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Abstract

Completely data-driven grammar training is prone to over-fitting. Human-defined word class
knowledge is useful to address this issue. However, the manual word class taxonomy may be
unreliable and irrational for statistical natural language processing, aside from its insufficient
linguistic phenomena coverage and domain adaptivity. In this paper, a formalized representation
of function word subcategorization is developed for parsing in an automatic manner. The function
word classification representing intrinsic features of syntactic usages is used to supervise the
grammar induction, and the structure of the taxonomy is learned simultaneously. The grammar
learning process is no longer a unilaterally supervised training by hierarchical knowledge, but
an interactive process between the knowledge structure learning and the grammar training. The
established taxonomy implies the stochastic significance of the diversified syntactic features.
The experiments on both Penn Chinese Treebank and Tsinghua Treebank show that the proposed
method improves parsing performance by 1.6% and 7.6% respectively over the baseline.

1 Introduction

Probabilistic context-free grammar (PCFG) is widely used in the fields of speech recognition, machine
translation, information retrieval, etc. It takes the empirical rules and probabilities from a Treebank.
However, due to the context-free assumption, PCFG does not always perform well (Klein and Man-
ning, 2003). For instance, it assumes adverbs, including temporal adverbs, degree adverbs and negation
adverbs, to share the same distribution, whereas the distinction would provide useful indication for dis-
ambiguating the syntactic structure of the context.

It arose that the manual word classification in linguistic research was used to enrich PCFG and im-
prove the performance. However, from the point of view of statistical natural language processing, there
are some drawbacks for manual classification. Firstly, Linguistic phenomena covered by the manual
refinement may be limited by the linguistic observations of human. Secondly, the evidence of manual
refinement is often based on a particular corpus or specific sources of knowledge acquisition. As a result,
its adaptivity to different domains or genres may be insufficient. As for function words, due to the ambi-
guity and complexity in syntactic grammar, it is more difficult to develop formalized representation than
for content words. There are diversified standards for grammar refinement. Consequently, the word clas-
sification or category refinement can be conducted in distinct manners, while each of them is reasonable
in some sense. A delicate hierarchical classification inevitably involves in multiple dividing standards.
However, the word sets under distinct dividing standards may be overlapping. The problems come up
that how to choose the set of the multiple standards to cooperate to build the taxonomy, and how to de-
cide the priority of each standard. Regarding that the manual method is hard to overcome critical issues,
manual taxonomy for function words may not be reliable for statistical natural language processing.

This article attempts to address these issues in a data-driven manner. we first manually construct a
cursory and flat classification of function words. A hierarchical split-merge approach is employed to
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introduce our classification, and the PCFG training procedure is supervised to alleviate the over-fitting
issue. The priorities of the subcategorization standards are determined by the measurement of effec-
tiveness for parsing in a greedy manner in the hierarchical classification. And the hierarchical structure
of the classification is learned by data-driven approach in the course of grammar induction, so as to fit
the practical usages in the Treebank. Accordingly, the grammar learning process is no longer a unilat-
erally supervised training by hierarchical knowledge, but an interactive process between the knowledge
representation induction and the grammar training. That is, the grammar induction is supervised by the
knowledge and the structure of the taxonomy is learned simultaneously. These two processes are iterated
for several rounds and the hierarchical structure of the function word taxonomy is constructed. In each
round, the induced grammar could benefit from the optimized taxonomy during the learning process. The
category split in the early rounds take more priorities than in the late ones. Thus, the learned taxonomy
implies the stochastic significance of the series of the syntactic features.

Experiments on Penn Chinese Treebank Fifth Edition (CTB5.0) (Xue et al., 2002) and Tsinghua Chi-
nese Treebank (TCT) (Zhou, 2004) are performed. The results show that the induced grammars with
refined conjunction categories gain parsing performance improvement by 1.6% on CTB and by 7.6% on
TCT. During the training process, a taxonomy of function words is learned, which reflects their practical
usages in the corpus.

The rest of this paper is organized as follows. We first review related work on category refinement
for parsing. Then we describe our manually defined categories of function words in Section 3. The
hierarchical state-split approach for introducing the the categories are presented in Section 4, and our
taxonomy learning method is described in Section 5. In Section 7, experimental comparison is conducted
among various methods on granularity choosing. And conclusions of this research are drawn in last
section.

