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Abstract

Personal writings have inspired researchers in the fields of linguistics and psychology to study the
relationship between language and culture to better understand the psychology of people across
different cultures. In this paper, we explore this relation by developing cross-cultural word mod-
els to identify words with cultural bias – i.e., words that are used in significantly different ways by
speakers from different cultures. Focusing specifically on two cultures: United States and Aus-
tralia, we identify a set of words with significant usage differences, and further investigate these
words through feature analysis and topic modeling, shedding light on the attributes of language
that contribute to these differences.

1 Introduction

According to Shweder et al. (1998), “to be a member of a group is to think and act in a certain way, in
the light of particular goals, values, pictures of the world; and to think and act so is to belong to a group.”

Culture can be defined as any characteristic of a group of people, which can affect and shape their
beliefs and behaviors (e.g., nationality, region, state, gender, or religion). It reflects itself in people’s
everyday thoughts, beliefs, ideas, and actions, and understanding what people say or write in their daily
lives can help us understand and differentiate cultures. In this work, we use very large corpora of personal
writings in the form of blogs from multiple cultures1 to understand cultural differences in word usage.

We find inspiration in a line of research in psychology that poses that people from different cultural
backgrounds and/or speaking different languages perceive the world around them differently, which is
reflected in their perception of time and space (Kern, 2003; Boroditsky, 2001), body shapes (Furnham
and Alibhai, 1983), or surrounding objects (Boroditsky et al., 2003). As an example, consider the study
described by Boroditsky et al. (2003), which showed how the perception of objects in different languages
can be affected by their gender differences. For instance, one of the words used in their study is the word
“bridge,” which is masculine in Spanish and feminine in German: when asked about the descriptive
properties of a bridge, Spanish speakers described bridges as being big, dangerous, long, strong, sturdy,
and towering, while German speakers said they are beautiful, elegant, fragile, peaceful, pretty, and
slender.

While this previous research has the benefit of careful in-lab studies that explore differences in world
view for one dimension (e.g., time, space) or word (e.g., bridge, sun) at a time, it also has limitations
in terms of the number of experiments that can be run when subjects are being brought to the lab for
every new question being asked. We aim to address this shortcoming by using the power of large-scale
computational linguistics, which allows us to identify cultural differences in word usage in a data-driven
bottom-up fashion.

We hypothesize that we can use computational models to identify differences in word usage between
cultures, regarded as an approximation of their differences in world view. Rather than starting with
predetermined hypotheses (e.g., that Spanish and German speakers would have a different way of talking
about bridges), we can use computational linguistics to run experiments on hundreds of words, and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/

1Throughout this paper, we use the term culture to represent the nationality (country) of a group of people.
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consequently identify those words where usage differences exist between two cultures. We explore this
hypothesis by seeking answers to two main research questions.

First, given a word W , are there significant differences in how this word is being used by two selected
cultures? We build cross-cultural word models in which we use classifiers based on several classes of
linguistic features and attempt to differentiate between usages of the given word W in different cultures.
By applying them to a large number of words, these models are used to identify those words for which
there exist significant usage differences between the two cultures of interest.

Second, if such significant differences in the usage of a word are identified, can we use feature analysis
to understand the nature of these differences? We perform several analyses: (1) Feature ablation that
highlights the linguistic features contributing to these differences; (2) Topic modeling applied to the
words with significant differences, used to identify the dominant topic for each culture and to measure
the correlation between the topic distributions in the two cultures; and (3) One-versus-all cross-cultural
classification models, where we attempt to isolate the idiosyncrasies in word usage for one culture at a
time.

2 Data

We base our work on personal writings collected from blogs, and specifically target word usage differ-
ences between Australia and United States. These two countries are selected for two main reasons: (1)
they both use English as a native language, and therefore we can avoid the noise that would otherwise be
introduced by machine translation; and (2) they have a significant number of blogs contributed in recent
years, which we can use to collect a large number of occurrences for a large set of words.

We obtain a large corpus of blog posts by crawling the blogger profiles and posts from Google Blogger.
For each profile, we consider up to a maximum of 20 blogs, and for each blog, we consider up to 500
posts. Table 1 gives statistics of the data collected in this process. We process the blog posts by removing
the HTML tags and tagging them with part-of-speech labels (Toutanova et al., 2003).

Country Profiles Blogs Posts
Australia 469 1129 320316
United States 374 1267 471257

Table 1: Blog statistics for the two target cultures.

