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Abstract

This paper describes our construction of named-entity recognition (NER) systems in two West-
ern Iranian languages, Sorani Kurdish and Tajik, as a part of a pilot study of Linguistic Rapid
Response to potential emergency humanitarian relief situations. In the absence of large annotated
corpora, parallel corpora, treebanks, bilingual lexica, etc., we found the following to be effective:
exploiting distributional regularities in monolingual data, projecting information across closely
related languages, and utilizing human linguist judgments. We show promising results on both a
four-month exercise in Sorani and a two-day exercise in Tajik, achieved with minimal annotation
costs.

1 Introduction

This paper describes our rapid construction of NER systems, as a part of a pilot study of Linguistic Rapid
Response to potential emergency humanitarian relief situations. When a disaster strikes a community that
speaks a low-resource language without an existing NLP infrastructure, how long would it take to put
such an infrastructure, however imperfect, in place? What kinds of systems can be in place within 24 or
48 hours, and what levels of performance can we expect? What resources – besides existing gazetteers,
parallel corpora, etc. – can be assembled in this timeframe and brought to bear on NER?
Contemporary techniques for creating natural language processing (NLP) tools are dominated by su-

pervised learning approaches, in which large quantities of high quality data are annotated in a task-specific
fashion and utilized along with manually-built collaborate resources likeWordNet, Ontonotes, etc. These
techniques have provided very good performance, but with 7,000 languages in the world these resources
cannot feasibly be compiled in advance, and could not be assembled within an emergency timeframe.
Following many examples of “surprise language exercises” (Oard, 2003), the work described in this

paper tackles the problem of rapid development of important NLP tools and resources, with a focus
on NER, for low resource languages. We assume that for a “low resource” language, there is some
monolingual corpus data and little to no annotated data for supervised training. Amajor theme underlying
this work is a focus on building “omnivorous” models and pipelines that, instead of relying on elaborate
and robust linguistic resources compiled ahead of time, try to opportunistically incorporate linguistic
theory, informal and non-expert intuitions about the language and task at hand, and resources adapted
from closely related languages, all while avoiding extensive manual annotation.
An important feature of our work is the use of human linguists who do not speak the language but

are familiar with the structure of human languages in general, have some knowledge about the language
family in question, and can absorb facts about the language quickly by reading reference grammars and
looking at data. Specifically, in this project, linguists worked interactively with unsupervisedmorphology
induction, annotated named entities, and identified thresholds for automatic tagging of multi-word named
entities.
We illustrate this approach for two low resource languages, Sorani Kurdish and Tajik, provided during

two surprise language evaluations. Software development and Sorani NER processing took place over
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Figure 1: Sorani, Tajik, and selected relatives

a four-month period, while the Tajik surprise-language event took place in only 36 hours. Hence, all
techniques described in this paper, whether performed by machines or humans or both, have runtimes in
minutes or hours rather than days.

2 Data sources

2.1 Sorani Kurdish

Sorani (or “Central”) Kurdish is a Western Iranian language in the Kurdish family, spoken by about 6.7
million people in Iraqi Kurdistan and the Kurdistan Province of Iran. Unlike other Kurdish languages,
but like the more distantly related Persian (or “Farsi”), it is written in a Perso-Arabic script, albeit with
modifications (like additional vowel glyphs) that make it more suitable for writing Sorani. We obtained
Sorani monolingual data from the LCTL language pack (Simpson et al., 2008).

2.2 Kurmanji Kurdish

Some of the challenge of Sorani NER is orthographic in nature, since its Perso-Arabic script, while closer
to the phonemic form of words thanmost other Perso-Arabic scripts, still has some significant ambiguities
in vowel representation, and lacks an uppercase-lowercase distinction, which is an important feature for
NER. In order to partially mitigate these ambiguities, we also made use of Kurmanji (or “Northern”)
Kurdish data from the Pewan news corpus (Esmaili et al., 2013). Kurmanji is spoken primarily in eastern
Turkey by about 20 million speakers, and unlike Sorani is written in a Roman script. Sorani and Kurmanji
are sometimes described as dialects of the same languages, but sometimes described as different languages
due to their significant morphological differences.

