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Abstract

Parallelism is an important rhetorical device. We proposeaghine learning approach for automated
sentence parallelism identification in student essays. Wi lan essay dataset with sentence level
parallelism annotated. We derive features by combiningeg®ized word alignment strategies and the
alignment measures between word sequences. The expeaslmesilts show that sentence parallelism
can be effectively identified with &, score of 82% at pair-wise level and 72% at parallelism cheu&ll

Based on this approach, we automatically identify sentgacallelism in more than 2000 student essays
and study the correlation between the use of sentencegamalland the types and quality of essays.

1 Introduction

Parallelism is an important rhetorical device. It can berdafiastwo or more coherent text spans (phrases or
sentences), which have similar syntactic structures and related semantics, and express relevant content or emotion
together. Each text span is a parallelism unit and the parallel unithfa parallelism chunk. The following two
sentences segmented by the semicolon form an example efsenarallelism.

Theinherent vice of capitalismisthe unegqual sharing of blessing;
theinherent virtue of socialismisthe equal sharing of miseries. by Churchill.

Parallelism adds balance and rhythm to make speeches atidgarimore vivid and powerful. Moreover,
parallelism also adds clarity to the sentence or even theodise. Several sentences are expressed similarly to
show that the content in the sentences are equal in impertdimerefore, properly using parallelism may improve
the quality of texts. On the other hand, identifying palaha in essays would potentially help to evaluate the
quality of writings and benefit applications like essay supand organization evaluation.

In this paper, we study the problem of identifying para#lgiiin student essays. We focus on identifying sentence
parallelism. A parallelism unit is a sentence, and sevaallel sentences form aparallelism chunk. Parallelism
identification is a task to find the parallelism chunks witbgsays.

This task is nontrivial. There are several factors to be iclmmed. Since the parallel sentences should have
similar structures and related semantics, they can be se@arraing a certain kind of alignment between each
other. However, such alignment can exist in various levetsn surface lexical patterns to syntactic structures,
semantics and even emotions. Moreover, the alignment ocaur @t various granularity (words, phrases, clauses
or sentences). Therefore, it is difficult to design manulsto identify sentence parallelism.

We propose a learning based framework for sentence pasailétientification. We annotate a sentence
parallelism dataset consisting of about 500 student ess@fiis dataset allows us to derive features to model
sentence parallelism and utilize machine learning to leaprediction model. Since parallelism can be seen
as a kind of alignment, we study various alignment measwegutintify the alignment between sentences.
Sentence alignment depends on word alignment so that weiegeVeral strategies to generalize word alignment
based on semantic and syntactic properties. The interscimong alignment measures and word alignment
strategies generate features to represent the alignmemeédre sentences. The experimental results show that
sentence parallelism can be effectively identified. THescore can reach 82% at pair-wise level and 72%
at parallelism chunk level. The features based on diffeadighment measures and different word alignment
strategies complement each other. We further study the fusentence parallelism in more than 2000 student
essays based on automated sentence parallelism ideitificAt/e observe that the use of sentence parallelism
varies in narrative and argumentative essays and has davpagitrelation to the quality of writings especially in
argumentative essays.

This work is licenced under a Creative Commons Attributia@ #ternational License. License detail$itt p://
creativecommons. org/licenses/ by/ 4.0/
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2 Data

We collected student essays written by Chinese students drgenior high school during mock examinations.
The essay types include narrative and argumentative essayering multiple topics. Two labelers were asked to
label parallelism in randomly sampled essays at sentenek [Ehey were guided by the definition of parallelism.
Sentences are obtained by the sentence splitter providéteb@hinese language processing toolkit — HIT-LTP
(Che etal., 2010). If a sentence contains less than foursyirid not allowed to be labeled. A sentence parallelism
chunk consists of multiple sentences. The labelers rezednthe sentence parallelism chunks in essays and
assigned a distinct number to all parallel sentences frenséime chunk in order to distinguish different chunks.

| Item | Number |
#Essay 544
avg. #sentence per essay 28.47
avg.#parallelism chunk per essay 2.03
avg. #sentence per chunk 2.68

Table 1: Statistics of the annotated sentence paralleléasét.