Next, we create our pool of candidate target words by identifying the top 1, 500 content words based on
their frequency in the blog posts, additionally placing a constraint that they cover all open-class parts-of-
speech: of the 1, 500 words, 500 are nouns, 500 verbs, 250 adjectives, and 250 adverbs. These numbers
are chosen based on the number of examples that exist for the target words; e.g., most (> 490) of the
500 selected nouns have more than 300 examples; etc. We consider all possible inflections for these
words, for instance for the verb write we also consider the forms writes, wrote, written, writing. The
possible inflections for the target words are added manually, to ensure correct handling of grammatical
exceptions.

To obtain usage examples for the two cultures for these words, we extract paragraphs from the blog
posts that include the selected words with the given part-of-speech. Of these paragraphs, we discard
those that contain less than ten words. We also truncate the long paragraphs so they include a maximum
of 100 words to the left and right of the target word, disregarding sentence boundaries. The contexts of
the target words are then parsed to get the dependency tags related to the target word (Klein and Manning,
2003). We also explicitly balance the data across time. Noting there could be cases where the number of
blog posts published in a specific year is higher compared to that in other years due to certain events (e.g.,
an Olympiad, or a major weather related event), we draw samples for our dataset from several different
time periods. Specifically, for each culture, we consider an equal number of instances from four different
years (2011-2014). Table 2 shows the per-word average number of data instances obtained in this way
for each part-of-speech for each culture for the years 2011-2014.

Note that we do not attempt to balance the data across topics (domains), as we regard potentially
different topic distributions as a reflection of the culture (e.g., Australia may be naturally more interested
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in water sports than United States is). We do instead explicitly balance our data over time, as described
above, to avoid temporal topic peaks related to certain events.

Country Noun Verb Adj Adv
Australia 22461 18396 19206 19377
United States 15199 12347 12513 12952

Table 2: Average number of instances for the 1,500 target words for the years 2011-2014.

3 Finding Words with Cultural Bias

We start by addressing the first research question: given a word W , are there significant differences in
how this word is being used by two different cultures? We formulate a classification task where the goal
is to identify, for the given target word W , the culture of the writer of a certain occurrence of that word.
If the accuracy of such a classifier exceeds that of a random baseline, this can be taken as an indication of
word usage differences between the two cultures. We run classification experiments on each of the 1, 500
words described in the previous section, and consequently aim to identify those words with significant
usage differences between Australia and United States.

3.1 Features

We implement and extract four types of features:

Local features. These features consist of the target word itself, its part-of-speech, three words and their
parts-of-speech to the left and right of the target concept, nouns and verbs before and after the target
concept. These features are used to capture the immediately surrounding language (e.g., descriptors,
verbs) used by the writers while describing their views about the target word.

Contextual features. These features are determined from the global context, and represent the most
frequently occurring open-class words in the contexts of the word W in each culture. We allow for at
most ten such features for each culture, and impose a threshold of a minimum of five occurrences for
a word to be selected as a contextual feature. Contextual features express the overall intention of the
blogger while writing about the target word.

Socio-linguistic features. These features include (1) fractions of words that fall under each of the 70
Linguistic Inquiry and Word Count (LIWC) categories (Pennebaker et al., 2001); the 2001 version of
LIWC includes about 2,200 words and word stems grouped into broad categories relevant to psycholog-
ical processes (e.g., emotion, cognition); (2) fractions of words belonging to each of the five fine-grained
polarity classes in OpinionFinder (Wilson et al., 2005), namely strongly negative, weakly negative, neu-
tral, weakly positive, and strongly positive; (3) fractions of words belonging to each of five Morality
classes (Ignatow and Mihalcea, 2012), i.e., authority, care, fairness, ingroup, sanctity; and (4) fractions
of words belonging to each of the six Wordnet Affect classes (Strapparava et al., 2004), namely anger,
disgust, fear, joy, sadness, and surprise. These features provide social and psychological insights into the
perceptions bloggers have about the words they use.

Syntactic features. These features consist of parser dependencies (De Marneffe et al., 2006) obtained
from the Stanford dependency parser (Klein and Manning, 2003) for the context of the target word.
Among these, we select different dependencies for each part-of-speech: (1) nouns: root word of context
(root), governor2 if noun is nominal subject (nsubj), governor verb if noun is direct object (dobj),
adjectival modifier (amod); (2) verbs: root, nominal subject (nubj), direct object (dobj), adjectival
complement (acomp), adverb modifier (advmod); (3) adjectives: root, noun being modified (amod),
verb being complemented (acomp), adverb modifier (advmod); (4) adverbs: root, adverb modifier
(advmod). These features capture syntactic dependencies of the target word that are not always obtained
using just its context.

