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Abstract

Interlingua based Machine Translation (MT) aims to encode multiple languages into a common
linguistic representation and then decode sentences in multiple target languages from this repre-
sentation. In this work we explore this idea in the context of neural encoder decoder architectures,
albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of
three languages or modalities X , Z and Y wherein we are interested in generating sequences in
Y starting from information available in X . However, there is no parallel training data available
between X and Y but, training data is available between X & Z and Z & Y (as is often the
case in many real world applications). Z thus acts as a pivot/bridge. An obvious solution, which
is perhaps less elegant but works very well in practice is to train a two stage model which first
converts from X to Z and then from Z to Y . Instead we explore an interlingua inspired solu-
tion which jointly learns to do the following (i) encode X and Z to a common representation
and (ii) decode Y from this common representation. We evaluate our model on two tasks: (i)
bridge transliteration and (ii) bridge captioning. We report promising results in both these ap-
plications and believe that this is a right step towards truly interlingua inspired encoder decoder
architectures.

1 Introduction

Interlingua based MT (Nirenburg, 1994; Dorr et al., 2010) relies on the principle that every language
in the world can be mapped to a common linguistic representation. Further, given this representation,
it should be possible to decode a target sentence in any language. This implies that given n languages
we just need n decoders and n encoders to translate between these nC2 language pairs. Note that even
though we take inspiration from interlingua based MT, the focus of this work is not on MT. We believe
that this idea is not just limited to translation but could be applicable to any kind of conversion involving
multiple source and target languages and/or modalities (for example, transliteration, multilingual image
captioning, multilingual image Question Answering, etc.). Even though this idea has had limited success,
it is still fascinating and considered by many as the holy grail of multilingual multimodal processing.

It is interesting to consider the implications of this idea when viewed in the statistical context. For
example, current state of the art statistical systems for MT (Koehn et al., 2003; Chiang, 2005; Luong et
al., 2015b), transliteration (Finch et al., 2015; Shao et al., 2015; Nicolai et al., 2015), image captioning
(Vinyals et al., 2015b; Xu et al., 2015), etc. require parallel data between the source and target views
(where a view could be a language or some other modality like image). Thus, given n views, we require
nC2 parallel datasets to build systems to convert from any source view to any target view. Obviously, this
does not scale well in practice because it is hard to find parallel data between all nC2 views. For exam-
ple, publicly available parallel datasets for transliteration (Zhang et al., 2012) cater to < 20 languages.
Similarly, publicly available image caption datasets are available only for English1 and German2.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://mscoco.org/dataset/#download
2http://www.statmt.org/wmt16/multimodal-task.html
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This problem of resource scarcity could be alleviated if we could learn only n statistical encoders
and n statistical decoders wherein (i) the encoded representation is common across languages and (ii)
the decoders can decode from this common representation (akin to interlingua based conversion). As a
small step in this direction, we consider a scaled down version of this generic nC2 conversion problem.
Specifically, we consider the case where we have three views X , Z, Y but parallel data is available only
between XZ and ZY (instead of all 3C2 parallel datasets). At test time, we are interested in generating
natural language sequences in Y starting from information available in X . We refer to this as the bridge
setup as the language Z here can be considered to be a bridge/pivot between X and Y .

An obvious solution to the above problem is to train a two-stage system which first converts from X
to Z and then from Z to Y . While this solution may work very well in practice (as our experiments
indeed suggest) it is perhaps less elegant and becomes tedious as the number of views increases. For
example, consider the case of converting from X to Z to R to Y . Instead, we suggest a neural network
based model which simultaneously learns the following (i) a common representation for X and Z and
(ii) decoding Y from this common representation. In other words, instead of training two independent
models using the datasets between XZ and ZY , the model jointly learns from the two datasets. The
resulting common representation learned for X and Z can be viewed as a vectorial analogue of the
linguistic representation sought by interlingua based approaches. Of course, by no means do we suggest
that this vectorial representation is a substitute for the rich linguistic representation but its easier to learn
from parallel data (as opposed to a linguistic representation which requires hand crafted resources).

