the Smatch score (S-score) for the two meanings.

The S-score is interesting for evaluating construction grammars, because the meaning representation
obtained in Fluid Construction Grammar can be directly converted to Abstract Meaning Representation
(AMR). AMR has two types of relations: a relation between a concept and a variable (instance and
attribute relations); and a relation between two variables (argument relations). The AMR version of the
meaning network in Figure 2 would become: instance(?x, boy) N attribute(?x, single) A attribute(?x,
unique) N\ attribute(?x, good) N instance(?y, be) A attribute(?y, currently-being) A\ arg(?y, ?x) A\ arg (?y,
?z) N instance(?z, rare). All the concepts related to the “boy” use the same variable ?x, and the concept
“rare” is connected with the verb “be”, which is happening at present and corresponds to the being ’x,
“boy” which is 7z, “rare”. The nodes in the graph are second order logics predications, where properties
and relations can be objects as well. For instance, the meaning of “a good boy is rare” could be: (boy ?x)
A (single ?x) N\ (unique ?x) N\ (good ?x) N\ (be ?y) N (currently-being ?y) N (being ?y ?x) N (be-concept
2y ?z) N (rare ?z). All the concepts related to the “boy” use the same variable ?x, and the concept “rare”
is connected with the verb “be”, which is happening at present and corresponds to the being ?x, “boy”
which is 7z, “rare”.

4 Proposed Metrics

The remainder of this section explains the two accuracy metrics in more detail. For comprehension,
a variant of the Smatch score is proposed that takes into account subparts of the meaning graph. For
production, we present the longest common substring measure, with two variants. Finally, a single
profiling measure is included to quantify the efficiency of the grammar in comprehension and production.

Reinterpreting Smatch Let us consider that we were evaluating a hypothetical precision grammar
with the goal of identifying nouns and their modifiers, but that lacked any constructions for verbs. Then,
the S-score of 0.44 (obtained in Table 1), while important for understanding the broad accuracy of the
grammar, might not really tell us how the grammar is doing in terms of identifying the nouns. For
expressing this in an explicit way, we might also want to have a specific smatch score to calculate the
accuracy only for this phenomena. Unfortunately, due to the relational nature of the different parts of the

1140

sentence, it is not possible to separate what is being studied from what is not, since the identification of
its relations is also important.

A compromise between what is studied and what we can measure was found for enabling us to calcu-
late a more specific S-score, while keeping the same process of finding the maximum F-score. This is
done by annotating the variables in the gold standard that are more important for the phenomena being
studied. In this case, it would be x. Then, we disregard any relation that does not contain this variable in
it, and we accept partial matchings. Even, if is(?y, ?x) did not totally match, but the noun was identified
in the correct position, it would still be counted. Table 2 shows the calculation for the same sentence
(“a boy is”), but considering only the variable x. There are three relations to be considered in the gold
standard and two in the meaning obtained, regardless of the variable bindings. The matches are still two,
but the precision and recall increase, leading to a S-score of 0.8

Matched Precision Recall F-Score

x=ay=b 2 2/2 2/3 0.8
x=by=a 1 1/2 1/3 0.4
S-score: 0.8

Table 2: Calculation of the specific Smatch score.

The S-score obtained for a specific phenomenon should not be presented on its own, because it would
lead to an erroneous understanding of the grammar accuracy over the whole corpus. However, together
they give a better understanding how the grammar is working. For instance, in this example, the grammar
only parses this sentence into its meaning with a 0.44 accuracy, yet the noun identification is mostly
correct, which is what actually tell us if the grammar is working for what it was proposed.

Calculating reproducibility The FCG grammar has an additional problem that is usually not faced in
semantic parsers: the fact that the full meaning of a sentence is correctly obtained does not necessarily
mean that the original utterance can be reproduced. FCG does not work with templates or libraries of
sentences, instead the sentence will be reproduced based on the syntactic aspects of the grammar. While
word order does not pose any problems in parsing and can indeed help to guide the comprehension
process, it can become an issue in production that gets worse when sentence length increases. It is also
particularly hard in languages that do not follow a rigid word order, where a different but correct sentence
can also be produced without any change in meaning.