2 Related Work

A variety of techniques have been proposed to enrich PCFG in either manual (Klein and Manning, 2003;
Zhang and Clark, 2011) or automatic (Petrov, 2009; Cohen et al., 2012) manner.

2.1 Automatic Refinement of Function Words for Parsing

One way of grammar refinement is data-driven state-split methods (Matsuzaki et al., 2005; Prescher,
2005). The part-of-speech and syntactic tags in the grammar are automatically split to encode the kinds
of linguistic distinctions exhibited in the Treebank. The hierarchical state-split approach (Petrov et al.,
20006) started from a bare-bones Treebank derived grammar, and iteratively refined it in a split-merge-
smooth cycle with the EM-based parameter re-estimation. It achieved state of the art accuracies for many
languages including English, Chinese and German.

One tag is usually heterogeneous, in the sense that its word set can be of multiple different types.
Nevertheless, the automatic process tries to split the tags through a greedy data-driven manner, where
multiple distinctive information is used simultaneously when dividing tags. Thus the refined tags are
not intuitively interpretable. Meanwhile, considering that the EM algorithm usually gets stuck at a sub-
optimal configuration, this data-driven method suffers from the risk of over-fitting. As shown in their
experiments, there is little to be gained from splitting the closed part-of-speech classes (e.g. DT, CC, IN)
or the nonterminal ADJP.

To alleviate the risk of over-fitting, we employ the human-defined knowledge to constrain the splitting
process in this research. Based on the state-split model, our approach aims to reach a compromise
between manual and automatic refinement approaches.

2.2 Manual Refinement of Function Words for Parsing

The other way to refine the annotation for training a parser is incorporating knowledge base. Semantic
knowledge of content words has been proved to be effective in alleviate the data sparsity. Some re-
searches utilized semantic knowledge in WordNet (Miller, 1995; Fellbaum, 1999) for English parsing
(Fujita et al., 2010; Agirre et al., 2008), and Xiong et al. (2005; Lin et al. (2009) improved Chinese pars-

1887



ing by incorporating semantic knowledge in HowNet (Dong and Dong, 2003; Dong and Dong, 2006).
While WordNet and Hownet contain word classification for content words, Li et al. (2014b; Li et al.
(2014a) have focused on exploiting manual classification for conjunction in parsing.

Klein and Manning (2003) examined the annotation in Penn English Treebank, manually split the ma-
jority of the part-of-speech (POS) tags. For the function words, they split the tag “IN” into subordinating
conjunctions, complementizers and prepositions, and appended BE to all forms of “be” and HAVE to
all forms of “have”. Conjunction tags are also marked to indicate whether they were “But”, “but” or
“&”. The experimental results showed that the split tags of function words surprisingly make much con-
tribution to the overall improved parsing accuracy. Levy and Manning (2003) transferred this work to
Penn Chinese Treebank. They found that, in some cases, certain adverbs such as “however (#&1f)” and
“especially (JLH:#&)” preferred IP modification and could help disambiguate IP coordination from VP
coordination. To capture this point, they marked those adverbs possessing an IP grandparent. However,
these manual refinement methods seems to split the tags in a rough way, which might account for a mod-
est accuracy achieved. Some existing work used heuristic rules to simply split the tags of function words
(Klein and Manning, 2003; Levy and Manning, 2003). They demonstrated that many function words
stood out to be helpful in predicting the syntactic structure and syntactic label.

3 Manual Tabular Subcategories of Function Words

When subcategorizing function words, in this section, we manually list various grammatical distinctions
that are commonly made in traditional and generative grammar in a fairly flat taxonomy. The grammar
training procedure learns by using our manual taxonomy as a starting point, and constructs a reasonable
and subtle hierarchical strucutre based on the distribution of function words usages in the corpus.

Based on some existing knowledge base (Xia, 2000; Xue et al., 2000; Zhu et al., 1995; Wang and
Yu, 2003) and previous research work (Li et al., 2014b), we investigate and summarize the usage of
function words, and come up with a hierarchical subcategories. The taxonomy of the function words is
represented in a tree structure, where each subcategory of a function word corresponds to a node in the
taxonomy, the nonterminals are subcategories and the terminals are words.

For the convenience and consistence, our manual classification just gives a rough and broad taxonomy.
It is labor-intensive and error-prone of classifying the function words manually to produce a consistent
output. Fine-grained hierarchical structure is not obligatory, but would be harmful if inappropriately clas-
sified, as it may mislead the learning process. To avoid this kind of risk, the elaboration is saved, rather
than introducing unnecessary bias. The learning process would perform the hierarchical classification
according to the distribution in the corpus.

