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Abstract
Most of the recent literature on Sentiment Analysis over Twitter is tied to the idea that the senti-
ment is a function of an incoming tweet. However, tweets are filtered through streams of posts,
so that a wider context, e.g. a topic, is always available. In this work, the contribution of this
contextual information is investigated. We modeled the polarity detection problem as a sequen-
tial classification task over streams of tweets. A Markovian formulation of the Support Vector
Machine discriminative model as embodied by the SVMhmm algorithm has been here employed
to assign the sentiment polarity to entire sequences. The experimental evaluation proves that se-
quential tagging effectively embodies evidence about the contexts and is able to reach a relative
increment in detection accuracy of around 20% in F1 measure. These results are particularly
interesting as the approach is flexible and does not require manually coded resources.

1 Introduction

Since in the Web 2.0 users can write about their life, personal experiences, share contents about facts and
ideas, Social Networks became valuable sources of opinions and sentiments. This huge amount of data
is crucial in the study of the interactions and dynamics of subjectivity on the Web, largely relevant for
marketing tasks. Twitter is one among these microblogging services that counts about a billion of active
users and 500 million of daily messages1. However, the analysis of this huge amount of information is
still challenging, as language is very informal, affected by misspelling and characterized by slang and
#hashtags, i.e. special user-generated tags used to contextualize different tweets around a specific topic.

Researches focused on the computational study and automatic recognition of opinions and sentiments
as they are expressed in free texts. It gave rise to what is currently known as Sentiment Analysis, a set
of tasks aiming to detect the subjective attitude of a writer with respect to some topic. Many Sentiment
Analysis studies map sentiment detection in a Machine Learning (ML) setting (Pang and Lee, 2008),
where labeled data, i.e. known examples, allow to induce the detection function from real world exam-
ples. In general, sentiment detection in tweets has been generally treated as any other text classification
task, as proved by most papers participating to the Sentiment Analysis in Twitter task in SemEval-2013
challenge (Nakov et al., 2013): a computational representation for an incoming instance is generated by
just considering one tweet at a time. The short length of the message and the resulting semantic ambi-
guity are critical limitations and make the task very complex. Let us consider the following example, in
which a tweet from ColMustard cites SergGray:

ColMustard : @SergGray Yes, I totally agree with you about the substitutions! #Bayern #Freiburg

The tweet sounds like to be a reply to the previous one. Notice how no lexical nor syntactic property
allows to determine the sentiment polarity. However, if we look at the entire conversation that follows:

ColMustard : Amazing match yesterday!!#Bayern vs. #Freiburg 4-0 #easyvictory
SergGray : @ColMustard Surely, but #Freiburg wasted lot of chances to score.. wrong substitutions by

#Guardiola during the 2nd half!!
ColMustard : @SergGray Yes, I totally agree with you about the substitutions! #Bayern #Freiburg

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
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it is easy to establish that a first positive tweet has been produced, followed by a second negative one so
that the third tweet is negative as well. It is the conversation that allows us here to disambiguate even a
very short message and properly characterize it according to its author and posting time.

We want here to capitalize such a richer set of observations (i.e. entire conversations) and to define
a context-sensitive SA model along two lines: first, by enriching a tweet representation to include the
conversation information, and then introducing a more complex classification model that works over an
entire tweet sequence and not on one tweet (i.e. the target) at a time. Accordingly, in the paper we will
first focus on different representations of tweets that can be made available to the sentiment detection
process. They will also account for contexts, that are conversations, as chains of tweets that are reply
to the previous ones, and topics, built around hashtags. These are in fact topics made explicit by users,
such as events (#easyvictory) or people (#Guardiola). It represents a wider notion of conversation that
enforces the sense of belonging to a community. From a computational perspective, the polarity detection
of a tweet in a context is here modeled as a sequential classification task. In fact, both conversation and
topic-based context are arbitrarily long sequences of messages, ordered according to time with the target
tweet being the last. The SVMhmm learning algorithm (Altun et al., 2003) has been employed, as it
allows to classify an instance (here, a tweet) within an entire sequence. While SVM based classifiers
allow to recognize the sentiments from one specific tweet at a time, the SVMhmm learning algorithm
collectively labels all tweets in a sequence. It is thus expected to capture patterns within a conversation
and apply them in novel sequences, through a standard decoding task.