After annotation, we collected 544 student essays, eacthafhwhas at least one sentence parallelism chunk.
30 essays were annotated by both labelers, and the Kappa vetween them is 0.71 (Carletta, 1996), which
indicates a moderate consistence. The mainly disagrediaenh their different judgement standards in terms
of the quality of parallelism between sentences. Afteruismn and reaching a consensus, they reviewed all the
annotations. Table 1 shows the basic statistics of the elatas

3 Sentence Parallelism Identification

We cast sentence parallelism identification as a classditgiroblem. Given an essay, we conduct a binary
classification for every pair of sentences to determine kdrathey aregparallel or non-parallel. Further, we get
parallelism chunks according to the results of pair-wisessification.

According to the definition of parallelism, parallel serteg are expected to have sorts of alignment. The
alignment can be about words, syntactic structures and rg@sa In this section, we would exploit a set of
alignment measures to quantity sentence alignment forapsgéntences. For all alignment measures, the basis is
the alignment between single words. Therefore, we startugysg word alignment strategies and look forward
to incorporate information from multiple aspects. Then ntedduce the alignment measures that are adapted for
this task. Combining alignment measures and word alignisteategies, we can derive rich features to represent
sentence alignment.

We use the HIT-LTP toolkit (Che et al., 2010) to conduct wagdreentation, part-of-speech (POS) tagging and
dependency parsing. All alignment measures would be cosdprt word sequences.

3.1 Word Alignment Strategies

Without loss of generality, we define a matifi which measures the alignment between every pair of tokens i
vocabularyV. R(w,v) represents the alignment score between a pair of tokens), w,v € V. According to
different assumptionR(w, v) may have different values. We consider the following woidrahent strategies:

e Exact Match: R(w,v) = 1, if str(w) == str(v), otherwiseR(w, v) = 0. str(w) is the surface string af.
e POS Match: R(w,v) = 1, if pos(w) == pos(v), otherwiseR(w, v) = 0. pos(w) is the POS tag of word.

e Syntactic Role Matcht R(w,v) = 1, if syntacticrole(w) == syntacticrole(v), otherwiseR(w, v) = 0.
syntacticrole(w) is the syntactic role of worah. Here, we use dependency parsing to get the dependency
labels as the syntactic roles. Considering the example shiowFigure 1, syntacticrole(FX)=SBV,
syntacticrole(H)=H ED andsyntacticrole( Ki)=VOB.

e Semantic Match R(w,v) = 1, if similarity(w,v) > threshold, otherwise R(w,v) = 0.
similarity(w,v) is a semantic similarity measure far and v. Here, we compute the similarity
based on word embeddings. Word embeddings are distribefg@sentations of words learned on large
scale corpus using neural networks (Mikolov et al., 2013cteword is represented by a dense real value
vector. similarity(w,v) computes the cosine similarity between the vectors @ndv. The threshold is
empirically set to 0.75.

The above strategies generalize words to various levelgxXect such generalization could help find alignment
between sentences. For example, consider the followirgjlpbsentences:
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HED

SBV VOB
Chinese: EX, €7 Kih
English: The spring breeze blows  theland
POS tags: N \% N
Syntactic roles: SBV HED VOB

Figure 1: Dependency parsing tree for the sentefidd /X # A #:(The spring breeze blows the land).

TN, J7H & 75 (The spring breeze blows the land, reviving everything).
PR S #1578 #0r-7% (The root supports the crown, growing the forrest).

The two parallel sentences don't share any word so that thet exatch strategy fails to identify the alignment
between them. However, the alignment can be captured base®8, syntactic role and semantic matches.

3.2 Sequence Alignment Measures

We use the following algorithms to measure the alignmenteh sentences.

Longest Common Subsequence(LCSetjpngest Common Subsequence algorithm is a commonly usedagp

to compare multiple sequences (Hirschberg, 1977). Theesulences are not required to occupy consecutive
positions within the original sequences. Parallel sergsiéten contain longer common subsequences. The LCSeq
algorithm can be effectively solved by using dynamic progmang. Given two sequencE = (z1, 22, ..., Trm)
andY = (y1,¥2,...,yn), the prefixes ofX are X;, ¢ from 1 tom; the prefixes oft” areY}, j from 1 ton. Let
LCSeq(X;,Y;) represent the set of longest common subsequence of préfixaadY;. This set of sequences
can be got in the way below.