Note that our work should not be confused with the recent work of (Firat et al., 2016), (Zoph and
Knight, 2016) and (Elliott et al., 2015). The last two works in fact require 3-way parallel data between
X , Z and Y and learn to decode sequences in Y given both X and Z. For example, at test time, (Elliott
et al., 2015) generate captions in German, given both (i) the image and (ii) its corresponding English
caption. This is indeed very different from the problem addressed in this paper. Similarly, even though
(Firat et al., 2016) learn a single encoder per language and a single decoder per language they do not
learn shared representations for multiple languages (only the attention mechanism is shared). Further, in
all their experiments they require parallel data between the two languages of interest. Specifically, they
do not consider the case of generating sentences in Y given a sentence in X when no parallel data is
available between X and Y .

We present an empirical comparison of jointly trained models which explicitly aim for shared en-
coder representations with two-stage architectures. We consider two downstream applications (i) bridge
transliteration and (ii) bridge caption generation. We use the standard NEWS 2012 dataset (Zhang et al.,
2012) for transliteration. We consider transliteration between 12 languages pairs (XY ) using English
as the bridge (Z). Bridge caption generation is a new task introduced in this paper where the aim is to
generate French captions for an image when no Image-French(XY ) parallel data is available for training.
Instead training data is available between Image-English (XZ) and English-French (ZY ). In both these
tasks we report promising results. In fact, in our multilingual transliteration experiments we are able
to beat the strong two-stage baseline in many cases. These results show potential for further research in
interlingua inspired neural network architectures. We do acknowledge that a successful interlingua based
statistical solution requiring only n encoders and n decoders is a much harder task whereas our work is
only a small step in that direction.

2 Related Work

Encoder decoder based architectures for sequence to sequence generation were initially proposed in
(Cho et al., 2014; Sutskever et al., 2014) in the context of Machine Translation (MT) and have also been
successfully used for generating captions for images (Vinyals et al., 2015b). However, such sequence
to sequence models are often difficult to train as they aim to encode the entire source sequence using
a fixed encoder representation. Bahdanau et al. (2014) introduced attention based models wherein a
different representation is fed to the decoder at each time step by focusing the attention on different parts
of the input sequence. Such attention based models have been more successful than vanilla encoder-
decoder models and have been used successfully for MT (Bahdanau et al., 2014), parsing (Vinyals et
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al., 2015a), speech recognition (Chorowski et al., 2015), image captioning (Xu et al., 2015) among other
applications. All the above mentioned works focus only on the case when there is one source and one
target. The source can be image, text, or speech signal but the target is always a text sequence.

Encoder decoder models in a multi-source, single target setting have been explored by (Elliott et al.,
2015) and (Zoph and Knight, 2016). Specifically, Elliott et al. (2015) try to generate a German caption
from an image and its corresponding English caption. Similarly, Zoph and Knight (2016) focus on the
problem of generating English translations given the same sentence in both French and German. We
would like to highlight that both these models require three-way parallel data while we are focusing on
situations where such data is not available. Single source, multi-target and multi-source, single target
settings have been considered in (Luong et al., 2015a). Recent work by Firat et al. (2016) explores multi-
source to multi-target encoder decoder models in the context of MT. However, Firat et al. (2016) focus on
multi-task learning with a shared attention mechanism and the goal is to improve the MT performance
for a pair of languages for which parallel data is available. This is clearly different from the goal of
this paper which is to design encoder decoder models for a pair of languages where no parallel data is
available but data is available only between each of these languages and a bridge language.

Of course, in general the idea of pivot/bridge/interlingua based conversion is not new and has been
used previously in several non-neural network settings. For example (Khapra et al., 2010) use a bridge
language or pivot language to do machine transliteration. Similarly, (Wu and Wang, 2007; Zhu et al.,
2014) do pivot based machine translation. Lastly, we would also like to mention the work in interlingua
based Machine Translation (Nirenburg, 1994; Dorr et al., 2010) which is clearly the inspiration for this
work even though the focus of this work is not on MT.

The main theme explored in this paper is to learn a common representation for two views with the end
goal of generating a target sequence in a third view. The idea of learning common representations for
multiple views has been explored well in the past (Klementiev et al., 2012; Chandar et al., 2014; Hermann
and Blunsom, 2014; Chandar et al., 2016; Rajendran et al., 2015). For example, Andrew et al. (2013)
propose Deep CCA for learning a common representation for two views. (Chandar et al., 2014; Chandar
et al., 2016) propose correlational neural networks for common representation learning and Rajendran
et al. (2015) propose bridge correlational networks for multilingual multimodal representation learning.
From the point of view of representation learning, the work of Rajendran et al. (2015) is very similar
to our work except that it focuses only on representation learning and does not consider the end goal of
generating sequences in a target language.