While all the above contexts extend a tweet representation, they are still local to a specific notion
of conversation. In this work, we also explore the somehow more abstract notion of contexts given
by the emotional attitude shown by each user in his overall usage of Twitter. In the above example,
ColMustard shows a specific attitude while discussing about the Bayern Munchen. We can imagine
that this feature characterizes most of its future messages at least about football. We suggest to enrich
the tweet representation with features that synthesize a user’s profile, in order to catch possible biases
towards a particular sentiment polarity. This is quite interesting as it has been shown that communities
behave in a coherent way and users tend to take stable standing points. Experimental evaluation (Chapter
4) proves the effectiveness of this proposed sequential tagging approach combined with the adopted
contextual information, improving the percentage of correctly recognized tweets up to 12%.

A survey of the existing approaches is presented into Section 2. Then, Section 3 provides an account
of the context-based models: conversation, topic-based and user sentiment profiling. The experimental
evaluation into Section 4 prove the positive impact of social dynamics on the SA task.

2 Related Work

Sentiment Analysis has been described as a Natural Language Processing task at many levels of gran-
ularity. Starting from being mapped into a document level classification task (Turney, 2002; Pang and
Lee, 2004), it has been also applied at sentence level (Hu and Liu, 2004; Kim and Hovy, 2004) and more
recently at the phrase level (Wilson et al., 2005; Agarwal et al., 2009).

The spreading of microblog services where users post real-time opinions about “everything”, poses
newer and different challenges. Indeed, classical approaches to Sentiment Analysis (Pang et al., 2002;
Pang and Lee, 2008) are not directly applicable to tweets: while most of them focus on relatively large
texts, e.g. movie or product reviews, tweets are very short and fine-grained lexical analysis is required.
Nevertheless, the great prominence of Social Media during the last few years encouraged a focus on
the sentiment detection over a microblogging domain. Recent works tried to model the sentiment in
tweets (Go et al., 2009; Pak and Paroubek, 2010; Kouloumpis et al., 2011; Davidov et al., 2010; Bifet
and Frank, 2010; Croce and Basili, 2012; Barbosa and Feng, 2010; Zanzotto et al., 2011; Si et al.,
2013; Agarwal et al., 2011). Specific approaches and feature modeling are used to improve accuracy
levels in tweet polarity recognition. For example, the use of n-grams, POS tags, polarity lexicons and
tweet specific features (e.g. hashtags, re-tweets) are some of the component exploited by these works, in
combination with different machine learning algorithms: among these latter, probabilistic paradigms, e.g.
Naive Bayes (Pak and Paroubek, 2010), or Kernel-based machines, as discussed in (Barbosa and Feng,
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2010; Agarwal et al., 2011; Castellucci et al., 2013), are mostly employed. An interesting perspective,
where a kind of contextual information is studied, is presented in (Mukherjee and Bhattacharyya, 2012):
the sentiment detection of tweets is here modeled according to lexical features as well as discourse
relations like the presence of connectives, conditionals and semantic operators like modals and negations.
Nevertheless, in all the above approaches, features are derived only from lexical resources or from the
tweet itself and no contextual information is exploited. However, given one tweet targeted for sentiment
detection, more awareness about its content is available to writers and readers by the entire stream of
related posts immediately preceding it. In order to exploit this wider information, a Markovian extension
of a Kernel-based categorization approach is proposed in the next section.