2.3 Tajik Persian

Tajik is a variety of Persian spoken primarily in Tajikistan by about 8 million speakers, and is written
primarily in Cyrillic script. We obtained Tajik monolingual data from the Leipzig corpus of news crawls
(Biemann et al., 2007).

2.4 IPA representations

So that resources in different languages and scripts could be more directly compared, and so that judg-
ments about the data could be made rapidly by linguists without native proficiency in the Perso-Arabic
and Cyrillic writing systems, we produced representations of the Sorani, Kurmanji, and Tajik data in the
International Phonetic Alphabet (IPA). To disambiguate ambiguous Sorani forms, we used a conditional
random field (CRF) (Lafferty et al., 2001) that utilized a combination of human judgments, universal
phonetic features, and language models of related languages; we describe this “IPAization” process in
more detail in Mortensen et al. (2016) and Littell et al. (2016).

3 Named Entity Recognition

For the NER task, we focused on identifying mentions of persons (PER), locations (LOC), and organiza-
tions (ORG) in the textual data. Our core system is a CRF based system with L1-regularization, where x
is the input sequence and output y is the appropriate tag sequence, and no features look beyond a history
of length 1.
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f(y | x) =
|x|∑
i=1

f(x, yi, yi−1). (1)

Based on previous work in the area (Tjong Kim Sang and De Meulder, 2003; McCallum and Li, 2003;
Sha and Pereira, 2003), we begin with a standard set of features commonly used for trainingNER systems:

• Current token and Current tag
• Previous token and Current tag
• Next token and Current tag
• Current+previous token and current tag
• Current+next token and current tag
• First five features but with previous tag
• First five features conjoined with both current and previous tags
• Contains foreign script characters
• Indicator features for tokens containing digits
• Features about capitalization information
• Prefix features

However, given the paucity of training data, these features are numerous and sparse, we do not expect
the CRF model to perform well with standard features alone, even with L1 regularization.
Hence, keeping up with the general theme of this work, we aim to induce features in an unsupervised

manner by exploiting the distributional regularities in the monolingual data, guiding the unsupervised
sub-components to encode our intuitions and knowledge about the task and the target language, and
utilize features from closely-related languages.

3.1 Gazetteers
For Sorani, the absence of a capitalization feature in its Perso-Arabic script posed a difficulty, as capi-
talization serves as a valuable feature for NER. However, as noted in §2, the closely related Kurmanji
Kurdish is written in a Roman script that does distinguish capitalization.
Using the IPA representations of the Sorani and Kurmanji texts and a frequency-weighted edit

distance algorithm, we inferred for each Sorani token a corresponding Kurmanji token (e.g.,
⟨ɛvɣanistan,ɛfganistan⟩), and assigned to each Sorani token the capitalization frequency of the Kurmanji
word (in this case, Efganistan, which had a capitalization frequency of 1.0). These features were used a
“probabilistic gazetteer” in lieu of a real Sorani gazetteer, where the capitalization frequency is treated as
if it represented the probability that a word occurred in a gazetteer. We describe this gazetteer inference
strategy in greater detail in Littell et al. (2016).
For Tajik, we constructed a more traditional gazetteer using Tajik’s relatively extensive Wikipedia.

Since Wikipedia titles are linked between Wikipedias in different languages, we had parallel English and
Tajik titles; we filtered the English titles by heuristics including capitalization, and used the corresponding
Tajik titles as the gazetteer entries.

3.2 Unsupervised morphology induction
TheWestern Iranian languages are morphologically rich, with Sorani in particular having a high degree of
morphological complexity (Walther, 2011; Esmaili and Salavati, 2013). In such languages, the presence
of certain morphemes is strongly correlated with certain grammatical functions being present, which
could be informative for the problem of identifying and discriminating named entities.1
While unsupervised induction of morphological grammars is a long-standing problem, the inferred

morphological analyses typically diverge from conventional linguistic analyses rather substantially. We
addressed this shortcoming by using feedback from human linguists using amodification of the interactive
learning paradigm proposed by Hu et al. (2011). While superficially related to active learning (Settles,