3 Models

As mentioned earlier, one of the aims of this work is to compare a jointly trained model with a two stage
model. We first briefly describe such a two stage encoder decoder architecture and then describe our
model which is a correlation based jointly trained encoder decoder model.

3.1 A two stage encoder-decoder model

A two stage encoder-decoder is a straight-forward extension of sequence to sequence models (Cho et
al., 2014; Sutskever et al., 2014) to the bridge setup. Given parallel data between XZ and ZY , a two
stage model will learn a generative model for each of the pairs independently. For the purpose of this
work, the source can be an image or text but the target is always a natural language text. For encoding
an image, we simply take its feature representation obtained from one of the fully connected layers of a
convolutional neural network and pass it through a feed-forward layer. On the other hand, for encoding
the source text sequence, we use a recurrent neural network. The decoder is always a recurrent neural
network which generates the text sequence, one token at a time.

Let the two training sets be D1 = {xi, zi}N1
i=1 and D2 = {zi, yi}N2

i=1 where xi ∈ X , yi ∈ Y and
zi ∈ Z. Given D1, the first encoder learns to encode xi and decode the corresponding zi from this
encoded representation. The second encoder is trained independently of the first encoder and uses D2

to encode zi ∈ Z and decode the corresponding yi ∈ Y from this encoded representation. These
independent training processes are indicated by the dotted arrows in Figure 1. At test time, the two
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Figure 1: Two stage encoder-decoder model. Dashed lines denote how the model is used during train-
ing time and solid line denotes the test time usage. We can see that two encoder-decoders are trained
independently but used jointly during testing.

stages are run sequentially. In other words, given xj , we first encode it and decode zj from it using
the first encoder-decoder model. This decoded zj is then fed to the second encoder-decoder model to
generate yj . This sequential test process is indicated by solid arrows in Figure 1.

While this two stage encoder-decoder model is a trivial extension of a single encoder-decoder model,
it serves as a very strong baseline as we will see later in the experiments section.

3.2 A correlation based joint encoder-decoder model
While the above model works well in practice, it becomes cumbersome when more views are involved
(for example, when converting from U to X to Y to Z). We desire a more elegant solution which could
scale even when more views are involved (although for the purpose of this work, we restrict ourselves to
3 views only). To this end, we propose a joint model which uses the parallel dataD1 (as defined above) to
learn one encoder each for X and Z such that the representations of xi and zi are correlated. In addition
and simultaneously the model uses D2 and learns to decode yj from zj . Note that this joint training has
the advantage that the encoder for Z benefits from instances in D1 and D2.

Having given an intuitive explanation of the model, we now formally define the objective functions
used during training. Given D1 = {xi, zi}N1

i=1, the model tries to maximize the correlation between the
encoded representations of xi and zi defined as

Jcorr(θ) = −λ corr(s(hX(X)), s(hZ(Z))) (1)

where hX is the representation computed by the encoder for X and hZ is the representation computed
by the encoder for Z. As mentioned earlier, these encoders could be RNN encoders (in the case of text)
and simple feedforward encoders (in the case of images). s() is a standardization function which adjusts
the hidden representations hX and hY so that they have zero-mean and unit-variance. Further, λ is a
scaling hyperparameter and corr is the correlation function defined as

N∑
i=1

s(hX(xi))s(hZ(zi))T (2)

We would like to emphasize that s() ensures that the representations already have zero mean and unit
variance and hence no separate standardization is required while computing the correlation. In addition
to the above loss function, given D2 = {zi, yi}N2

i=1, the model minimizes the cross entropy loss

Jce(θ) =
1
N2

N2∑
k=1

P (yk|zk); P (yk|zk) =
L∏

i=1

P (yki
|yk<i

, zk) (3)

where L is the number of tokens in yk.
The dotted lines in Figure 2 show the joint training process where the model simultaneously learns to

compute correlated representations for xi and zi and decode yi from zi. The testing process is shown by
the solid lines wherein the model computes a hidden representation for xi and then decodes yi from it
directly without transitioning through zi.
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Figure 2: Correlated encoder-decoder model. Dashed lines denote how the model is used during training
time and solid line denotes the test time usage. We can see that during training, both the encoders are
trained to produce correlated representations and the decoder for Y is trained based on encoderZ. During
test time only encoder for X and decoder for Y are used.