3 A context based model for Sentiment Analysis in Twitter

As discussed in the introduction, contextual information about one tweet stems from various aspects: an
explicit conversation, the user attitude or the overall set of recent tweets about a topic (for example an
hastag like #Bayern). As individual perspectives on the context are independent (a conversation may
or may not depend on user preference or cheer) and they also obey to different notion of analogies or
similarity, we should avoid a unified feature vector, but employ independent representations. A structured
view on a tweet can thus be provided by considering it as multifaceted entity where a set of vectors, each
one contributing to one aspect of the overall representation, exhibits a specific similarity metrics. Notice
how this is exactly what Kernel-based learning supports, whereas the combination of the different Kernel
functions can be easily made a Kernel function itself (Shawe-Taylor and Cristianini, 2004). Kernel
functions are used to capture specific aspects of the semantic relatedness between two tweets and are
easily integrated in various Machine Learning algorithms, such as SVM.

3.1 Representing tweets through different Kernel functions
Many Machine Learning approaches for Sentiment Analysis in Twitter benefited by complex ways of
modeling of individual tweets, as discussed in many works (Nakov et al., 2013). The representation we
propose makes use of individual Kernels as models of different aspects usable within a SVM paradigm.

Bag of Word Kernel (BoWK). The simplest Kernel function describes the lexical overlap between
tweets, thus represented as vectors, whose dimensions correspond to the different words. Components
denote the presence or not of the corresponding word in the text and Kernel function corresponds to
the cosine similarity between vector pairs. Even if very simple, the BoW model is one of the most
informative representation in Sentiment Analysis, as emphasized since (Pang et al., 2002).

Lexical Semantic Kernel (LSK). Lexical information in tweets can be very sparse, as we will also
show in the next Section 4. In order to extend the BoW model, we provide a further vector representation
aiming to generalize the lexical information. It can be obtained for every term of a dictionary by a
co-occurrence Word Space built according to the Distributional Analysis described in (Sahlgren, 2006).
A word-by-context matrix, M , is built through large scale corpus analysis and then processed through
Latent Semantic Analysis (Landauer and Dumais, 1997). The dimensionality of the space represented by
M can be reduced through Singular Value Decomposition (SVD) (Golub and Kahan, 1965). The original
statistical information about M is captured by the new k-dimensional space, which preserves the global
structure while removing low-variance dimensions, i.e. distribution noise. The result is that every word
is projected in the reduced Word Space and a vector for each tweet is represented through the linear
combination of the co-occurring word vectors (also called additive linear combination in (Mitchell and
Lapata, 2010)). The resulting Kernel function is the cosine similarity between tweet vector pairs, in line
with (Cristianini et al., 2002). Notice that the adoption of a distributional approach does not limit the
overall application, as it can be automatically applied without relying on any manually coded resource.

User Sentiment Profile Context (USPK). A source of evidence about a tweet is its author, with his
attitude towards some polarities. Specific features based on the users’ previous tweets can be derived as
follows. Let ti ∈ T be a tweet and i ∈ N+ its identifier. The User Profile Context (Ui) can be defined as
the set of the lastH tweets posted by the author of ti, hereafter denoted by ui. This information is a body
of evidence about the opinion holder’s profile on which a further tweet representation can be defined. A
tweet ti is here mapped into a three dimensional vector ~µi =

(
µ1

i , µ
2
i , µ

3
i

)
, where each component µj

i is
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the indicator of polarity inclination, i.e. positive, negative and neutral, expressed through the conditional
probability P (j | ui) for the polarity labels j ∈ Y given the user ui. We can suppose that, for each
tk ∈ Ui, its corresponding label yk is available either as a gold standard annotation or predicted in a semi-
supervised fashion by trained classifiers. The estimation of µj

i ≈ P (j | ui), is a σ-parameterized Laplace
smoothed version of the observations in Ui: µ

j
i =

∑|Ui|
k=1(1{yk=j}(tk) + σ)/(|Ui|+ σ|Y|) where σ ∈ R

is the smoothing parameter, j ∈ Y , i.e. the set of polarity labels. The Kernel function, called User
Sentiment Profile Kernel (USPK), is the cosine similarity between two vectors (~µi, ~µm).