1While Western Iranian languages also utilize prefixes and root modification, we concentrated here on suffixes alone; this
simplifies the model and concentrates on those morphological alternations we believe more likely to be relevant to NER.
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12/2/2014 Give feedback on current morphological inferences

http://demo.clab.cs.cmu.edu/cdyer/form-tg-m3.html 1/6

Instructions - Please Read
We need your help classifying affixes guessed by a morphological analysis tool on Tajik word froms. For each listed hypothesized affix, you will see a

list of words where it has been used (possibly incorrectly). Your job is to tell us whether or not each affix is a possible affix in the language or not (or

whether you are not sure). Hints:

Forms should be labeled as Good as long as they are correct in some (possibly phonologically or morphologically conditioned) context. For

example in English, both +es and +s should be annotated as correct although we usually think of the later as the "default" form. A form like +ka
would not be a good English form since this is not a derivational or inflectional affix in English, therefore the option marked Bad should be checked

if it were to appear in a morpheme list for English.

Higher quality affixes will probably be higher in the list, but please go through the entire list.

Examples of analyses containing each affix are listed for informational purposes. It is important to remember that you are not judging these

anaylses, i.e., whether the affix in question is actually present in the examples, but only whether the posited affix is part of the language.

Forms are in the International Phonetic Alphabet. If you see boxes or other indications of missing symbols, you may need to install an IPA font on your

computer. Here is one from SIL.

Task (Don't forget to submit using the button below!)

Bad Unsure Good Affix Example Analyses with Affix

+i (30860) /intizɔːm/+i+jɑʃ+ɔːn    /ʃukuh/+i    /jɑtim/+i    /tærk/+i+dæ    /sæmbusæ/+i   
/t͡ʃæm/+k+ɔːni+i    /bɔːnæzɔːkæt/+i

+rɔː (10447) /ʃærɔːit/+æʃ+rɔː    /bæhs/+hɔː+rɔː    /dɔːχil/+i+rɔː    /muhɔːd͡ʒirɔːn/+rɔː   
/sɔːhibkɔːr/+rɔː+n    /ʃær/+n+if+rɔː    /ræhbær/+i+rɔː

+æ (9762) /ʃunævænd/+æ+æʃ    /ɡʃæv/+æ+d    /durust/+æ+nd    /æjd͡ʒ/+æ+l+ɔːn   
/bɔːzɡæʃt/+æ    /næmɔːnæ/+n+æ+d    /rɔːb/+b+ik+æ

+ɔːn (6826) /intizɔːm/+i+jɑʃ+ɔːn    /ʃæχv/+æt+æt+ɔːn    /ræfik/+ɔːn    /d͡ʒɔːn/+ɔːn+ɔːv   
/deːχæ/+æm+ɔːn+rɔː    /vɔːr/+ɔːn+eː+ʒ    /χæjr/+ɔːn+æm

+eː (6058) /kætræ/+eː+st    /sɔːziʃ/+eː+rɔː    /vɔːr/+ɔːn+eː+ʒ    /vɔːqeːæ/+eː   
/rɵːhɔːnijɔn/+eː    /kɵːʃiʃ/+eː    /ɔːtæʃsɵːz/+i+eː

+hɔː (5538) /bæhs/+hɔː+rɔː    /dæstæɡul/+hɔː    /χudsæri/+hɔː+i    /sæhnæ/+t͡ʃæ+hɔː
+vu    /blɔːɡɡeːr/+hɔː+i    /ideːɔːlɔːɡijɑ/+hɔː    /kɔːnveːntsi/+jɑ+hɔː+i

+u (5366) /muhɔːfizækɔːr/+u    /zærræ/+ɡ+u+l    /ɛʔtiqɔːd/+u    /nɔːχijɑ/+j+u    /
χæst/+j+u    /ɔːmuziʃ/+u    /pæjk/+ær+u

+χɔː (3993) /kumændɔːn/+χɔː+i    /tæʃæbbus/+χɔː    /klub/+χɔː    /t͡ʃærχbɔːl/+χɔː+i   
/t͡ʃini/+χɔː+rɔː    /t͡ʃɔːræbini/+χɔː+i    /næbeːræ/+χɔː+jɑʃ+ɔːn

+n (3830) /mir/+n+ɨ+j    /ɔːtæʃ/+zæ+n+iː    /pæʃm/+i+n+rɔː    /æjnid/+d+i+n   
/kæpid/+æ+n    /hæm/+i+i+n    /færhænɡpærv/+æ+rɔː+n