Measures that evaluate the correctness of the sentence that is produced are essential to have a complete
understanding of the accuracy of FCG due to its bidirectional nature. The most obvious measure would
be to compare the sentence obtained with a set of possible acceptable sentences that can be generated
back with the same meaning. However, this binary measure does not convey much information. Instead,
we propose to use the Longest Common Subsequence (LCS) algorithm to obtain the percentage of the
sentence that was correctly generated. LCS is an algorithm that given two sequences, X = [z1, 2, .., ;]
and Y = [y1,¥2,..,y;], can find the maximum length subsequence between them, defined as a strict
increasing sequence of indices of X [1,2, .., k] such that ;; = z; (Cormen, 2009). The number of words
in the maximum length common subsequence divided by the number of words in the original acceptable
sentences, will then gives us an estimation of the percentage of the sentence that the grammar was able
to generate back. This measure is not new, and has been previously used to evaluate machine translated
texts by (Lin and Och, 2004).

Because the comprehension process might lead to partial meanings, we distinguished between two
variants of the LCS measure. One for sentences that were successfully parsed, leading to a fully con-
nected network and one for the unsuccessful ones that might only lead to the production of partial sen-
tences.

Grammar efficiency Construction application may generate a large search. Multiple constructions can
expand the same transient structure at a certain time step, or a single construction can expand the transient
structure in more than one way. Splits in the search tree can be the result of ambiguities in processing, but

1141

‘ 8, 0.00: ela-cxn (fex 0.50)

13, 21.20: active- 15, 25.00:
11, 19.40: negation- inherent-dative- 14, 23.20: clausal- predicate-
cxn without-overt-subject- topic=predicate-cxn focus=indirect-
(argument-linking 0.80) oxn (information-structure 0.50) object-cxn
(argument-linking 0.60) (word-order 0.60)

10, 17.60:
subordinating-
conjunction-cxn
(conjunction 0.50)

12, 19.00: negation-cxn (argument-linking 0.80)

Figure 3: The comprehension process of “ndo sei como disser-lhe” has an efficiency of 13/14 (not con-
sidering the red node, where the second unification step failed).

often originate in sloppy grammar design. Measuring grammar efficiency (at least in terms of additional
nodes generated in the search tree) is done by dividing the number of search nodes in the branch that leads
to the solution (when all goal tests succeed) by the total number of nodes in the tree. When efficiency
equals to 1, no additional nodes are created. The grammar efficiency of the comprehension example in
Figure 3 equals 13/15. We see that one of the two additional nodes is red, indicating that it passed the first
unification step (conditional part) but failed when unifying the contributing part of the construction. This
node do not create additional search since they have no further children. A more informative grammar
efficiency measure would perhaps only consider the succeeded nodes. In that case, the example sentence
“ndo sei como disser-lhe” has an efficiency of 13/14 (0.93).

5 Case Study

To better understand how one can interpret the proposed metrics and how they differ from traditional
approaches, we include the evaluation of an European Portuguese (EP) grammar fragment that is under
development in FCG. It should be noted, however, that this grammar fragment is only here to exemplify
how the metrics can be used during grammar developing and evaluation phase. We do not make any
claims regarding the grammar itself. The chosen fragment focuses on pronominal clitics. Clitics in EP
can be positioned following the verb (enclisis) or preceding the verb (proclisis). Correct clitic placement
does not depend on the finiteness of the verb (as in other Romance languages) but is instead deter-
mined by the phrasal context. Hence, the coverage of different contexts is an important consideration
in the evaluation of such a grammar. Therefore, we built our own test suite by collecting 67 sentences
from linguistic research papers dedicated to this phenomenon (Madeira, 1992; Luis et al., 2004; Luis
and Otoguro, 2011), and annotated them manually. To create the grammar, lexical constructions were
automatically generated from the test suite words based on their grammatical categories, but the core
grammatical constructions were hand-crafted considering the linguistic concept being studied, and do
not represent necessarily all grammatical intricacies present in the test suite sentences.