2We follow the convention provided in http://nlp.stanford.edu/software/dependencies_manual.pdf
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3.2 Cross-cultural Word Models

The features described above are integrated into an AdaBoost classifier.3 This classifier was selected
based on its performance on a development dataset, when compared to other learning algorithms. We
compare the performance of the classifier with a random choice baseline, which is always 50%, given
the equal distribution of data between the two cultures. This allows us to identify the words for which
we can automatically identify the culture of the writers of those words, which is taken as an indication
of word usage differences between the two cultures.

Throughout the paper, all the results reported are obtained using ten-fold cross-validation on the word
data. When creating the folds, we explicitly ensure that posts authored by the same blogger are not shared
between the folds, which in turn ensures no overlap between bloggers in training and test sets. This is
important as repeating bloggers in both the train and the test splits could potentially overfit the model
to the writing styles of individual bloggers rather than learning the underlying culture-based differences
between the bloggers.

To summarize the cross-validation process: First, for each of the 1,500 target words, we collect an
equal number of instances containing the given target word or its inflections from Australia and United
States, from each of the selected years (2011-2014). We then divide the posts belonging to Australia
and United States each into ten approximately equal groups, such that no two groups have bloggers in
common. We finally combine the corresponding groups to form a total of ten bi-cultural groups that are
approximately of equal size, which form our cross-validation splits. 4

To compute the statistical significance of the results obtained, we perform a two-sample t-test over
the correctness of predictions of the two systems namely, Adaboost and random chance classifiers. Dis-
ambiguation results that are significantly better (p < 0.05) than the random chance baseline of 50% are
marked with ∗.

On average, the classifier leads to an accuracy of 58.36%*, which represents an absolute significant
improvement of 8.36% over the baseline (a random chance of 50%). Table 3 shows the average classifi-
cation results for each part-of-speech, as well as the number of words for which the AdaBoost classifier
leads to an accuracy significantly larger than the baseline. These results suggest that there are indeed dif-
ferences in the ways in which writers from Australia and United States use the target words with respect
to all the parts-of-speech.

Part-of-speech Average accuracy Words with significant difference
Nouns 57.51* 393
Verbs 58.01* 395
Adjectives 59.25* 207
Adverbs 61.77* 215
Overall 58.36* 1210

Table 3: Average ten-fold cross-validation accuracies and number of words with an accuracy significantly
higher than the baseline, for each part-of-speech, for United States vs. Australia.

4 Where is the Difference?

We now turn to our second research question: Once significant differences in the usage of a word are
identified, can we use feature analysis to understand the nature of these differences?

4.1 Feature Ablation

We first study the role of the different linguistic features when separating between word usages in Aus-
tralia and United States through ablation studies. For each of the feature sets specified in Section 3,

3We use the open source machine learning framework Weka (Hall et al., 2009) for all our experiments. We use the default
base classifier for AdaBoost, i.e., a DecisionStump.

4This condition of equal data in each group is only approximate, as there will generally not be an exact division of bloggers
with equal data. The average size of a cross-validation train split for a target word is 6246.57, while that for a test split is
819.88.
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we retrain our concept models using just that feature set type, which helps us locate the features that
contribute the most to the observed cultural differences.

The left side of Table 4 shows the ablation results averaged over the 1,500 target words for the four
sets of features. We observe that the contextual and socio-linguistic features perform consistently well
across all the parts-of-speech, and they alone can obtain an accuracy close to the all-feature performance.

Part-of-speech Loc Con Soc Syn All LIWC OF ML WNA
Nouns 49.06 57.22* 56.52* 46.54 57.28* 56.62* 56.21* 54.17* 52.94
Verbs 47.97 57.65* 57.04* 47.71 57.90* 56.90* 56.28* 53.73* 53.25*
Adjectives 48.67 58.63* 57.90* 47.52 59.01* 58.03* 57.31* 55.42* 54.30*
Adverbs 50.72 61.09* 59.80* 46.85 60.81* 60.27* 59.80* 57.00* 56.57*
All 48.91 58.25* 57.47* 47.14 58.36* 57.55* 57.01* 54.70* 53.87*

Table 4: Feature ablation averaged over 1,500 target words. Loc: Local features, Con: Contextual
features, Soc: Socio-linguistic features, Syn: Syntactic features, All: All feature types, LIWC: Linguistic
Inquiry and Word Count, OF: OpinionFinder, ML: Morality Lexicon, WNA: WordNet Affect.