The multiple Kernel approach. Whenever the different Kernels are available, we can apply a lin-
ear combination αBoWK+βLSK or αBoWK+βLSK+γUSPK in order to exploit lexical and semantic
properties captured by BoWK and LSK, or user properties as captured by USPK.

3.2 Modeling tweet conversation as a sequential tagging problem
The User Sentiment Profile Kernel (UPSK) can be seen as an implicit representation of a context de-
scribing the writer. However, contextual information is usually embodied by the stream of tweets in
which the target one ti is immersed. Usually, the stream is something available to a reader and includes
an entire conversation (where links to the previous tweets are made explicit and are supposed to be all
available) or a topic, i.e. a hashtag, the reader has searched for. In all cases, the stream give rise to an
entire sequence on which sequence labeling can be applied: the target tweet is here always labeled within
the entire sequence, where contextual constraints are provided by the preceding tweets. More formally,
two types of context are defined:

Conversational context. For every tweet ti ∈ T , let r(ti) : T → T be a function that returns either
the tweet to which ti is a reply to, or null if ti is not a reply. Then, the conversation-based context ΛC,l

i

of tweet ti (i.e., the target tweet) is the sequence of tweet iteratively built by applying r(·), until l tweets
have been selected or r(·) = null. In other words, l allows to limit the size of the input context. An
example of conversation-based context is given in Section 1.

Topical context. Hashtags allow to aggregate different tweets around a specific topic. An entire tweet
sequence can be derived including the n tweets preceding the target ti that contain the same hashtag set.
This is usually the output of a search in Twitter and it is likely the source information that influenced
the writer’s opinion. Let ti ∈ T be a tweet and h(i) : T → P(H) be a function that returns the entire
hashtag set Hi ⊆ H observed into ti. Then, the hashtag-based context ΛH,l

i for a tweet ti (i.e., target
tweet) is a sequence of the most recent l tweets tj such that Hj ∩Hi 6= ∅, i.e. tj and ti share at least one
hashtag, and tj has been posted before ti. As an example, the following hashtag-based context of size 4
has been obtained about #Bayern:

MrGreen : Fun fact: #Freiburg is the only #Bundesliga team #Pep has never beaten in his coaching career. #Bayern
MrsPeacock : Young starlet Xherdan #Shaqiri fires #Bayern into a 2-0 lead. Is there any hope for #Freiburg?

pic.twitter.com/krzbFJFJyN
ProfPlum : It is clear that #Bayern is on a rampage leading by 4-0, the latest by Mandzukic... hoping for

another 2 goals from #bayernmunich
MissScarlet : Noooo! I cant believe what #Bayern did!

It is clear that MissScarlet expressed an opinion, but the corresponding polarity is easily evident
when the entire stream is available about the #Bayern hashtag. As well as in a conversational context,
a specific context size n can be imposed by focusing only on the last n tweets of the sequence. Once
different representations and contexts are available a structured learning-based approach can be applied
to Sentiment Analysis. Firstly, we will discuss a discriminative learning approach that follows the multi-
classification schema proposed in (Joachims et al., 2009), namely SVMmulticlass . Then a sequence
labeling approach, based on the SVMhmm learning algorithm (Altun et al., 2003), will be introduced, as
an explicit account of both conversational and topical contexts.

The multi-class approach. The SVMmulticlass schema described in (Joachims et al., 2009) is applied2

to implicitly compare all polarity labels and select the most likely one, using the multi-class formulation
described in (Crammer and Singer, 2001). The algorithm thus acquires a specific function fy(x) for

2
http://svmlight.joachims.org/svm multiclass.html
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each sentiment polarity label y ∈ Y , where Y = {positive, negative, neutral}. Given a feature vector
x ∈ X representing a tweet ti, SVMmulticlass allows to predict a specific polarity y∗ ∈ Y by applying the
discriminant function y∗ = arg maxy∈Y fy(xi), where fy(x) = wy · x is a linear classifier associated to
each label y. Given a training set (x1, y1) . . . (xn, yn), the learning algorithm determines each classifier
parameters wy by solving the following optimization problem:

min
1

2

∑
i=1...k

‖wi‖2 +
C

n

∑
i=1...n

ξi s.t. ∀i,∀y ∈ Y : xi · wyi ≥ xi · wy + 100∆(yi, y)− ξi

where C is a regularization parameter that trades off margin size and training error, while ∆(yi, y) is the
loss function that returns 0 if yi equals y, and 1 otherwise.