The normal S-score gives us an F-score of 0.75 £ 0.21, while the specific S-score returns a slightly
higher value of 0.79 % 0.32. These numbers tell us that the grammar is not covering all necessary aspects
to comprehend all the sentences but it is better in the clitics placement than it would seem, as the specific
S-score is higher than the general one. To get a better understanding of which parts of the grammar are
still not satisfactory, the example sentences were annotated with the proclisis trigger they contain, or else
tagged as enclisis. Table 3 shows the average S-scores for seven triggers, together with their standard
deviation. Between brackets the number of example sentences is shown. The operator adverb and the
relative clauses results exemplify the biggest discrepancies between the two S-scores: 0.62 vs 0.84 and
0.63 vs. 0.80, respectively. This shows that while the grammar fragment is not very good at handling the
sentences containing this concepts, the position of the clitics is still correctly identified. Looking into the
sentences, we understand that they have more complex verbal forms that are not well processed by the
grammar because they were not implemented. The opposite situation does also occur where the general
score is higher than the specific. For instance, the enclisis results present a F-score of 0.75 vs 0.73, which

1142

Clitics Position Triggers S-score . LCS
Normal Specific Successful ~ Unsuccessful
enclisis (28) none (28) 0.75+020 0.73+038 087=£143 0.49+0.63
negation (6) 0.77+0.25 0.81+£0.79 1.00=£0.00 N/A
wh-question (5) 0.88+0.18 0.86+0.28 090+0.12 0.33 +0.00
relative clause (7) 0.62£0.08 0.84+£025 043+£0.68 0.37+0.10
proclisis (39) fronted focus (8) 0.70 +£0.22 0.88+0.23 0.84 £0.33 0.424+0.01
operator adverb (3) 0.63 £0.23 0.80+£0.28 0.40+£0.00 0.20+0.00
undefined-subject (3) 0.89 £0.09 0.89 +0.16 1.00 £ 0.00 N/A
downward quantifier (7) 0.78 +£0.20 0.79 £0.30 0.74 +0.63 0.14 = 0.30

Table 3: Accuracy and reproducibility results for the EP grammar case study. All the results are pre-
sented by the concepts being studied, the proclisis triggers.

means that although it seems to perform generically well in those sentences, the positioning of the clitics
is incorrect more often than predicted by the general score.

Table 3 also includes the Longest Common Substring results. Two scores are kept: the leftmost column
includes the LCS for sentences that were produced from meanings that passed all goal tests (and have
thus a higher chance of success). The rightmost column shows the scores for productions whose initial
meaning networks were extracted from a comprehension process that failed. No score is shown when
the case did not happen. The biggest issue in getting the word order right seems to occur in the relative
clauses (0.43) and the operator adverbs (0.40). The latter allow multiple grammatically correct word
orders in EP, whereas we only include the first solution.

When it comes to grammar efficiency, Figure 4 (on the left) shows the results ordered by sentence
length (3—7). We see indeed that the efficiency does not scale well when longer sentences are parsed
(and the same goes for production). Less than 20% of all search nodes are used by the branch that
leads to the solution. To get an idea of the complexity of the grammar Figure 4 (on the right) plots the
number of constructions that is needed to parse a sentence. Sentences of length 3 require on average 9
constructions and the number increases with steps of 2 with every word that is added.