While training, we alternately pick mini-batches from D1 and D2 and use the corresponding objective
function. Means and variances for the representations computed by the two encoders are updated at the
end of every epoch based on the hidden representations of all instances in the training data. During
the first epoch we assume the mean and variance to be 0 and 1. Note that λ rescales the value of the
correlation loss term so that it is in the same range as the value of the cross-entropy loss term.

4 Experiment 1: Bridge Transliteration

We consider the task of transliteration between two languages X and Y when no direct data is available
between them but parallel data is available between X & Z and Z & Y . In the following subsections we
describe the datasets used for our task, the hyperparameters considered for our experiments and results.

4.1 Datasets

We consider transliteration between 4 languages, viz., Hindi, Kannada, Tamil and Marathi resulting
in 4C2 = 12 language pairs. However, we do not use any direct parallel data between any of these
languages. Instead we use the standard datasets available between English and each of these languages
which were released as part of the NEWS 2012 shared task (Zhang et al., 2012). Just to be explicit, for
the task of transliterating from Hindi to Kannada, we construct D1 from the English-Hindi dataset and
D2 from the English-Kannada dataset. The size of the training set (in words) for the four language pairs
English-Hindi, English-Kannada, English-Marathi and English-Tamil is 19918, 16556, 8500 and 16857
respectively and the validation and test set sizes (in words) are 500 and 1000 respectively. Fortunately,
the English portion of the test set was common across all these four language pairs, thus allowing us
to easily create test sets for all the 12 language pairs. For example, if hi is the transliteration of the
English word ei in the English-Hindi test set and ki is the transliteration of the same English word ei in
the English-Kannada test set then we add (hi, ki) as a transliteration pair in our Hindi-Kannada test set.
In this way, we created test sets containing 1000 words for all the 12 language pairs.

4.2 Hyperparameters

For the two stage encoder decoder model, we considered the following hyperparameters: embedding
size ∈ {1024, 2048} for characters, rnn hidden unit size ∈ {1024, 2048}, initial learning rate ∈ {0.01,
0.001} and batch size ∈ {32, 64}. The numbers in bracket indicate the distinct values that we considered
for each hyperparameter. Note that the embedding size and rnn size are always kept equal. All these
parameters were tuned independently for the two stages using their respective validation sets. For the
correlated encoder decoder model, in addition to the above hyperparameters we also had λ ∈ [0.1, 1.0]
as a hyperparameter. Here, we tuned the hyperparameters based on the performance on the validation set
available between ZY (since the correlated encoder decoder can also decode yi ∈ Y from zi ∈ Z). Note
that we do not use any parallel data between XY for tuning the hyperparameters because the general
assumption is that no parallel data is available between XY . We used Adam (Kingma and Ba, 2014) as
the optimizer for all our experiments.
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Two Stage PBSMT
PPPPPsrc

tgt Hi Ka Ta Ma

Hi 36.3 33.2 33.6
Ka 41.3 32.1 26.2
Ta 30.5 25.8 19.2
Ma 46.9 33.7 30.9

Two Stage Encoder Decoder
PPPPPsrc

tgt Hi Ka Ta Ma

Hi 42.1 43.4 34.8
Ka 46.2 42.9 30.7
Ta 37.5 34.8 23.8
Ma 45.8 34.9 31.7

Correlational Encoder Decoder
PPPPPsrc

tgt Hi Ka Ta Ma

Hi 43.1 40.6 40.9
Ka 47.5 40.2 27.9
Ta 33.6 27.7 17.0
Ma 59.0 37.1 34.5

Table 1: Transliteration Accuracy on the 12 language pairs involving (Hindi, Kannada, Tamil, Marathi)
for the three comparative methods (Two Stage PBSMT, Two Stage Encoder Decoder and the proposed
Correlational Encoder Decoder model. An underlined number in this table signifies that for that specific
language pair the corresponding system is performing better than the Two Stage PBSMT model and the
best performing system for any of the language-pairs is represented in bold font

System Accuracy (%) of Source-Target Pair
En-Hi En-Ka En-Ta En-Ma Hi-En Ka-En Ta-En Ma-En

PBSMT 51.7 45.3 50.0 30.2 51.1 47.9 41.4 35.0
Encoder-Decoder 61.6 53.7 57.7 38.0 57.3 54.5 46.2 31.1

Table 2: Transliteration accuracy of the PBSMT system and the Encoder-Decoder model on the 4 Indian
languages (Hindi, Kannada, Tamil, Marathi) when transliterated from English and to English

4.3 Results
We compare our model with the following systems:
1. Two Stage PBSMT: Here, we train two PBSMT (Koehn et al., 2003) based transliteration systems
usingD1 andD2. This is an additional baseline to see how well an encoder decoder architecture compares
to a conventional PBSMT based system. We used Moses (Koehn et al., 2007) for building our PBSMT
systems. The decoder parameters were tuned using the validation sets. Language model was trained on
the target portion of the parallel corpus.
2. Two Stage Encoder Decoder: Here, we train two encoder decoder based transliteration systems using
D1 and D2 as described in Section 3.1.