The markovian approach. The sentiment prediction of a target tweet can be seen as a sequential
classification task over a context, and the SVMhmm algorithm can be thus applied. Given an input
sequence x = (x1 . . . xl) ⊆ X , where x is a tweet context, e.g. the conversational and the hashtag-based
one (i.e. ΛC,l

i and ΛH,l
i , respectively) and xi is a feature vector representing a tweet, the model predicts

a tag sequence y = (y1 . . . yl) ∈ Y+ after learning a linear discriminant function F : P(X )× Y+ → R
over input/output pairs. The labeling f(x) is thus defined as: f(x) = arg maxy∈Y+ F (x,y; w). It is
obtained by maximizing F over the response variable, y, for a specific given input, x. In these models,
F is linear in some combined feature representation of inputs and outputs Φ(x,y), i.e. F (x,y; w) =
〈w,Φ(x,y)〉. As Φ extracts meaningful properties from an observation/label sequence pair (x,y), in
SVMhmm it is modeled through two types of features: interactions between attributes of the observation
vectors xi and a specific label yi (i.e. emissions of xi by yi) as well as interactions between neighboring
labels yi along the chain (transitions). In other words, Φ is defined so that the complete labeling y =
f(x) can be computed efficiently from F , using a Viterbi-like decoding algorithm, according to the linear
discriminant function

y∗ = arg max
y∈Y+

{
∑

i=1...l

[
∑

j=1...k

(xi · wyi−j ... yi) + Φtr(yi−j , . . . , yi) · wtr]}

In the training phase, SVMhmm solves the following optimization problem given training examples
(x1,y1) . . . (xn,yn) of sequences of feature vectors xj with their correct tag sequences yj

min
1

2
‖w‖2 +

C

n

∑
i=1...n

ξi

s.t. ∀y, n : {
∑

i=1...l

(xn
i · wyn

i
) + Φtr(yn

i−1, y
n
i ) · wtr} ≥ {

∑
i=1...l

(xn
i · wyi) + Φtr(yi−1, yi) · wtr}+ ∆(yn, y)

where ∆(yn, y) is the loss function, computed as the number of misclassified tags in the sequence,
(xi · wyi) represents the emissions and Φtr(yi−1, yi) the transitions. Indeed, through SVMhmm learning
the label for the target tweet is made dependent on its context history. The markovian setting thus
acquires patterns across tweet sequences to recognize sentiment even for truly ambiguous tweets.

4 Experimental Evaluation

The aim of the experiments is to estimate the contribution of the proposed contextual models to the
accuracy reachable in different scenarios, whereas rich contexts (e.g. popular hashtags) are possibly
made available or just singleton tweets, with no context, are targeted.

We adopted the “Sentiment Analysis in Twitter” dataset3 as it has been made available in the ACL
SemEval-2013 (Nakov et al., 2013). However, in order to rely on tweet identifiers (needed to retrieve
contexts from Twitter servers), only the Training and Development portions of the data (11,338 exam-
ples), for which id’s were made available, have been employed. As about 10,045 tweets were available
from the servers,4 a static split 80/10/10 in Training/Held-out/Test respectively, has been carried out as
reported in Table 1. As the performance evaluation is always carried out against one target tweet (in
analogy with the benchmark of SemEval-2013), the multi-classification may happen when no context is
available (i.e. there is no conversation nor hashtag to built the context from) or when a rich conversa-
tional or topical context is available. In Table 1 different datasets are shown in columns 2-4, 5-7 and 8-10