@ ifi=00rj=0
LCS@(](X,L',Y}) = LC’Seq(Xi_l,Yj_l) Ux; if R(l‘i,yj) =1
longest(LCSeq(X;,Y;-1), LCSeq(X;-1,Y;)) if R(x;,y;) =0

R(z;,y;) represents the condition of word alignment and can be ehlising strategies i§8.1. We compute
the LCSeq and the normalized length of LCSeq (NormLCSecpdatences; ands; as features. NormLCSeq is
computed as Equation 1.

NormLCSeq(s;, sj) = [LCSeq(si, 5;)| Q)
maz([si]. s;])

Longest Common Substrings (LCStr) Parallel sentences have a high chance to have common sgjsstri
Therefore, we compute the longest common substrings of amteaces. Different from LCSeq, the common
substrings are required to occupy consecutive positiohsréfore, high LCStr indicates a better local alignment.
Different word alignment strategies can be applied. We liséangth of the longest common substring as a feature.
Needleman-Wunsch Algorithm(NW) We adapt the Needleman-Wunsch algorithm (Needleman andsafiun
1970) for our task. This algorithm is widely used in compigta&l biology for finding sequence alignment among
genes. Compared with LCS, it looks for an alignment betweleol@sequences, which maximizes an overall score
function as the sum of the scores over all aligned elemers patwo sequences.

Given two sequenceX € V* andY € V*, an alignment can be represented as a two-dimensional array
Alignfﬁ that every word in one sequence is aligned to one word in ther@equence or to an indel which is
caused by inserting a word into one sequence or deleting d fram the other sequence, wherés the number
of aligned element pairs. The alignment score is computétjastion 2.

I
AlignScore(X,Y) = Z S(Aligné;y, Alignfgy) (2)
1=1
whereS(z, y) assigns a score between a pair of aligned elements.
To computeS(z, y), there are two types of parametersgap penalty and asubstitution matrix. Gap penalty
values are used to penalize the score when a word in one sagjisealigned to an indel in the other. Therefore,
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NW algorithm would penalize the long distance matches. Thestitution matrix is used to assign alignment
scores between every pairs of words. A good pair alignmehbeirewarded with a higher score. Obviously, the
word alignment strategies we discusg$il can be used here to construct the substitution matrix.

The alignment algorithm runs based on dynamic programnitigase refer to the details in (Needleman and
Wunsch, 1970). Once we get the best alignment, we can gettalbes.Score. This score is correlated to the
length of sequences. To reduce this effect, we use the nizedaicore, as shown in Equation 3, to build features .

AlignScore(X,Y)
1

NormAlignScore(X,Y) = 3)

3.3 Tree Alignment Measures

We also exploit syntactic structures. Tree kernels are Htaral way to exploit syntactic structural properties,
which compute the similarities between parsed trees witeoumerating the whole fragment space. In this work,
we parse sentences with a dependency parser. We use tta Paei (PT) kernel (Moschitti, 2006) to measure the
similarity between two trees, since it is suitable for degency parsing. In addition, partial tree kernel considers
the ordered child sequence, which makes it suitable foramk &s well.

The PT kernel is defined as:

K(Tl,Tg) = Z Z A(nl,ng) (4)

n1€NT, n2E€NT,

whereNp, andNr, are the sets of nodesT andTx, respectively and\ (n1, no) indicates the number of common
fragments rooted at the, andn, nodes. The kernels can be effectively computed based omdgmaiogramming
(Moschitti, 2006)

o if R(ny,n2) =0,thenA(ny,ng) =0
e else/\(n1,n2) would be computed recursively on the sets of ordered chiddeeces ofi; andn..