The grammar fragment presented in this section covers a very basic grammatical phenomenon of
positioning the clitics correctly. Yet, being basic it has several intrinsic aspects that are fundamental
to get right to process it correctly, especially if we want to have grammars that generate grammatically
correct sentences. A traditional metric of accuracy or even the normal S-score metric would give an
unfair comparison between this fragment grammar and a corpus-based grammar. While, the latter might
be better at covering all the sentences provided in a corpus or in a test suite, it might always fail in the
processing of this phenomena. While the former grammar not being constructed for a wide coverage

Grammar efficiency (parsing)
5
|
-
_
Sentence length

T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 10 15 20

Sentence length Number of applied constructions (parsing)

Figure 4: The efficiency and complexity of the EP grammar in function of the sentence length.

1143

might be better at handling this phenomena. The specific s-score when used together provides us with
further information to understand how the grammar differs in a more detailed level. Furthermore, this
score and the additional profiling metrics for efficiency are very useful for grammar engineers during
the grammar developing phase to understand where their grammar falls short and should be further
developed. The LCS in FCG provides a further insight into the accuracy of the generated sentences
which tells us how well the grammar understands and generates the sentence back.

Using the AMR annotation for evaluating grammar is a relatively costly process. However, it is be-
coming increasingly necessary to have a semantically annotated corpus in addition to the more traditional
syntactical tree-based annotation. Furthermore, there are some strategies that can decrease the burden
on the annotators: (1) if only a partial phenomena is being studied, then it might be reasonable to have
only partial annotations; (2) it is possible to distribute the phenomena per annotator, thus decreasing the
learning curve; (3) it is possible to provide the sentences already generated by the grammars and ask the
annotators to fix the errors based on their cognitive understanding of the meaning and/or a set of rules
provided.

6 Conclusions

Taking inspiration from existing measures in semantic parsing and machine translation, we proposed two
new metrics for evaluating computational Construction Grammar implementations: the S-score, with a
variant for focusing on the parts of the meaning graph that are tackled by the grammar fragment; and the
LCS score, indicating the reproducibility of the retrieved meaning network. Used in addition to more
traditional metrics, these scores give insights about the exact type of phenomena that can be handle by a
precision grammar, which is important to distinguish grammars that cover a large number of sentences
but invariably fail in processing specific phenomena and grammars that cover a small set of sentences
but can deal well with a specific phenomena. Additionally, some profiling measures are also suggested
to give an idea of the grammar efficiency and complexity. We hope the proposed metrics help grammar
engineers to better understand the complex interactions between the constructions in their grammars and
the phenomena being covered by it.

Acknowledgements

The research presented in this paper has been funded by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. 607062 ESSENCE: Evolution of Shared
Semantics in Computational Environments (http://www.essence-network.com/).

References

Victor Barres and Jinyong Lee. 2014. Template construction grammar: from visual scene description to language
comprehension and agrammatism. Neuroinformatics, 12(1):181-208.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-
answer pairs. In Timothy Baldwin and Anna Korhonen, editors, Conference on Empirical Methods on Natural
Language Processing, pages 1533-1544, Seattle, Washington. The Association for Computational Linguistics.

Benjamin Bergen and Nancy Chang. 2005. Embodied construction grammar in simulation-based language un-
derstanding. In Jan-Ola Ostman and Mirjam Fried, editors, Construction grammars: Cognitive grounding and
theoretical extensions, number 3 in Constructional Approaches to Language, pages 147-190. John Benjamins,
Amsterdam.

Joan Bresnan, Ash Asudeh, Ida Toivonen, and Stephen Wechsler. 2016. Lexical-Functional syntax. Wiley-
Blackwell, West-Sussex, England, 2 edition, August.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation metric for semantic feature structures. In Proceedings of
the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, volume Volume 2: Short
papers, pages 748—752, Sofia, Bulgaria, 4-9 August 2013.

Thomas H. Cormen. 2009. Introduction to algorithms. MIT Press, Boston, MA.

1144

Charles J Fillmore, Paul Kay, and Mary Catherine O’Connor. 1988. Regularity and idiomaticity in grammatical
constructions: The case of let alone. Language, 64(3):501-538.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Generalized Phrase Structure Grammar.
Basil Blackwell, Oxford.