3
http://www.cs.york.ac.uk/semeval-2013/task2/index.php?id=data

4Several original messages were no longer reachable during the experiment time of March-June 2013
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respectively: the entire corpus of 10,045 is represented in columns 2-4, while 5-7 and 8-10 represents
the subsets of target tweets for which a conversational or topical context, respectively, was available.
Conversational contexts are available only for 1,391 tweets (columns 5-7), while hashtag-based contexts
include 1,912 instances (columns 8-10).

whole dataset conversation-filtered hashtag-filtered
train dev test train dev test train dev test

Positive 2984 359 387 454 51 56 621 83 66
Negative 1271 147 142 197 31 24 245 28 22
Neutral 3790 495 470 455 68 55 688 79 80

8045 1001 999 1106 150 135 1554 190 168

Table 1: Whole dataset composition

As tweets are noisy texts, a pre-processing phase has been applied to improve the quality of linguistic
features observable and reduce data sparseness. In particular, a normalization step is applied to each
post: fully capitalized words are converted in lowercase; reply marks are replaced with the pseudo-token
USER, hyperlinks by LINK, hashtags by HASHTAG and emoticons by special tokens5. Afterwards, an
almost standard NLP chain is applied through the Chaos parser (Basili et al., 1998; Basili and Zanzotto,
2002). In particular, each tweet, with its pseudo-tokens produced by the normalization step, is mapped
into a sequence of POS tagged lemmas. Emoticons are treated as nouns. In order to feed the LSK, lexical
vectors correspond to a Word Space derived from a corpus of about 1.5 million tweets, downloaded
during the experimental period and using the topic names from the trial material as query terms. Every
word w in such corpus is represented as one co-occurrence vector as in (Sahlgren, 2006) with the setting
discussed in (Croce and Previtali, 2010): left and right co-occurrence scores are obtained in a window of
size n = ±5 around each w. Vector components wf correspond to Pointwise Mutual Information values
pmi(w, f) between the word w (the row) and the feature f . Dimensionality reduction is applied to the
co-occurrence matrix, through SVD, with a dimensionality cut of k = 250.

Existing state-of-the-art approaches neglect the tweet context, so that datasets with labeled contexts
are not available: USPK or the markovian approach would not be applicable. The solution consisted
in creating a semi-supervised Gold-Standard by training the multi-class classifier (not employing any
context) fed through a combination of BoWK and LSK Kernel functions and get the classification of all
tweets within the context of at least one target tweet. Unfortunately, this can introduce noise, but it is a
realistic solution to a cold-start approach, easily portable to other datasets.

Performance scores report the classification accuracy in terms of Precision, Recall and standard F-
measure. However, in line with SemEval-2013, we also report the F pnn

1 score as the arithmetic mean
between the F1s of positive, negative and neutral classes.

4.1 Experiment 1: Using contexts in a general tweet classification setting

A first experiment has been run to validate the impact of contextual information over generic tweets,
independently from the availability of the context. In this case, the entire data set is used. The different
settings adopted are reported in independent rows, corresponding to different classification approaches:

• multi-class refers to the application of the multi-classification of SVMmulticlass, that does not require
any context and can be considered as a baseline for the employed Kernel combinations;
• conversation refers to the SVMhmm classifier observing the conversation-based contexts. The train-

ing and testing of the classifier is here run with different context sizes, by parameterizing l in ΛC,l
i ;

• likewise, hashtag refers to the SVMhmm classifier observing the topic-based contexts, when hash-
tags are considered. Different context sizes have been considered, by parameterizing l in ΛH,l

i .
In both conversation and hashtag models, when no context is available, the SVMhmm classifier acts on
a sequence of length one, and no transition is used. Table 2 shows the empirical results over the whole
test dataset. The first general outcome is that algorithmic baselines, i.e. context-free models that use
no contextual information, in the multi-class rows are better performing whenever richer representations
are provided. The LSA information (+8.29%) as well as the user profiling (+10.73%) seem beneficial in