Table 1 summarizes the accuracy (% of correct transliterations) of the three systems in the bridge
setup. We observe that in 6 out of the 12 language pairs our correlated model does better than the 2
stage encoder decoder model. Further, it does better than the two-stage PBSMT baseline in 11 out of the
12 language pairs. This is very encouraging especially because such 2-stage approaches are considered
to be very strong baselines for these tasks (Khapra et al., 2010). In general, the encoder decoder based
approaches do better than PBSMT based systems. This is indeed the case even when we compare the
performance of the PBSMT based system and the Encoder Decoder based system independently on the
two stages (Table 2).

5 Experiment 2: Bridge Captioning

We now introduce the task of bridge caption generation. The purpose of introducing this task is two-fold.
Firstly, we feel that it is important to put things in perspective and demonstrate that while interlingua
inspired encoder decoder architectures are a step in the right direction, much more work is needed when
dealing with different modalities in a bridge setup. Secondly, we think that this is an important task
which has not received any attention in the past. We would like to formally define and report some initial
baselines to motivate further research in this area. The formal task definition is as follows: Generate
captions for images in language L1 (say, French) when no parallel data is available between images and
L1 but parallel data is available between Image-L2 (D1) and between L1-L2 (D2) where L2 is another
language (say, English). In the following subsection we describe the datasets used for this task, the
hyperparameters considered for our experiments and the results.

5.1 Datasets
Even though we do not have direct training data between Image-French, we need some test data to
evaluate our model. For this, we use the Image-French test set recently released by (Rajendran et al.,
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Systems BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE-L CIDEr
Pseudo Im-Fr 15.5 24.2 37.4 56.5 38.3 41.2
Two Stage 16.6 25.7 39.0 58.3 39.5 49.1
Correlational Encoder Decoder 12.6 19.3 31.1 50.5 34.3 29.8

Table 3: Image Captioning performance in generating French caption for a given image for the three
methods: Pseudo Im-Fr, Two Stage and our Correlational Encoder Decoder based model.

2015). To create this data, they first merged the 80K images from the standard train split and 40K images
from the standard valid split of MSCOCO data. They then randomly split the merged 120K images into
train(118K), validation (1K) and test set (1K). They then collect French translations for all the 5 captions
for each image in the test set using crowdsourcing. CrowdFlower (https://make.crowdflower.
com) was used as the crowdsourcing platform and they solicited one French and one German translation
for each of the 5000 captions using native speakers. Note that (Rajendran et al., 2015) report results for
cross modal search and do not address the problem of crosslingual image captioning.

In our model, for D1 we use the same train(118K), validation (1K) and test sets (1K) as defined in
(Rajendran et al., 2015) and explained above. Choosing D2 was a bit more tricky. Initially we consid-
ered the corpus released as part of WMT’12 (Callison-Burch et al., 2012) which contains roughly 44M
English-French parallel sentences from various sources including News, parliamentary proceedings, etc.
However, our initial small scale experiments showed that this does not work well because there is a clear
mismatch between the vocabulary of this corpus and the vocabulary that we need for generating captions.
Also the vocabulary is much larger (at least an order higher than what we need for image captioning)
and it thus hampers training. Further, the average length and structure of these sentences is also very
different from captions. Domain shift in MT is itself a challenging problem (not to mention the added
complexity in a multimodal bridge setup). It was unrealistic to expect our model to work in the presence
of these orthogonal complexities.