+iː (3828) /zeːriɔːb/+iː    /ɡæʃt/+æ+iː    /ɔːtæʃ/+zæ+n+iː    /zær/+dɔːr+iː   
/zærur/+r+iː    /tæqɔːlub/+kɔː+r+iː    /muhændis/+iː

+æʃ (3770)
/ʃærɔːit/+æʃ+rɔː    /ʃunævænd/+æ+æʃ    /islɔːm/+i+æʃ    /væzifæ/+æʃ+ɔːn   
/hæmsær/+æʃ    /æd͡ʒib/+æʃ    /muhim/+æʃ

+d (3744) /bɔːχæbær/+eː+d    /tursun/+z+ɔː+d    /kɔːsɔːpɵːl/+ɔː+d+ɔːv    /bænd/+eː
+d+u    /næmeːpærtɔː/+jɑ+d+æt    /ɡʃæv/+æ+d    /æjnid/+d+i+n

+ɔː (3532) /int/+i+q+ɔː    /tursun/+z+ɔː+d    /kɔːsɔːpɵːl/+ɔː+d+ɔːv    /vid/+ɔː+ʔ+i   
/væssæl/+ɔː+m    /bɔːr/+ɡ+ɔː+h    /russ/+ɔː+rɔː

+æt (2267) /ʃæχv/+æt+æt+ɔːn    /rɔːχχ/+æt    /næmeːpærtɔː/+jɑ+d+æt   
/kijɔ/+m+æt+rɔː    /tæbʔ/+æt+ɔːn    /ʃeːrm/+æt    /tɔːk/+æt+ɔːv+ær

+æm (2112) /χɔːl/+i+æm    /deːχæ/+æm+ɔːn+rɔː    /χæjr/+ɔːn+æm    /ɡunæhkɔːr/+æm   
/rus/+æm+i    /ævr/+æ+æm    /bɵːqæl/+æm+u+n

+m (1976) /rɵːz/+m+ær+æ    /kijɔ/+m+i    /næχænd/+eː+m    /kijɔ/+m+æt+rɔː   
/væssæl/+ɔː+m    /vlædi/+m+i    /æbdulræh/+i+m+i

+t (1971) /nɔːv/+æ+q+t    /mukil/+ɔː+t+i    /bæχ/+t+rɔː    /d͡ʒɔːɡuz/+ɔːʃ+t    /bɔːl/+i+ʃ
+t    /stærɔːdub/+t+s+eːv    /æmæ/+t+æ+ni

+nd (1852) /æfzɔːiʃ/+æ+nd    /durust/+æ+nd    /ɔːɡɔːχ/+æ+nd+u    /neːst/+æ+nd+æz   
/χæv/+æ+nd+i    /peːʃkæʃkun/+æ+nd+æi    /pɔːj/+jɑ+nd+æɡi

+l (1690) /d͡ʒuɡiæʃv/+i+l+iː    /bur/+i+ku+l    /zærræ/+ɡ+u+l    /sær/+æv+væ+l    /
ækæl/+l+i    /viki/+l+eːk+s    /d͡ʒæb/+æ+l+i

+r (1635) /sæχt/+kɔː+r+u    /dur/+u+r+st    /væsl/+ɡæ+r    /bær/+r+ændæ   
/muɔːmilæ/+ɡæ+r    /zærur/+r+iː    /tæqɔːlub/+kɔː+r+iː

+j (1626) /χɔːndæ/+ɡ+j    /kæmbæɡæl/+bæ+t͡ʃæ+j    /mir/+n+ɨ+j    /nɔːχijɑ/+j+u    /
χæst/+j+u    /hæmræʔ/+j+iː    /ællæk/+k+æ+j
/prɔːɡreːss/+i+jɑ+i    /qut/+b+i+jɑ    /sɔːh/+i+jɑ+i    /uqjɔnus/+i+jɑ+rɔː   

Figure 2: Screenshot of the feedback interface containing analyses for Tajik.