5We normalized 113 well-known emoticons in 13 classes.
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Context size Precision Recall F1 Fpnn
1

l pos neg neu pos neg neu pos neg neu
BoWK

multi-class - .713 .496 .680 .649 .401 .770 .679 .444 .723 .615 ( - )

conversation
3 .761 .493 .695 .651 .465 .789 .702 .478 .739 .640 (+4.07%)
6 .728 .500 .718 .677 .479 .768 .701 .489 .742 .644 (+4.72%)
∞ .723 .511 .722 .695 .472 .762 .709 .491 .741 .647 (+5.20%)

hashtag

3 .766 .533 .675 .633 .401 .821 .693 .458 .741 .631 (+2.60%)
6 .727 .575 .711 .682 .514 .770 .704 .543 .740 .662 (+7.64%)
16 .717 .561 .730 .693 .549 .755 .704 .555 .743 .667 (+8.46%)
31 .717 .533 .738 .705 .570 .732 .711 .551 .735 .666 (+8.29%)

BoWK+LSK
multi-class - .754 .595 .704 .674 .486 .804 .712 .535 .751 .666 ( - )

conversation
3 .759 .595 .712 .682 .486 .811 .718 .535 .758 .670 (+0.60%)
6 .760 .536 .737 .713 .521 .781 .736 .529 .758 .674 (+1.20%)
∞ .774 .554 .717 .682 .542 .791 .725 .548 .752 .675 (+1.35%)

hashtag

3 .731 .541 .737 .729 .556 .732 .730 .549 .734 .671 (+0.75%)
6 .770 .580 .736 .700 .585 .789 .733 .582 .762 .693 (+4.05%)
16 .742 .519 .732 .693 .570 .751 .717 .544 .742 .667 (+0.15%)
31 .751 .537 .729 .685 .556 .774 .716 .547 .751 .671 (+0.75%)

BoWK+LSK+USPK
multi-class - .778 .612 .716 .680 .500 .830 .726 .550 .768 .681 ( - )

conversation
3 .771 .563 .689 .625 .507 .817 .690 .533 .748 .657 (-3.67%)
6 .753 .654 .707 .693 .493 .806 .721 .562 .753 .679 (-0.29%)
∞ .767 .566 .713 .690 .514 .791 .727 .539 .750 .672 (-1.32%)

hashtag

3 .753 .556 .735 .693 .599 .766 .721 .576 .750 .683 (+0.29%)
6 .747 .594 .735 .711 .556 .779 .728 .575 .756 .686 (+0.73%)
16 .742 .519 .742 .700 .592 .745 .721 .553 .743 .672 (-1.32%)
31 .738 .530 .739 .693 .556 .766 .715 .543 .752 .670 (-1.62%)

Table 2: Evaluation results on whole dataset.

their relative improvements with respect to the simple BoW Kernel accuracy. Second, almost all context-
driven models (i.e. SVMhmm operating on different context sizes) improve wrt their SVMmulticlass coun-
terpart. Every polarity category benefits from the introduction of contexts, although this is particularly
true for the negative (neg) case, where a 15.5% of the entire dataset examples are available: it seems
clear that contexts allow to compensate against poor training conditions.

4.2 Experiment 2: Measuring the full impact of context-based models over rich contexts

Given the above outcomes, a second set of experiments has been run against the subset of the test data
restricted to tweets for which rich contexts are available, as introduced in Table 1. In Figure 1, the per-
formances of different learning paradigms and Kernels trained and tested over these corpora are shown.
On the Left of the figure, the performance over the conversation-filtered corpus (Table 1) are reported:
these tweets are characterized by rich conversational contexts of different increasing sizes on the X-axis.
On the Right of Figure 1, the corresponding performances obtained over the hashtag-filtered corpus
are reported. As the number of available examples in both test corpora is much smaller, the baselines
corresponding to the SVMmulticlass approach are lower.