Again, we can utilize strategies introduced §8.1 to computeR(n1,n2). Figure 1 shows a dependency

parsing tree of an example sentence. We use the normalizeélkealues as featuredy ™" (T, Tz) =
K(T1,T>)
VE (T3, 1)K (T2, Ts)

3.4 Location and Length Features

We observe that parallel sentences also locate reguladisgourse. For example, they usually occupy consec-
utively within the same paragraph, or locate symmetricallynultiple paragraphs. In addition, they often have
close length and close number of clauses. We use the foldpfeatures to describe these observations.

e Adjacency: if two sentences in the same paragraph, and the absolutratiffe of sentence indexes is
smaller than 3, the feature value is set to 1, otherwise &ti$os0.

e Location Alignment: This feature is based on the sentence positions. If twoesees are in different
paragraphs and they are both the first sentence in the ppreg@ both the last sentence in the paragraphs,
the feature value is set to 1, otherwise it is set to 0.

o Length difference: The absolute length difference of two sentences.

e Clause difference If the number of clauses is the same, the feature is set tth&rwise it is set to 0. The
clauses are segmented by commas.

3.5 Summarization of Features

We summarize the used features in Table 2. Except for latatna length features, we use various alignment
measures together with different word alignment strategpegenerate features. We use both the absolute and
normalized length of LCSeq scores as features. LCStr facosdocal consecutive matches, therefore we only
use the length of longest common substrings as featurestré@@dernel method deals with syntactic structural
properties, therefore we construct two trees for each seateased on dependency parsing. We use POS tags and
dependency tags respectively as the values of the tree nodes
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Feature Set| Feature | Word Alignment Strategy |

LCSeqezact(si, s5)], NormLCSeqezact(si, S5) Exact match
LCSeq LCSeqpos(siy55)], NormLCSeqpos(Si, $;5) POS match

LCSeqsemantic(8i, 85)|, NormLCSegsemantic(Si, S5) Semantic match

|LCSeqsyntacticrote(Sis 85)| » NormLCSeqsyntacticrote (i, Sj) Syntactic role match

LCStrezact(si, sj)| Exact match
LCStr LCStrpos(si,s5)] POS match

|[LC Strsemantic(Si, 85| Semantic match

|LC Strsyntacticrote(Sis Sj)] Syntactic role match

NormAlignScoreczact(si, 5) Exact match
NW NormAlignScoreps(si, s;j) POS match

NormAlignScoresemantic(Si, i) Semantic match

NormAlignScoresyntacticrote(Si, S5) Syntactic role match
Tree Ko™ (s, 55) POS match
Alignment | K70V . oie(Sis 55) Syntactic role match

Adjacency —
LocLen Location Alignment —

Length Difference —

Clause Difference —

Table 2: Summarization of the features for a sentence<aif, s; >.

3.6 Parallelism Chunk Identification

Given an essay, once every pair of sentences is classifipdradel or non-parallel, we construct parallelism
chunks based on the classification results. We use an aygressategy based on transitivity: if two sentence
pairs< z,y > and< z,z > are parallel, ther< z,y,z > forms a parallelism chunk, no matter whether pair
<y, z > is classified as parallel.

4 Evaluation

4.1 Experimental Settings

Data and ClassifiersWe split the essays in our dataset into 5 parts and run crag&tation. Each time, 4 parts are
used for training and the remaining part is used for testte3mes from the same parallelism chunks form a set of
positive pairs, while sentences that are in the same essaypbparallel form negative pairs.

The word embeddings for semantic similarity computati@nlearned using the Word2Vec tool (Mikolov et al.,
2013) on a dataset consisting of 85,000 student essaysteallFom the web. The dimension of word embeddings
is 50. The size of vocabulary is about 490,000.

We adopt the Random Forests (Breiman, 2001) as the classifiarse the implementation in Scikit-learn toolkit
(Pedregosa et al., 2011) with default parameters.

Evaluation Metrics We adopt precision, recall arff score as evaluation metrics. The metrics can be computed
at pair-wise level and parallelism chunk level respeciivel

At pair-wise level, the precision and recall are computed as

#correctly identified parallelism sentence pairs

pair-precision = #identified parallelism sentence pairs ©®)
pair-recall — #correctly identified parallellsm sentgnce pairs (6)
#true parallelism sentence pairs
At chunk level, the precision and recall are computed as:
. #correctly identified parallelism chunks

hunk- = 7

chunkeprecision #identified parallelism chunks ()

chunkerecall — #correctly identified parallelism chunks (8)

#true parallelism chunks
A correctly identified parallelism chunk means the identiftaunk has the same sentences with a labeled chunk.
In both casesF1 _ 2><p7“ecision><7‘ecall.