We also perform a feature ablation experiment to explore the role played by the various socio-linguistic
features. The right side of Table 4 shows the classification accuracy obtained by using one socio-
linguistic lexicon at a time: LIWC, OpinionFinder, Morality, and WordNet Affect. Among all these
resources, LIWC and OpinionFinder appear to contribute the most to the classifier; while the moral-
ity lexicon and WordNet Affect also lead to an accuracy higher than the baseline, their performance is
clearly smaller.

4.2 Topic Modeling

We next focus our analysis on the top 100 words (25 words for each part-of-speech) that have the most
significant improvements over the random chance baseline, considered to be words with cultural bias in
their use. The average accuracy of the classifier obtained on this set of words is 65.45%; the accuracy
for each part-of-speech is shown in the second column of Table 7.

We model the different usages of the words in our set of 100 words by using topic modeling. Specifi-
cally, we use Latent Dirichlet Allocation (LDA)5 (Blei et al., 2003) to find a set of topics for each word,
and consequently identify the topics specific to either Australia or United States.

As typically done in topic modeling, we preprocess the data by removing a standard list of stop words,
words with very high frequency (> 0.25%×datasize), and words that occur only once. To determine
the number of topics that best describe the corpus for each of the 100 words, we use the average corpus
likelihood over ten runs (Heinrich, 2005). Specifically, we choose that number of topics (>= 2, <= 10)
for which the corpus likelihood is maximum.

For each data instance, we say that a topic dominates the other topics if its probability is higher than
that of the remaining topics. For a given word, we then identify the dominating topic for each culture
as the topic that dominates the other topics in a majority of data instances. We use this definition of
dominating topic in all the analyses done in this section.

Quantitative Evaluation. To get an overall measure of how different cultures use the words that were
found to have significant differences, we compute the Spearman’s rank correlation between the topic dis-
tributions for the two cultures. For each topic, we get the number of data instances in which it dominates
the other topics, in both cultures (Australia and United States). Subsequently, we measure the overall
Spearman correlation coefficient between the dominating topic distributions for all 100 words. In other
words, the distribution of topics is compared across cultures for each word. The Spearman coefficient
is calculated as 0.63, which reflects a medium correlation between the usages of the words by the two
cultures.

Qualitative Evaluation. For a qualitative evaluation, Table 5 shows five sample words for each part-
of-speech, along with the identified number of topics and the dominating topic for Australia and United

5LDA has been shown to be effective in text-related tasks, such as document classification (Wei and Croft, 2006).
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States. We associate labels to the hidden topics manually after looking at the corresponding top words
falling under each of them.

As seen in this table, the number of topics that best describe each word can vary widely between two
topics for words such as start and economic, up to ten topics (which is the maximum allowed number of
topics) for words such as color or support. The dominating topics illustrate the biases that exist in each
culture for these words; for instance, the word teach is dominantly used to describe academic teaching
in Australia, whereas in United States it is majorly used to talk about general life teaching. Several
additional examples of differences are shown in Table 5.

4.3 One-versus-all Classification
For additional insight into word usage differences between United States and Australia, we expand our
study to develop word models to separate word usages in Australia (or United States) from a mix of ten
different cultures. In other words, we conduct a one-versus-all classification using the same process as
described in Section 3, but using Australia (United States) against a mix of other cultures to examine any
features specific to Australia (United States).

In order to do this, we collect data from nine additional English speaking countries, as shown in the
left side of Table 6. As before, the data for each country is balanced over time, and it includes an equal
number of instances for four different years (2011-2014). The right side of Table 6 shows the average
number of instances per word collected for each part-of-speech.

In this classification, for a given target word, one half of the data is collected from Australia (United
States), and the other half is collected from the remaining countries, drawing 10% from each country.
We run these classifiers for all the 100 words previously identified as having cultural bias in their use.

The average classifier accuracy for the Australia-versus-all classification, using ten-fold cross valida-
tion, is 64.23%, as shown in the third column of Table 7. We repeat the same one-versus-all classification
for United States, with an average accuracy of 54.89%; the results of this experiment are listed in the last
column of Table 7.

Overall, the performance improvement over the baseline is higher for Australia versus other countries
(14.23% absolute improvement) than it is for United States versus others (4.89% absolute improvement).
From this, we can infer that that the performance improvement over the baseline for the Australia versus
United States task can be majorly attributed to the different word usages in Australia from the remaining
countries. In other words, United States is more aligned with the “typical” (as measured over ten different
countries) usage of these words than Australia is.