On the contrary, such poorer training evidence does not seem to afflict the contextual models in both
corpora, as the markovian modeling seems to bring a straight benefit. In particular, increasing amount of
contextual information is usually beneficial to accuracy scores. In general, the SVMhmm accuracy plots
seem to increase up to a given context size, that is around 6 for conversational contexts vs. 16 previous
tweets for topical contexts. It seems that a wider context (i.e. a window of 8 or 10 tweets) is not so
beneficial, as the generalization emphasized by LSK and USPK tends to diverge. Different genres of
discussions seem to provide different useful contexts for sentiment detection. The overall benefit reach-
able by SVMhmm relatively to the SVMmulticlass baseline is striking as only rich contexts are used for
training and testing. The BoW Kernel over the conversation corpus has an overall relative improvement
of 18.26% in F pnn

1 , where the richer BoWK+LSK Kernel improves of about 5.94%. Boosts in F pnn
1

over topical contexts are more significant: 23.73% for the BoW Kernel vs. 17.93% for BoWK+LSK.
This latter Kernel is optimal, suggesting that user profiling requires possibly a richer description that is
not entirely captured by the vectors of the user sentiment profile. In fact USPK, when combined with
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Figure 1: The F pnn
1 measure of the different classifiers vs. different context sizes. On the Left: perfor-

mances when conversational contexts are employed. On the Right: topical contexts are adopted.

BOWK+LSK into the markovian approach, seems to not provide any useful contribution. A clash be-
tween the global information (as modeled by the USPK) and the local information (embedded in the
recent tweets about a topic) is here observed: when these enter in an opposition, the contrast penalizes
the accuracy of the linear combination of Kernels. In general, the improvements implied by contextual
information are related to the treatment of particularly ambiguous tweets. In a conversation, such as

MrGreen : Cannot wait to meet @therealjuicyj and @RealWizKhalifa with @Hill Gonzz
November 29th #trippyniqqas (positive)

ColMustard : @MrGreen where they gone be?? (neutral)

MrGreen : @ColMustard New Orleans!!! (positive)

ColMustard : @MrGreen house of blues? (neutral)

MrGreen : @ColMustard no it’s at the UNO lakefront arena (neutral)

ColMustard : @MrGreen I’m going Tuesday to the house of blues to see ASAP Rocky (neutral)

the switch to a neutral mode characterizing the target tweet is a consequence of the entire sequence and
captured as a pattern. The contribution of the topical contexts is finally evident in the following example:

... ... ... ... ... ...
ProfPlum : Can’t wait to get out there with my boys Go Team! #goeagles (positive)

MrsPeacock : GO my awesome team @WestCoastEagles!!!!! #goeagles #weflyhigh :D (positive)

MissScarlet : Let’s go eagles :) #goeagles (positive)

SergGray : keen for the eagles game today. #goeagles (positive)

5 Conclusions
In this work the role of contextual information in supervised Sentiment Analysis over Twitter is investi-
gated. While the task is eminently linguistic, as resources and phenomena lie in the textual domain, other
semantic dimensions are worth to be explored. In this work, three types of context for a target tweet have
been studied. Structured Learning through a markovian approach has been adopted to inject contextual
evidence (e.g. the history of preceding posts) in the classification of the most recent, i.e. a target, tweet.
The improvement of accuracy in the investigated task are striking as for the large applicability of the
approach that does not require additional manually coded resources. The different employed contexts
show specific but systematic benefits. On the one side, this proofs the correctness of the initial intuitions.
Moreover, the observed relative improvements around 20% over tweets characterized by rich topical or
conversational contexts (see Fig. 1) suggest that larger training datasets can even provide better results.
In these first experiments, user modeling has only been partially explored, whereas the USPK model
does not seem very effective. In fact, USPK seems to express a more static notion of context (i.e. the
attitude of the user as observed across a longer period than individual conversations) and two different
notions (i.e. information embedded into recent tweets) risk to be incompatible. However, the learning of
the optimal Kernel combination as well as a proper history size for the USPK are still worth of deeper
investigation. Finally, user interaction dynamics are particularly complex in social networks and deserve
better representations about reputation, authority and influence in future explorations.
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