precision+recall
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| Feature Set | pair-P_ pair-R pair- F; | chunk-P  chunk-R  chunk-F; |

LocLen 0.71 0.41 0.52 0.38 0.32 0.35
LCSeq 0.72 0.64 0.68 0.45 0.49 0.47
LCStr 0.71 0.63 0.67 0.46 0.48 0.47
NW 0.75 0.68 0.72 0.49 0.55 0.52
Tree alignment 0.67 0.44 0.53 0.33 0.31 0.32
NW + LocLen 0.85 0.78 0.81 0.68 0.70 0.69
NW + Tree alignment 0.81 0.70 0.75 0.58 0.59 0.59
| ALL | 0.85 0.79 082 | 0.73 0.70 072 |

Table 3: Evaluation results of using different alignmenasges.

| Word Alignment Strategy | pair-P__ pair-R pair- F; | chunk-P chunk-R  chunk-F; |
Exact 0.72 0.69 0.71 0.47 0.54 0.50
POS 0.49 0.51 0.50 0.23 0.31 0.26
Syntactic role 0.77 0.59 0.67 0.52 0.52 0.52
Semantic 0.79 0.66 0.72 0.56 0.57 0.56
Exact + Syntactic role 0.81 0.71 0.76 0.62 0.65 0.64
Exact + Semantic + Syntactic role 0.82 0.72 0.77 0.64 0.65 0.64
Exact + Semantic + Syntactic role + PQS 0.81 0.72 0.76 0.62 0.65 0.63

Table 4: Evaluation results of using different word aligmin&trategies.

4.2 Results

Table 3 shows the experimental results using differentesecgialignment measures. All word alignment strategies
are used in this experiment. The best alignment measureisdbre computed using the Needleman-Wunsch
algorithm. This is reasonable, since it captures the algmnon the whole sequence, considering the local
alignments like LCStr and penalizing long distance matctvbsch LCSeq ignores.

Different from LCStr, LCSeq and NW, tree alignment explaitere complex structural information. So tree
alignment based measures should complement sequencerheasdres. The best combination of tree based and
sequence based measures are NW plus tree alignment.

Using the location and length features (LocLen) alone léadsow recall, but they can improve the performance
when combining with other features. We can see that comfpinacLen and NW achives good performance.

Combining all alignment measures achieves the best peaftcen The results demonstrate that pair-wise
sentence parallelism can be effectively identified. Then&hwise performance is moderate. The precision of
pair-wise classification is shown to be more crucial to thendawise performance.

| Feature | Weight |
NormAlignScoresemantic 0.161
NormAlignScoreegqct 0.148
NormAlignScoresyntacticrote | 0.117
NormAlignScorepos 0.105
Location Alignment 0.078
K;L;;Zthicrole 0.062
NormLCSeqezact 0.056
Length Difference 0.047
Ko™ 0.040
LCStrezact 0.036

Table 5: Top ranked feature weights.

We are also interested in the contributions of various wlighenent strategies. Table 4 shows the performance
of using different word alignment strategies and their corations. All alignment measures are used in this
experiment. We can see that the semantic match strateggrperfbest. This indicates that semantic level
information is important. We observe that the best commnabf two strategies is the combination of exact
match and syntactic role match, while the best combinatfdghree strategies is the combination of exact match,
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(a) Distribution of essays scores. (b) Number of chunks in narrative arfd) Distribution of chunks’ relative posi-
argumentative essays. tions.

Figure 2: Basic statistics of the student essay datasetanase of sentence parallelism in the dataset.

semantic match and syntactic role match. Different stiategomplement each other except that the POS match
doesn’t provide extra gain in our experiments. Table 5 shinedeature weights learned by the Random Forests
model. The trend is similar to the previous observations.