For instance, the distinction within conjunctions is intricate. Conjunctions are the words that are
called “connective words” in traditional Chinese grammar books. In Penn Chinese Treebank, they are
tagged as coordinating conjunctions (CC), subordinating conjunctions (CS), or adverbs (AD) according
to their syntactic distribution. CC conjoins two equivalent constituents (noun phrases, clauses, etc.),
each of which has approximately the same function as the whole construction. CS precedes a subordi-
nating clause, whereas conjunctive adverbs often appear in the main clause and pair with a subordinating
conjunction (e.g., if (UWH)/CS ... then (3)/AD). However, in Chinese, it is often hard to tell the sub-
ordinating clause from the main clause in the compound statement. As a result, in the prospective of
linguistic computing, the confusion is that, CS and conjunctive adverbs both precedes the subordinating
clauses or main clauses, while CC connects two phrases or precedes the main clause. In our scheme,
we simply conflates the CC, CS and conjunctive adverbs together. This result in a general “conjunction”
category, within which we just enumerate all the possible uses of the conjunctions. As a result, the struc-
ture of our human-defined taxonomy is fairly flat, as briefly shown in Figure 1 and Figure 2. Our scheme
releases our hands from the confusing situations, by leaving them to our data-driven method described in
the following section. Figure 1 and Figure 2 abbreviate the manual classification and their corresponding
examples.

Many prepositions in Chinese are evolved from verbs, thus the linguistic characteristics of preposi-
tions are somewhat similar to verbs. Therefore, this paper divides the preposition word set according to
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Subordinating Conjunction

( Coordination: both Ef
Progression: not only MY
Transition: although H5A
Preference: rather than 5
Cause: because 1T

Assumption: if W15
Universalization: whatever N8
Unnecessary Condition: since REZX

Condition ¢ Insufficient Condition: although B[ {

Sufficient Condition: as long as - %
Necessary Condition: only if 2
Equality: unless F&3F

Figure 1: Abbreviated Hierarchical subcategories of subordinating conjunctions with examples.

Adverb

Conjunctive Adverb

Preference: would rather A~
In case: lest DLfR
Otherwise: or else 75
However: but %!
Therefore: so FTLA
Result ¢ Then, As a result: as soon i
So that: so that PAf#
Furthermore: but also 1fij H.
In addition: moreover 3 #h
Later: subsequently [ J5
As well: likewise

Transition

Progression

Frequency Adverbs: for many times % X
Adjunct Adverb ¢ Degree Adverbs: very %A

Figure 2: Abbreviated Hierarchical subcategories of adverbs with examples.

the types of their associated arguments: “benefactive”, such as “ JN(for)” and “#5(to)”, marks the ben-
eficiary of an action; “locative”, such as “fE(in)”, marks adverbials that indicate the place of the event;
“direction”, such as “ [i](towards)” and * H(from)”, marks adverbials that answer the questions “from
where?” and “to where?”; “temporal”, such as “f£(on)”, marks temporal or aspectual adverbials that
answer the question “when?”, and so on.

4 Refining Grammar with Hierarchical Category Refinement

In this section, we choose the appropriate granularity in a data-driven manner based on the split-merge
learning method in Section 2.1. Our approach first initializes the categories with the most general sub-
categories in the taxonomy and then splits the categories through the hypernym-hyponym relation in the
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taxonomy. Data-driven method is used to merge the overly refined subcategories.

The top category in the taxonomy is used as the starting annotations of POS tags. As we cannot
predict which layer should be the most adequate one, we try to avoid applying any priori restriction on
the refinement granularity, and start with the most general tags.

With the hierarchical knowledge, it turns out to be a critical issue that which granularity should be
used to refine the tags for parsing. We intend to take neither too coarse subcategories nor too fine ones in
the hierarchical knowledge for parsing. Instead, it would be our advantage to split the tags with the very
granularity where needed, rather than splitting them all to one specific granularity in the taxonomy.

For example, “Conjunctive Adverbs” are divided into three subcategories in our taxonomy as shown
in Figure 2. The evidence for the refinement may occur in very rare case, and certainly some of the
context of the different subcategories are quite the same. Splitting symbols with the same context is
not only unnecessary, but potentially harmful, since it unreasonably fragments observations of other
symbols’ behavior.