2012), the interactive paradigm charges the annotator with the task of identifying subjective systematic
errors, instead of picking new instances to be annotated. In case of morphology learning, we let linguists
give their judgment on the quality of affixes, which is used to constrain the hypothesis space and tune the
parameters of the unsupervised learner. The feedback interface is shown in Fig. 2.
We used a hierarchical Bayesian model of morphological segmentation. Our prior expectations are

(1) that stems should be more diverse than suffixes, but both should be reused when possible, (2) that
individual suffixes are likely to be very short, and (3) that suffixes are likely to proceed in a characteristic
order (e.g., -ion and -al are both English suffixes, but -ion-al is valid and occurs in many words, for
example in inspirational, while -al-ion is not valid).
To encode the first two assumptions, we assumed that the distributions over stems and suffixes are

governed by a Dirichlet processes with parameters set to encourage lower entropy samples for suffixes
and higher entropy samples for stems. The base distribution Word(λ) is a process that generates a word
by sampling a length from a Poisson distribution with mean λ and then choosing characters randomly
for each position. To capture the fact that affixes proceed in a characteristic order, we in turn assumed
these were generated by a bigram Markov process governed by a hierarchical Dirichlet process (Teh et
al., 2006). The generative process is stated in Algorithm 1.

Algorithm 1Morphological induction
1: θ ∼ DP(α1, Word(λ = 6))
2: φ ∼ DP(α2, Word(λ = 1))
3: φ·|x ∼ DP(α3,φ) ∀x ∈ Σ∗

4: for each word w in surface vocabulary V do
5: Draw # of suffixes ℓ ∼ Geom(ρ = 0.9)
6: Draw stem b ∼ Cat(θ)
7: s−1 = ⟨b⟩
8: for each suffix index i from 1 to ℓ do
9: Draw affix si ∼ Cat(φ·|s−1

)

10: w = w + si

11: s−1 = si

12: end for
13: end for

Since our model does not depend on anything but word types, the observed data is just the vocabulary
(in IPA form) of the target language, and the goal of inference is to find the distribution over segmentations
given our model and the vocabulary. To do so, we use block Gibbs sampling (marginalizing the draws
from the Dirichlet processes). Since we are considering all analyses of a word at once, constraints against
certain morphemes are trivial to incorporate. For the experiments reported below, we ran 1000 iterations
of Gibbs sampling, then obtained feedback followed by a further 1000 iterations twice.

3.3 Unsupervised class induction: Hard clustering
Oneway of reducing sparseness due to the lexicalization of the features is to map the types or tokens of the
monolingual corpus to a smaller number of classes. We try to obtain mappings such that the tokens/types
sharing similar characteristics are mapped to one class. For example, if “Lord” and “Lady” are mapped
to the same class, then two different sequences “Lord Palmerston” and “Lady Grey” will share the class
information and will, if “Palmerston” is annotated as a name in the training data, be more likely to predict
“Grey” as a name as well. We focus on context-aware class induction, particularly modeling the classes
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with a first-order Markovian assumption.
Brown et al. (1992) introduced a bottom-up agglomerative word clustering algorithm which generates

a hard clustering (i.e., a word belongs to only one cluster). With this hard clustering assumption, we aim
to achieve a clustering C that maximizes the log-likelihood of the data, logP (w1, ...wn,C(w1), ..C(wn)),
i.e.

argmax
C

log
n∏

i=1

p(C(wi) | C(wi−1)) × p(wi | C(wi))

We experimented with 500 and 1000 clusters. Manual qualitative analysis of these clusters revealed
that they created several meaningful groups: foreign words, numbers, names, etc.

3.4 Unsupervised class induction: Soft clustering with the influence of collocations
In addition to the traditional “hard” Brown clusterings, we also experimented with soft clusterings where
the parameters can be influenced by external knowledge, using Expectation Maximization (Dempster et
al., 1977). We focused on influencing our NER system using information about collocations – bigrams
that co-occur with frequency greater than chance – in the monolingual text. The intuition behind col-
locations is that many names of people (“barak obama”), places (“arabistani saudi”), and organizations
(“bomdodi telefonhoi”) are expected to be identified as collocations.
We warm-started with the distributions obtained by the Brown cluster algorithms, smoothed via addi-

tive (dirichlet) smoothing. Our pilot experiments showed that this resulted in better performance when
compared to the performance with random initializations. The runtime (O(token ∗ iterations ∗ C2)) is
higher than that of Brown algorithm (O(types ∗C2 + tokens)) because we estimate all the distributions
of the probabilistic HMM using dynamic programming (Rabiner and Juang, 1986). Hence, subsequent
models used interpolated stochastic batch updates (Liang and Klein, 2009) instead of batch updates so
that the convergence is faster.
We used a likelihood ratio test (Dunning, 1993), which is a form of hypothesis testing that decides