5 Sentence Parallelism and Essay Writing

The automated sentence parallelism identification makpessible to study the use of sentence parallelism in
student essays and its relation to essay quality on largeselst We collected another dataset containing essays
written by senior high school students in mock examinatiofisis dataset has 1036 narrative essays and 1064
argumentative essays, and it doesn't overlap with the datasoduced irg2. All these essays had been scored
by professional high school teachers. The scores rangestfito 60. The distribution of essay scores is shown in
Figure 2(a). We can see the distribution of either narraiivergumentative essays meets the normal distribution.
The dataset should be representative to reflect the reatisitu

5.1 How Students Use Sentence Parallelism

We use our system to process these essays and extractlgamatleunks. We extract 2224 and 1219 parallelism
chunks in argumentative essays and narrative essays tigspecThese parallelism chunks can be categorized
into two types:intra-para chunks andcross-para chunks. Intra-para chunks contain parallel sentences within the
same paragraph, while cross-para chunks have parallersm# across multiple paragraphs.

The ratio of each type of chunks are shown in Figure 2(b). IRéisan chunks, especially the ones that cross
paragraphs, are used more often in argumentative essayftharrative essays. We examine some essays and
find that in argumentative essays, students would use pksaltitences to express their main ideas that are used to
support the thesis from different aspects. The paralletiamadd the clarity in organization. Therefore, there are
more cross-para chunks in argumentative essays.

We also examine the relative positions of parallelism clsulfe use the average sentence number of sentences
in a chunk divided by the number of sentences in the essayasititive position of the chunk. Figure 2(c) shows
the distribution of relative positions, which are groupetbilO zones. We can see the distribution is interesting
that sentence parallelism is used much more often in thenhewj or the ending of essays, while relatively less
parallel sentences are used in the body part. We guess swnrisehat since parallel sentences are used to impress
the readers, the beginning and the ending parts are easimaoreaders’ attentions. As a result, students tend to
put impressive sentences at these important positions.

| Essaytype | #intra-para chunks | #cross-para chunks| #all chunks | Presence]

Narrative 0.146 0.082 0.161 0.146
Argumentative 0.20 0.233 0.290 0.299

Table 6: Pearson coefficients between scores and the nuridliffiecent types of parallelism chunks.

5.2 Sentence Parallelism and Essay Scores

Does the use of sentence parallelism relate to the qualigssdys? To answer this question, we analyze the
relationship between sentence parallelism and essayssotefirst compute the pearson correlation coefficients
between the number of different types of parallelism chuarkd the scores of essays. Table 6 shows the results.
The correlation coefficient with the number of chunks carche@.29 in argumentative essays. In contrast, the
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| Essaytype | Allessays| Presence| Absence]

Narrative 43.74 44.09 43.13
Argumentative| 45.65 46.35 42.13

Table 7: Average scores of essays in terms of the presendsenee of sentence parallelism.

correlation in narrative essays is much lower. The numberadgs-para chunks has a higher correlation to essay
scores in argumentative essays, but a lower correlatioarirative essays, compared with the number of intra-para
chunks.

If we consider the presence or absence of parallelism, threlations have the same trends as shown in the last
column in Table 6. Table 7 shows the average scores of essdgans of the presence or absence of sentence
parallelism. In both narrative and argumentative essagsays with sentence parallelism tend to have higher
scores in average compared with the ones without sentemattgtiam. Both differences are significant at 95%
level (t-test, p< 0.05). The score difference is more obvious in argumerd&ssays.

3.0 T T T T 2.0 u

E All chunk N All chunk
3 Long chunk 24 3 Long chunk 1.6

g =
o «n

o
n

Average number of parallel chunks
Average number of parallel chunks

0.0
<40 40---45 46---49 50---60 <40 40---45 46---49 50--60

Score Ranges Score Ranges

(a) Argumentative essays. (b) Narrative essays.

Figure 3: Average number of parallelism chunks in essaysmgpfmom different score ranges.

We further examine sentence parallelism in essays withiiffdreint score ranges, including 40 points below,
40 to 45, 46-49 and 50-60. We compute the average number alfgdaentence chunks in each score range. The
result is shown in Figure 3 for argumentative and narratssags respectively. We can see that the essays from
higher score ranges have a larger average number of perallehunks. The trend holds for both argumentative
and narrative essays.

We also want to consider the effect of the quality of sentgrazallelism. Instead of dealing with the content, we
considetong chunkswhose chunk sizes are equal to or greater than 3. We simplyloigy chunks as high quality
parallelism. The results are also shown in Figure 3. Thedifices among score ranges in argumentative essays
are more obvious so that high quality sentence paralleligghtbe a useful indicator of well written argumentative
essays. In contrast, long chunks appear much less in narestsays across all score ranges.