In this paper, the hierarchical subcategory knowledge is used to refine grammars by supervising the
automatic hierarchical state-split approach. In the split stage in each cycle, the function word subcategory
is split along the hierarchy of the knowledge, instead of being randomly split and classified automatically.
In this way, we try to alleviate the over-fitting of the greedy data-driven approach, and a new set of
knowledge-related tags are generated. In the following step, we retreat some of the split subcategories to
their more general layer according to its likelihood loss of merging them. In this way, we try to avoid the
excessive refinement in our hierarchical knowledge without sufficient data support.

There are two issues that we have to consider in this process: a) how to deal with the polysemous
words, and b) how to deal with the multi-branch situation other than binary branch in the taxonomy.
Regarding to the polysemous words, they occur mostly in two situation for function words. Some are the
polysemous words which can be taken as conjunctions or auxiliary words, while the others can be taken
as preposition or adverbs. Fortunately there is no ambiguity for a word given its POS tag, so we could
neglect this situation in the split process when training. We demonstrated the solution for the multiple
branches in the Section 5.

5 Learning the Taxonomy of Function Words

There are multiple subcategorization criterions for building function word taxonomy, and it is diffi-
culty for human to rank the ordering in the classification process. This section represents the method
of learning the taxonomy of the function words in data-driven manner. Based on the manual tabular
classification, the similar word classes are conflated to express the data distribution.

The multiple branches in the taxonomy are intractable for the original split-merge method, because it
splits every category into two and merges half of them for efficiency. If we follow this scheme in our
training process, it would be difficult to deal with the multi-branch situation in the taxonomy, because
how to choose the first two to split among the multiple branches is another challenge. It is an equally
difficult problem for us to binarize the taxonomy by hand comparing to directly choosing the granularity.

It would be our advantage to binarize the taxonomy by a data-driven method. For automatic binariza-
tion, a straightforward approach is to measure the utility of traversing all the plausible ways of cutting all
the branches into two sets individually and use the best one. Then we can deal with the divided two sets
in the same manner recursively. However, not only is this impractical, requiring an entire training phase
for each possible binarization scheme which is exponentially expensive, but it assumes the contributions
of multiple binarizations in different branches are independent. In fact, extra sub-symbols may need to
be added to several nonterminals before they can cooperate to pass information along the parse tree.

Therefore, we go in the opposite direction, and propose an extended version of split-merge learning
to handle the multiple branches in the taxonomy. That is, we split each state into all the subcategories in
the lower layer in the taxonomy even if it has multiple branches, train, and then measure for every two
sibling subcategories in the same layer the loss in likelihood incurred when merging them. If this loss is
small, the new division of these two subcategories does not carry enough useful information and can be
merged back. Contrary to the gain in likelihood for splitting, the loss in likelihood for merging can be
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efficiently approximated (Petrov et al., 2006).

More specifically, we assume transitivity in merging multiple subcategories in one layer. Figure 3
gives an illustration. After the split stage, the category A has been split into subcategories A-1, A-2, ...
to A-7. Then we compute the loss in likelihood of the training data by merging back each pair of two
subcategories through A-1 to A-7. If the loss is lower than a certain threshold ! set for each round of
merge, this pair of newly split subcategories will be merged. We only show the sibling ones for brevity in
this example. Assume the losses of merging these pairs (A-1, A-2), (A-2, A-3), (A-3, A-4) and (A-4, A-
5) are below the threshold €. Thus, A-1, A-2, A-3, A-4 and A-5 are merged to X-1 due to the transitivity
of the connected points, where X-1 is the automatically generated subcategory which contains the five
conflated subcategories as its descendants. At the meantime, A-6 and A-7 still remain. This scheme is an
approximation because it merges subcategories that should be merged with the same subcategory. But it
will leave the split of this instances to the next round when more evidence on interaction with other more
refined subcategories is given.

A A
A-1] [A-2] [A-3] [A-4] [A5] [A6] [A-7 X1 [A-6] [A7
<D <8 O
(a) Refined subcategories before the merge stage (b) Refined subcategories after the merge stage

Figure 3: Illustration of merging the subcategories for multiple branches in the taxonomy. Where ¢ is
a certain threshold below which this pair of subcategories will be merged, and X is the automatically
generated subcategory which contains the conflated subcategories as its descendants.