5 Related Work

Most of the previous cross-cultural research work has been undertaken in fields such as sociology, psy-
chology, or antropology (De Secondat and others, 1748; Shweder, 1991; Cohen et al., 1996; Street,
1993). For instance, Shweder (1991) examined the cross-cultural similarities and differences in the
perceptions, emotions, and ideologies of people belonging to different cultures, while Pennebaker et al.
(1996) measured the emotional expressiveness among the northerners and southerners in their own coun-
tries, to test Montesquieu’s geography hypothesis (De Secondat and others, 1748). More recently, the
findings of Boroditsky et al. (2003) indicate that people’s perception of certain inanimate objects (such
as bridge, key, violin, etc.) is influenced by the grammatical genders assigned to these objects in their
native languages.

To our knowledge, there is only limited work in computational linguistics that explored cross-cultural
differences through language analysis. Our work is most closely related to that by Paul and Girju (2009),
in which they identify cultural differences in people’s experiences in various countries from the per-
spective of tourists and locals. Specifically, they analyzed forums and blogs written by tourists and
locals about their experiences in three countries, namely Singapore, India, and United Kingdom, using
an extension of LDA. One of their findings is that while topic modeling on tourist forums offered an
unsupervised aggregation of factual data specific to each country that would be important to travelers
(such as destination’s climate, law, and language), topic modeling on blogs authored by locals showed
cultural differences between the three countries with respect to several topics (e.g., fashion, pets, religion,
health).
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Accuracy NT Dominating topic
Word All Loc Con Soc Syn Australia United States

Nouns
store 67.14* 53.11* 67.15* 64.98* 50.79 10 ONLINE (blog, card,

gifts, online, sale)
GROCERY (grocery,
shopping, things)

support 66.05* 44.56 52.45 62.54* 51.29 10 EDUCATION (school,
students, education)

LAW (public, police,
law, social)

color 65.56* 50.74 67.35* 65.56* 50.27 10 BACKGROUND (pink,
design, background)

PICTURE (paint, kit,
picture, photo)

version 65.42* 47.75 65.47* 63.57* 47.28 4 RENDERING (story,
thought, school)

ALBUM (song, music,
album, classic)

phone 64.32* 53.93* 62.51* 58.19* 52.49 3 COMMUNICATION
(calls, email, message)

FRIEND (night, friend,
talking)

Verbs
go 63.93* 47.29 64.15* 65.18* 42.77 2 TIME (time, day,

night, love, today)
LIFE (life, world,
work, god, children)

start 63.66* 46.80 63.46* 62.09* 54.08* 2 DAYBREAK (starting,
day, love, morning)

SCHOOL (starting,
school, softball)

know 63.51* 50.18 64.20* 62.40* 47.12 2 GOOD TIMES (love,
good, things, life)

CHILDREN (children,
school, year, book)

sing 63.54* 51.07 63.96* 58.19* 49.80 4 CHRISTMAS (christ-
mas, happy, kids)

ROCK SINGER (band,
guitar, rock, singer)

teach 62.66* 52.72 61.69* 59.88* 51.18 10 ACADEMICS (teach-
ers, education, cur-
riculum)

LIFE (time, young,
life, thought, work,
friends)

Adjectives
various 65.64* 54.0* 64.70* 63.18* 48.40 10 POLITICS (political,

party, war, revolution)
DIVERSITY (states,
people, companies)

own 64.76* 56.89* 65.19* 62.71* 51.79 2 POWER (life, war, po-
litical, power)

LIFE (love, music,
work, school)

economic 61.88* 44.82 42.11 59.16* 33.07 2 FINANCE (economy,
financial, market, tax)

POLITICS (political,
social, war, power)

old 66.45* 42.95 67.09* 64.74* 39.89 2 AGE (older, children,
family, age)

PAST (back, school,
days, love)

human 64.37* 52.78 60.92* 59.09* 48.14 9 RIGHTS (rights, law,
freedom, civil)

LIFE (life, time, love,
real)

Adverbs
quite 73.56* 55.22* 70.98* 73.49* 51.50 2 EXTENT (time, back,

good, love, thought)
EXTENT (time, back,
good, love, thought)

else 67.35* 52.45 68.21* 64.66* 45.19 2 (make, find, world, in-
vented, book, christ)

(time, life, night, love,
work, home, god)

actually 65.62* 50.67 66.60* 65.51* 45.75 9 POLITICS (law war,
people, government)