Adele Goldberg. 2005. Constructions at work. Oxford University Press, Oxford.

Thomas Hoffmann and Graeme Trousdale, editors. 2013. The Oxford handbook of Construction Grammar. OXx-
ford University Press, Oxford.

Chin-Yew Lin and Franz Josef Och. 2004. Automatic evaluation of machine translation quality using longest
common subsequence and skip-bigram statistics. In Proceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Volume, pages 605—612, Barcelona, Spain, July. ACL.

Ana Luis and Ryo Otoguro. 2011. Inflectional morphology and syntax in correspondence: Evidence from euro-
pean portuguese. In Glyn Hicks Alexandra Galani and George Tsoulas, editors, Morphology and Its Interfaces,
number 178 in Linguistik Aktuell/Linguistics Today, pages 97—136. John Benjamins, Amsterdam.

Ana Luis, Ryo Otoguro, Miriam Butt, and Tracy Holloway King. 2004. Proclitic contexts in european portuguese
and their effect on clitic placement. In Miriam Butt and Tracy Holloway King, editors, The Proceedings of the
LFG’04 Conference, pages 334-352, Stanford, CA. CSLI Publications.

Ana Maria Madeira. 1992. On clitic placement in European Portuguese. UCL Working Papers in Linguistics,
4:95-122.

Raymond J. Mooney. 2007. Learning for semantic parsing. In Alexander Gelbukh, editor, Computational Lin-
guistics and Intelligent Text Processing, volume 4394 of Lecture Notes in Computer Science, pages 311-324,
Mexico City, Mexico, February 18-24. Springer.

Jan-Ola Ostman and Mirjam Fried. 2005. Construction Grammars: Cognitive grounding and theoretical exten-
sions, volume 3 of Constructional Approaches to Language. John Benjamins, Amsterdam.

Ankur P Parikh, Hoifung Poon, and Kristina Toutanova. 2015. Grounded semantic parsing for complex knowledge
extraction. In Human Language Technologies: The 2015 Annual Conference of the North American Chapter of
the ACL, pages 756766, Denver, Colorado, June 5. Association for Computational Linguistics.

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase structure grammar. University of Chicago Press, Chicago.

Hoifung Poon and Pedro Domingos. 2009. Unsupervised semantic parsing. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing: Volume 1, pages 1-10, Singapore, August 6-7.
Association for Computational Linguistics.

Nathan Schneider and Reut Tsarfaty. 2013. Book review: Design patterns in Fluid Construction Grammar.
Computational Linguistics, 39(2):447-453.

Mark Steedman. 2000. The syntactic process. MIT Press, Boston, MA.

Luc Steels. 2004. Constructivist development of grounded construction grammars. In Walter Daelemans, editor,
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pages 9-19, Barcelona.
Association for Computational Linguistics.

Luc Steels, editor. 2011. Design patterns in Fluid Construction Grammar. Number 11 in Constructional Ap-
proaches to Language. John Benjamins, Amsterdam.

Luc Steels. to appear. The basics of Fluid Construction Grammar. Constructions and Frames.

Lappoon R Tang and Raymond J Mooney. 2001. Using multiple clause constructors in inductive logic program-
ming for semantic parsing. In Proceedings of the 12th European Conference on Machine Learning, pages
466477, Freiburg, Germany. Springer.

Sean Trott, Aurélien Appriou, Jerome Feldman, and Adam Janin. 2015. Natural language understanding and
communication for multi-agent systems. In Artificial Intelligence for Human-Robot Interaction Papers from the
AAAI 2015 Fall Symposium. AAAL

Remi van Trijp. 2015. Cognitive vs. generative construction grammar: The case of coercion and argument struc-
ture. Cognitive Linguistics, 26(4):613-632.

1145

Luke S. Zettlemoyer and Michael Collins. 2007. Online learning of relaxed ccg grammars for parsing to logical
form. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 678—687, Prague, June.

1146