whether the second word in the bigram is unusually associated with the first word of the bigram or not, to
determine an initial list of possible NE collocations. For both Sorani and Tajik, this measure results
in desirable LR score graphs for bigrams with a distinct “elbow” for both the languages. However,
determining the threshold, below which a collocation should not be considered genuine for the purposes
of further steps, was donemanually by a human linguist looking at IPA representations of the collocations.
This is a judgment that need not bemade by a native speaker, or even an expert in the language in question,
but just someone with some familiarity with the language or language group, the ability to read IPA, and
enough real-world knowledge to recognize when a list of two-word phrases in IPA switches from mostly
referring to names and places, to referring to names and places only occasionally.
We use these collocations, as generated by the likelihood ratio test and thresholded by human judgment,

to bias unsupervised class induction over words in the target language, so that collocations are encouraged
to fall into the same clusters. To our knowledge, this work is the first to bias unsupervised class induction
using collocation knowledge.2
EM based optimization allows us to bias the parameters of the HMM, to encourage collocations to

fall into same clusters. Hence, whenever we observe collocations in the monolingual data during the E
step, we use an Identity matrix as the transition matrix, i.e. P (C(wi) | C(wi−1)) = 1. The M step is
performed as usual, resulting in learning of parameters affected by the biased expectation counts.
As discussed above, constraining the collocation members to belong to the same clusters is attractive,

but the collocations that we estimated automatically are certainly not pure. Hence, we introduce posterior
regularization (PR) (Ganchev et al., 2010) into our HMM inference algorithm. We want the posterior of
the HMM distribution to reflect the fact that adjacent tokens in identified collocations in the monolingual
data tended to belong to same clusters.

2It should be noted that this is different from work in Liang (2005), which used the mutual information between adjacent
types directly as features in the learning model. We avoid this method to keep our feature space small, in light of the paucity of
training data.

1002



For this technique, if we denote the original HMM distribution by p(C | W) with parameters θ, and
a variational approximation q(C) to the original distribution which respects our collocation based con-
straints i.e. Eq(ϕ(W,C)) = −1 where, ϕ(wi, C(wi), C(wi−1)) = −1 if C(wi) = C(wi−1) and 0
otherwise, for wis that are members of collocations; then the objective that we optimize becomes:

argmin
θ

KL(q || p)subject to Eq(ϕ(W,C)) = −1 + ϵ

When this objective is solved using its dual, the variational approximation q (after optimization for the
dual variable λ) looks like:

q∗(C) =
pθ(C|W)exp(−λ∗.ϕ(W,C))

Z(λ∗)

Since the constraints ϕ are local at the level of transition probabilities, the PR solution can be easily
incorporated into the dynamic program of HMM.

3.5 Experiments
Wepresent our results on the task of named entity recognition for Sorani and Tajik. For Sorani, the training
(2175 instances) and test (212 instances) data was obtained from the annotated NER data in the LCTL
language pack. For Tajik, we had access to a native speaker who, in about four hours, annotated 600
examples, which we split into 250 training instances, 250 test instances, and 100 development instances.

Features Rec. Prec. F1
Std. 0.412 0.694 0.517
Std.+Br 0.476 0.702 0.567
Std.+Br+Gaz 0.490 0.750 0.593
Std.+Br+Gaz+Mph 0.509 0.751 0.606
Std.+PR+Gaz+Mph 0.513 0.741 0.606

Table 1: Results on Sorani NER

Features Rec. Prec. F1
Std 0.302 0.709 0.423
Std+Br 0.511 0.657 0.574
Std+Br+Gaz 0.512 0.656 0.575
Std+Br+Gaz+Mph 0.517 0.668 0.583
Std+PR+Gaz+Mph 0.537 0.637 0.583