5.3 Discussion

This section have studied the relationship between the fisentence parallelism and the types and quality of
student essays. The biggest observation is that the egsay-§rgumentative or narrative essay—is a key factor
when we study sentence parallelism. First, the frequendysyles of using sentence parallelism are different.
Parallelism is much more often used in argumentative ess@lge ratio of cross-para chunks is also higher in
argumentative essays. Second, the frequency or presensingfsentence parallelism has a positive correlation
to the quality of essays. The correlation exists but is wealairrative essays, while it is stronger in argumentative
essays. According to the score distributions, recognihiiggn quality and low quality essays is crucial and

challenging. High quality sentence parallelism may bewigefdistinguish good and poor argumentative essays.

Notice that the ways of using parallelism may relate to hawdshts are taught on writing, which might be
different across countries and cultures. The observetitat may also be affected by the topics of essays.
Nonetheless, the observations should potentially helgsigth features for automated writing evaluation.

801



6 Related Work

6.1 Sequence Alignment

Finding the common parts among sequences have been a sassita@omputer science problems. The typical
problems include finding the longest common subsequenasditierg, 1977), longest common substring and
multiple sequence alignment (Carrillo and Lipman, 1988etleman and Wunsch, 1970). These techniques are
commonly used in computational biology and also appliedatoiral language processing for constructing concept
mapping dictionary (Barzilay and Lee, 2002), identifyirentence level paraphrases (Barzilay and Lee, 2003)
and modeling the organization of student essays (Persiab, &2010). In this work, we exploit these alignment
measures for deriving features, since parallel sentefmmgdhave a kind of alignment.

6.2 Semantic Similarity of Texts

A large of body of previous work focuses on measuring the sgimaimilarity of texts. Semantic similarity of text
usually depends on exploiting the semantic similarity ofdgoand concepts (Corley and Mihalcea, 2005; Mitchell
and Lapata, 2008). While the semantic similarity of wordsd aoncepts are learned based on distributional
statistics (Lin, 1998; Pad6 and Lapata, 2007). Recenglyral networks based methods are proposed to learn the
distributed representation of words on large scale of co(plikolov et al., 2013). The learned word embeddings
enable similar words to have a close distance in the vectacespThere is also work on sentential paraphrase
identification (Madnani and Dorr, 2010). Paraphrases dferdnt expressions that convey the same meaning.
Although it is similar to our task, the goals are differelmce parallel sentences are not expected to have the same
meaning and paraphrases are not required to have simil@tstes. Many researchers also exploit the structural
properties of sentences to measure semantic similarigx$,tsuch as the tree kernel emthods (Moschitti, 2006;
Mooney and Bunescu, 2005; Culotta and Sorensen, 2004).

6.3 Text Quality Analysis

Some work focuses on dealing with rhetorical device sucheaegnizing metaphor in texts (Shutova, 2010).
Parallelism is also an important rhetorical device. Hobhd Kehler (1997) study the clause level parallelism.
However, little work has been done on sentence-level pisath identification. These is work on predicting the
quality of articles (Louis and Nenkova, 2013; Pitler and k®mra, 2008), writing styles (Ashok et al., 2013) and
student essays (Attali and Burstein, 2006). They mainlysirsple shallow features, but seldomly use rhetorical
device related features. Automated rhetorical deviceyaigshould help to improve the above tasks.

7 Conclusion

We have investigated identifying sentence parallelismtirdant essays. We adopt machine learning to learn
a prediction model based on an annotated dataset. We stuiyusalignment measures and different word
alignment strategies for deriving features. The evalmatiemonstrates that our proposed method can effectively
identify sentence parallelism, achieving a score of 82% at pair-wise level and 72% at parallelism chewukll

We also study the use of sentence parallelism in more tha@ 2@ent essays based on automated parallelism
identification. We find that students tend to use more septpatallelism in argumentative essays compared with
narrative essays. The essays with sentence paralleliserhigiver scores in average. The presence of high quality
sentence parallelism shows to be an indicator of high quatgumentative essays.
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