After merging in each round, the hierarchical knowledge is reshaped to fit the practical usage in the
Treebank. The split-merge cycles allow us to progressively increase the complexity of the hierarchical
knowledge, and the more useful distinctions are represented as the higher level in the taxonomy, which
gives priority to the most useful distinctions in return by supervising the grammar induction. Figure 4
demonstrates the transformation of the hierarchical structure from the tabular classification. Along this
road, the training scheme is not a unilateral training, but an interactive process between the knowledge
representation learning and the grammar training. Our learning process exerts a mutual effect to both the
induced grammar and the optimized structure of the hierarchical knowledge. In this way, the set of di-
viding standards are chosen iteratively according to their syntactic features. The more effective divisions
are conducted in the early stages. In the following stages, the divisions which interact with previous
divisions to give the most effective disambiguating information are adopted. The final taxonomy are
built based on manual classification in data-driven approach, and the hierarchical structure are optimized
and rational in the perspective of actual data distribution. Figure 4 illustrates a concrete instance of the
procedure of learning the taxonomy. On one hand, this procedure provides a more rational hierarchical
subcategorization structure according to data distribution. On the other hand, the order of the division
criterions represents the priorities the grammar induction takes for each criterion. The structure in the
higher levels of the taxonomy are determined by the dominant syntactic characteristics. And the division
in the later iterations are on the basis of minor distinctive characteristics.

6 Experiments and Results

6.1 Data Set

We present experimental results on both CTB5.0 (All traces and functional tags were stripped.) and TCT.

We ran experiments on CTB5.0 using the standard data allocation: files from CHTB_001.fid to
CHTB_270.fid, and files from CHTB_400.fid to CHTB_1151.fid were used as training set. The develop-
ment set includes files from CHTB_301.fid to CHTB_325.fid, and the test set includes files CHTB_271.fid

'In practice, instead of setting a predefined threshold for merging, we merge a specific number of the newly split subcate-
gories.
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A

A-1 A-2 A3 A4 A-5 A-6 A7
(a) First round of category split
X-1

/T\ T T
X-1 A-6 A-7 A-1 A-2 A-3 A-4 A-5

(b) First round of category merge

A

/\

X-1 A-6 A7

A-1 A2 A3 A4 AS
(c) Second round of category split

AN
K T XAz /Xf\
X2 X3 A-1 A2 A3 A4 A5
(d) Second round of category merge
A

A6 AT

/X\

X-2 X-3

VAN

A-1 A-2 A3 A-4 A-5
(e) Third round of category split

A
P
X-1 A-6 A-7
/\
X-2 X-3 X-4
VANVAN /\
A-1 A-2 A-3 X-4 A-4 A-5

(f) Third round of category merge

Figure 4: Iteration of grammar induction and taxonomy structure learning

to CHTB_300.fid. Experiments on TCT use the data set as in CIPS-SIGHAN-ParsEval-2012 (Zhou,
2012). We have parsed on the segmented text in the Treebank, namely, no use of gold POS-tags, use
of gold segmentations, and full-length sentences. This is the same as for other 5 parsers in Table 1 for
comparison. All the experiments were carried out after six cycles of split-merge.
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6.2 Final Results

The final results are shown in Table 1. Our final parsing performance is higher than both the manual
annotation method (Levy and Manning, 2003) and the data-driven method (Petrov, 2009).

Parser Precision | Recall Fq

Levy(2003) 78.40 79.20 | 78.80
Petrov(2009) 84.82 81.93 | 83.33
Lin(2009) 86.00 83.10 | 84.50
Qian(2012) 84.57 83.68 | 84.13
Zhang(2013) 84.42 84.43 | 84.43
This paper 86.55 83.41 | 84.95

Table 1: Our final parsing performance compared with the best previous work on CTBS5.0.

On test set TCT, the method achieves the best precision, recall and F-measure in the CIPS-SIGHAN-
ParsEval-2012 competition, and table 2 compares our results with the system of Beijing Information
Science and Technology University (BISTU) which got the second place in the competition.

Parser Precision | Recall Fq

BISTU 70.10 68.08 | 69.08
This paper | 76.81 76.66 | 76.74

Table 2: Our final parsing performance compared with the best previous works on TCT.

Given the manual labor required for generating the taxonomy (and in languages where there is a
taxonomy, determining whether it is suitable), this first study focuses on a language where there is quite
a bit of under- and over-specification in the Treebanks’ tag sets. So this work is only implemented on
Chinese. We regard it as future work to transfer this approach to other languages.