Table 2: Results on Tajik NER

In Tables 1 and 2, ‘Std’ refers to the standard features used in supervised NER systems (§3), ‘Br’ to
the class features obtained from the Brown algorithm (§3.3), ‘PR’ to the class features from the EM and
posterior regularization algorithm (§3.4), ‘Gaz’ to Gazetteer based features (§3.1), and ‘Mph’ to features
from morphology induction (§3.2).
As we can observe, systems based only on standard features (§3) perform comparatively poorly, while

adding Brown clusters lead to a large gain in recall especially in the Tajik condition. In both languages,
the Brown and PR conditions perform similarly on F1, with the Brown condition having higher precision
and the PR condition having higher recall. The reduction of precision in the PR condition is most likely
a result of expanding the feature space with both Brown clusters and EM-based clusters.
The “gazetteer” for Sorani, which attempts to fabricate capitalization values for Sorani by comparison

with Kurmanji words (§3.1), led to improvements in both recall and precision, while the Tajik gazetteer,
collected from Tajik Wikipedia titles, did not lead to significant gains. Manual inspection of the resulting
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Sorani Tajik
Features Rec. Prec. F1 Rec. Prec. F1
PER 0.406 0.709 0.516 0.446 0.458 0.452
LOC 0.680 0.801 0.735 0.589 0.737 0.655
ORG 0.343 0.604 0.438 0.136 0.375 0.200

Table 3: Error analysis on NER

Features Rec. Prec. F1
Std+PR+Gaz+Mph 0.409 0.669 0.508

Table 4: Results on Tajik NER, using 1350 linguist annotations in lieu of native-speaker annotations

gazetteer revealed it to be fairly noisy with respect to the forms of the names; while the entries appeared
to be, for the most part, genuinely named entities, many of them appear to have been converted directly
from the Persian Wikipedia. Since Persian script does not completely represent vowels, the Tajik authors
in many cases were likely guessing at the vowels when they were unfamiliar with the named entity.
Morphological features (§3.2) provided small improvements for both languages. Interestingly, the

morphological features affected both the languages differently; while the Sorani system relied more on
the induced stems, the Tajik system relied more on the suffixes. This may reflect the complexity of
Sorani morphology (Walther, 2011; Esmaili and Salavati, 2013), in which many apparent affixes are
actually enclitic, and therefore might not provide category information about their hosts as reliably as
true suffixes do.
In Table 3, we observe that our NER systems are best at identifying LOC and are slightly worse at

identifying PER. However, they perform substantially worse on identifying ORG because their proper
noun parts can be confused with both locations and persons, and they often involve common words (e.g.
“association”, “for”, etc.) that in other contexts are not part of NEs. Note that unlike in English, capi-
talization is not as helpful in distinguishing multiword NEs in Sorani and Tajik. Sorani “capitalization”
here is only a feature inferred on a word-by-word basis from Kurmanji text, as detailed in §3.1, and Tajik
generally uses Russian-style capitalization conventions in which only the first word in a multiword NE
needs to be capitalized, making ORG identification much more difficult than in languages that capitalize
all or most words in an ORG.
For the Tajik condition, we also had linguists – without prior experience in Tajik but generally familiar

withWestern Iranian languages – annotate another 1350 instances in sixteen person-hours. This wasmade
possible by the IPA conversion step mentioned in §2.4, since the linguists did not have native proficiency
in reading Cyrillic text.
Using this larger set instead of the smaller native-speaker-annotated set, we achieved similar results,

with lower recall but higher precision (Table 4). This is a promising result, as it suggests that a team of
linguists, even those without prior familiarity with the language, can create useful training data in a short
time even when native informants are unavailable.

4 Conclusion

Our work demonstrates that, by using tools, data resources, and human resources (like linguists and
language consultants) in innovative ways, it is possible to overcome some of the obstacles to developing
standard NLP tools like NER systems for low-resource languages.
We built Named Entity Recognizers for Sorani Kurdish and Tajik in a manner which, while requiring

minimal human annotator effort, managed to successfully incorporate informal intuitions and linguistic
knowledge about the task and the languages into the system and seeks to identify and exploit latent
patterns in the monolingual data.
To this end, we developed unsupervised class induction systems that were influenced by noisy col-

location lists, and morphology induction systems that could be biased by subjective human feedback.
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Moreover, we also showed that mapping the orthographic representation of a language to a general phono-
logical representation not only enables efficient human analysis and annotation, but also opens avenues
for transferring linguistic information from related languages.
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