FAMILY (kids, fun,
home, couple)

usually 68.37* 57.71* 70.16* 67.03* 44.35 2 SPORTS (softball,
cricket, play)

ROUTINE (things,
work, love, home)

certainly 64.64* 53.76* 63.25* 62.87* 43.03 2 SPORTS (game, series,
softball, wrestling)

TIME (time, work,
things, make)

Table 5: Five sample words per part-of-speech with significant usage difference in the Australian and
American cultures. All: All the features, Loc: Local features, Con: Contextual features, Soc: Socio-
linguistic features, Syn: Syntactic features, NT: Number of topics.
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Word instances
Country Profiles Blogs Posts Noun Verb Adj Adv
Barbados 440 830 32785 581 466 490 476
Canada 461 1097 397479 15015 12020 12965 12512
Ireland 473 978 231240 8936 7161 7919 7809
Jamaica 451 770 41495 1632 1318 1353 1297
New Zealand 450 1112 226900 8713 7313 7883 8284
Nigeria 464 908 223772 13719 9710 9796 7631
Pakistan 458 1404 135473 2861 2130 2243 1847
Singapore 406 803 208972 5623 5430 5447 6639
United Kingdom 473 934 282740 10887 9432 10021 11066

Table 6: Statistics for blog data collected for additional English speaking countries.

Part-of-speech United States vs. Australia Australia vs. all United States vs. all
Nouns 65.54* 63.45* 57.07*
Verbs 64.20* 63.97* 53.87*
Adjectives 65.13* 64.36* 54.48*
Adverbs 66.92* 65.13* 54.13*
Overall 65.45* 64.23* 54.89*

Table 7: Ten-fold cross-validation accuracies averaged over the top 100 target words for United States
vs. Australia; Australia vs. a mix of ten other countries; United States vs. a mix of ten other countries.

Yin et al. (2011) used topic models along with geographical configurations in Flickr to analyze cultural
differences in the tags used for specific target image categories, such as cars, activities, festivals, or
national parks. They performed a comparison over the topics across different geographical locations
for each of the categories using three strategies of modeling geographical topics (location-driven, text-
driven, and latent geographical topic analysis (LGTA) that combines location and text information), and
found that the LGTA model worked well not only for finding regions of interest, but also for making
effective comparisons of different topics across locations.

Ramirez et al. (2008) performed two studies to examine the expression of depression among English
and Spanish speakers on the Internet. The first study used LIWC categories to process depression and
breast cancer posts to identify linguistic style of depressed language. Significantly more first person sin-
gular pronouns were used in both English and Spanish posts, supporting the hypothesis that depressed
people tend to focus on themselves and detach from others. The second study focused on discovering
the actual topics of conversation in the posts using Meaning Extraction Method (Chung and Pennebaker,
2008). It was found that relational concerns (e.g., family, friends) were more likely expressed by de-
pressed people writing in Spanish, while English people mostly mentioned medical concerns.

6 Conclusions

In this paper, we explored the problem of identifying word usage differences between people belonging
to different cultures. Specifically, we studied differences between Australia and United States based
on the words they used frequently in their online writings. Using a large number of examples for a
set of 1, 500 words, covering different parts-of-speech, we showed that we can build classifiers based
on linguistic features that can separate between the word usages from the two cultures with an accuracy
higher than chance. We take this as an indication that there are significant differences in how these words
are used in the two cultures, reflecting cultural bias in word use.

To better understand these differences, we performed several analyses. First, using feature ablation,
we identified the contextual and socio-linguistic features as the ones playing the most important role in
these word use differences. Second, focusing on the words with the most significant differences, we used
topic modeling to find the main topics for each of these words, which allowed us to identify the dominant
topic for a word in each culture, pointing to several interesting word use differences as outlined in Table
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5. We also measured the correlation between the topic distributions for the top 100 words between
the two cultures, and found a medium correlation of 0.63. Finally, we also performed a one-versus-all
classification for these 100 words, where word use instances drawn from one of Australia or United States
were compared against a mix of instances drawn from ten other cultures, which suggested that United
States is a more “typical” culture when it comes to word use (with significantly smaller differences in
these one-versus-all classifications than Australia).

In future work, we plan to extend this work to understand differences in word usages between a larger
number of cultures, as well as for a larger variety of words (e.g., function words).

The cross-cultural word datasets used in the experiments reported in this paper are available at
http://lit.eecs.umich.edu.
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