6.3 Analysis

The outline of constructing the taxonomy of function words are as follows. Firstly, the function words are
manually subcategorized in a rough and cursory way. When dealing with subcategories hard to resolve
their relation of subordination, we simply treat them as siblings in the tree in a rather flat stricture, and
leave the elaboration of exquisite clustering to the algorithms. The data-driven approach in Section 4 au-
tomatically choose the appropriate granularity of refinement for our grammar. Moreover, the split-merge
learning for multiple branches in the hierarchical subcategories in Section 5 exploits the relationship be-
tween the sibling nodes in the same layer, making use of the Treebank data to adjust and optimize the
hierarchy.

During the split-merge process, the hierarchical subcategories are learned to fit the data, which is
a transformation of our manually defined hierarchy. The transformed hierarchy is just the route map
of subcategories employed in our model. As abbreviated in Figure 5 and Figure 6, many distinctions
between word sets of the subcategories have been exploited by our approach, and the learned taxonomy
is interpretable. For instance, It shows that the learned structure of the taxonomy is reasonable.

6.4 Comparison with Previous Work

Although the taxonomy of function words are learned in the grammar training process, the grammar is
trained on the Treebank in supervised manner. Thus, this work is not directly relevant with unsupervised
grammar induction literature (Headden III et al., 2009; Berant et al., 2007; Marecek and Zabokrtska,
2014).
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Coordination: both Ef
Progression: not only £ {Y

X

Transition: although %A
X Preference: rather than 5

Cause: because HT

( Universalization: i
Subordinating Conjunction Equality: &3
Assumption: 15

Condition X Sufficient Condition: H %

X Necessary Condition: XA

Unnecessary Condition: EE#A
Insufficient Condition: R

Figure 5: Abbreviated automatically learned hierarchical subcategories of subordinating conjunctions
with examples. Where “X” represents the automatically generated subcategory.

Preference: would rather 4~
In case: lest DA%
Otherwise: or else 75
However: but #f!
Therefore: so it LA
Result So that: so that PA{E
Then, As a result: as soon At

X Furthermore: but also 11 H.

In addition: moreover 3 4}

Later: subsequently [ifi J5
As well: likewise

Transition { X

Conjunctive Adverb

Progression

Figure 6: Abbreviated automatically learned hierarchical subcategories of adverbs with examples.

Lin et al. (2009) and Li et al. (2014b) presented ideas of using either hierarchical semantic knowledge
from HowNet for content words or grammar knowledge for subordinating conjunctions. They introduced
hierarchical subcategory knowledge in a different stage. They split the original Treebank categories
in split-merge process according to the data, and then find a method to map the subcategories to the
node in the taxonomy, and constrain their further splitting. Comparing to their work, our approach is
more delicate, which is splitting the categories according to the knowledge, and learning the knowledge
structure according to data during the training course. Lin et al. (2009) incorporated semantic knowledge
of content words into the data-driven method. It would be promising if this work stacks with the content
word knowledge. However, the work with content word knowledge have to handle the polysemous words
in the semantic taxonomy, so they split the categories according to the data, and then find a way to map
the subcategories to the node in the taxonomy, and constrain their further splitting. It is our goal to make
these two methods compatible with each other.

Incorporating word formation knowledge achieved higher parsing accuracy according to Zhang and
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Clark (2011). However, they ran their experiment on gold POS-tags and a different data set split, which
is different form the setup of work in Table 1 including this work. They also presented their result on
automatically assigned POS-tags and the same data set split as in the work in Table 1 to facilitate the
performance comparison. It gave F; score of 81.45% for sentences with less than 40 words and 78.3%
for all sentences, significantly lower than Petrov and Klein (2007).

Zhang et al. (2013) exhaustively exploited character-level syntactic structures for words, and achieved
84.43% on F; measure. They placed more emphasis on the word-formation of content words, which
our model highlights the value of the function words. The complementary intuitions make it possible to
integrate these approaches together in the future work.

7 Conclusion

This paper presents an approach for inducing finer syntactic categories while learning the taxonomy for
function words. It used linguistic insight to guide the state-split process, and the hierarchical structure
representing syntactic features of function word usages was established during the grammar training
process. Empirical evidence has been provided that automatically subcategorizing function words con-
tributes to high parsing performance. The induced grammar supervised by the taxonomy outperformed
pervious approaches, which benefited from both the knowledge and the data-driven method. The pro-
posed approach for learning the structure of the taxonomy could be generalized to construct semantic
knowledge base.
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