To isolate these issues and evaluate our model in a controlled environment, we needed a parallel corpus
which had very similar characteristics to that observed in captions. Since we did not have such a corpus
at our disposal we decided to follow (Rajendran et al., 2015) and use a pseudo parallel corpus between
English-French. Specifically, we take the English captions from the MSCOCO data and translate them
to French using the publicly available translation system provided by IBM (http://www.ibm.com/
smarterplanet/us/en/ibmwatson). Note that our model still does not see direct parallel data
between Image and French during training. We acknowledge that this is not the ideal thing to do but it
is good enough to do a proof-of-concept evaluation of our model and understand its potential. We, of
course, account for the liberty taken here by comparing with equally strong baselines as discussed later
in the results section.

5.2 Hyperparameters
Our model has the following hyperparameters: embedding size, batch size, hidden representation size,
λ and learning rate. Based on experiments involving direct Image-to-English caption generation we
observed that the following parameters work well : embedding size = 512, batch size = 80, rnn hidden
unit size = 512, and learning rate = 4e-4 with Adam (Kingma and Ba, 2014) as the optimizer. We just
retained these hyperparameters and did not tune them again for the bridge setup. We tuned the value
of λ by evaluating the correlation loss on the Image-English validation set. Again, we do not use any
Image-French data for tuning any hyperparameters.

5.3 Results
We now present the results of our experiments where we compare with the following strong baselines.
1. Two Stage : Here we use a Show & Tell model (Vinyals et al., 2015b) trained using D1 to generate an
English caption for the image. We then translate this caption into French using IBM’s translation system
as described above.
2. Pseudo Im-Fr : Here we train an Image-to-French Show & Tell model (Vinyals et al., 2015b) by
pairing the images in the MSCOCO dataset with their pseudo French captions generated by translating
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Un homme est
surfer sur une
vague dans
l’océan

Un skateur est en
train de décoller
sur un skateboard

Une plaque avec
un sandwich et
un verre de bière

Une girafe est
debout dans la
poussière près
d’une arbores-
cence

Un bus de trans-
port en commun
dans une rue de
la ville

Un salon avec
un canapé ,
une table et un
téléviseur

Tw
o-

St
ag

e

Un homme cir-
conscription une
vague sur une
planche de surf

Un homme cir-
conscription un
skateboard sur
une rampe en
bois

Une plaque de
nourriture sur
une table avec un
verre de vin

Une girafe de-
bout dans un
champ avec
des arbres en
arrièreplan

Un bus double
sandwich au
volant dune rue

Un salon avec un
canapé fauteuil et
une télévision

Ps
eu

do
Im

-F
r

Un internaute
dans une combi-
naison isother-
mique est
circonscription
une vague

Un jeune garçon
circonscription
un skateboard
dans un parc

Une plaque de
nourriture sur
une table en bois

Une girafe de-
bout à côté d’un
autre girafe dans
une zone

Un bus ville faire
baisser une rue
de la ville

Un salon avec un
canapé , une ta-
ble et un canapé

Table 4: Example captions generated by the three methods on a sample set of MSCOCO test images

the English captions into French (using IBM’s translation system).
We observe that our model is unable to beat the two strong baselines described above but still comes

close to their performance. We believe this reinforces our belief in this line of research and hopefully
more powerful models (perhaps attention based) could eventually surpass these two baselines.

As a qualitative evaluation of our model, Table 4 shows the captions generated by our model. It
is exciting that even in a complex multimodal bridge setup the model is able to capture correlations
between Images and English sentences and further decode relevant French captions from a given image.

The code and datasets used for Experiment 1 and 2 would be made available on request.

6 Conclusion

In this paper, we considered the problem of pivot based sequence generation. Specifically, we are inter-
ested in generating sequences in a target language starting from information in a source view. However,
no direct training data is available between the source and target views but data is available between each
of these views and a pivot view. To this end, we take inspiration from interlingua based MT and pro-
pose a neural network based model which explicitly maximizes the correlation between the source and
pivot view and simultaneously learns to decode target sequences from this correlated representation. We
evaluate our model on the task of bridge transliteration and show that it outperforms a strong two-stage
baseline for many language pairs. Finally, we introduce a novel bridge caption generation task and report
promising initial results. We hope this new task will fuel further research in this area.

As future work, we would like to go beyond simple encoder decoder based correlational models. For
example, we would like to apply the idea of correlation to attention based encoder decoder models. The
ideas expressed here can also be applied to other tasks such as bridge translation, bridge Image QA, etc.
However, for these tasks, additional issues such as larger vocabulary sizes, complex sentence structures,
non-monotonic alignments between source and target language pairs need to be addressed. The model
proposed here is just a beginning and much more work is needed to cater to these complex tasks.
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