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Abstract

A common site of language use is interactive dialogue between two people situated together in
shared time and space. In this paper, we present a statistical model for understanding natural
human language that works incrementally (i.e., does not wait until the end of an utterance to
begin processing), and is grounded by linking semantic entities with objects in a shared space.
We describe our model, show how a semantic meaning representation is grounded with properties
of real-world objects, and further show that it can ground with embodied, interactive cues such
as pointing gestures or eye gaze.

1 Introduction

Dialogue between co-located participants is possibly the most common form of language use (Clark,
1996). It is highly interactive (time is shared between two participants), interlocutors can refer to ob-
jects in their visual field (space is also shared), and visual cues such as gaze or pointing gestures often
play a role (shared time and space). Most computational dialogue research focuses only one of these
constraints.

In this paper, we present a model that processes incrementally (i.e., can potentially work interactively),
can make use of the visual world by symbolically representing objects in a scene, and incorporate gaze
and gestures. The model can learn from conversational data and can potentially be used in an application
for a situated dialogue system, such as an autonomous robot.

In the following section we will provide background and present related work. That will be followed
by a description of the task and the model. In Section 4 we will show how our model performs in two
experiments, the first uses speech and a visual scene, the second incorporates visual cues.

2 Background and Related Work

2.1 Background: Incremental Dialogue Processing
Dialogue systems that process incrementally produce behavior that is perceived by human users to be
more natural than systems that use a turn-based approach (Aist et al., 2006; Skantze and Schlangen, 2009;
Skantze and Hjalmarsson, 2010). Incremental dialogue has seen improvements in speech recognition
(Baumann et al., 2009), speech synthesis (Buschmeier et al., 2012), and dialogue management (Buß et
al., 2010; Selfridge et al., 2012). Futhermore, architectures for incremental dialogue systems have been
proposed (Schlangen and Skantze, 2009; Schlangen and Skantze, 2011) and incremental toolkits are also
available (Baumann and Schlangen, 2012).

In this paper, we approach natural language understanding (NLU), which aims to map an utterance to
an intention, as a component in the incremental model of dialogue processing as described in (Schlangen
and Skantze, 2011; Schlangen and Skantze, 2009), where incremental systems consist of a network of
processing modules. Each module has a left buffer and a right buffer, where a typical module takes input
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Figure 1: Example of an IU network composed of words, parts of speech (POS), a semtic representation
(Robust Minimal Recursion Semantics; RMRS), and NLU modules. Solid arrows represent GRIN links
and the dotted lines represent SLLs. The utterance take the red cross is represented as word IUs, which
are GRIN by the part of speech tags, phrase-structure parse, semantic representation, and the intention.
Note that red and cross are GRIN by the same syntactic IU, which in turn is GRIN by two semantic IUs.
Succeeding levels of IUs are shifted slightly to the right, representing a processing delay. The X14 slot
in the bolded NLU frame refers to the cross-shaped object in the game board on the right.

from its left buffer, performs some kind of processing on that data, and places the processed result onto
its right buffer. The data are packaged as the payload of incremental units (IU) which are passed between
modules. The IUs themselves are also interconnected via so-called same level links (SLL) and grounded-
in links (GRIN), the former allowing the linking of IUs as a growing sequence, the latter allowing that
sequence to convey what IUs directly affect them. See Figure 1 for an example; each layer represents a
module in the IU-module network and each node is an IU in the IU network. The focus of this paper is
the top layer (module), but how it is produced depends on the layers below it.

2.2 Related Work

The work presented in this paper connects and extends recent work in grounded semantics (Roy, 2005;
Hsiao et al., 2008; Liu et al., 2012; Chai et al., 2014), which aims to connect language with the world,
but typically does not work incrementally; semantic parsing / statistical natural language understanding
via logical forms (Zettlemoyer and Collins, 2007; Zettlemoyer and Collins, 2009), dependency-based
compositional semantics (Liang et al., 2011), neural networks (Huang and Er, 2010), Markov Logic
Networks (Meurs et al., 2008; Meza-Ruiz et al., 2008), and Dynamic Bayesian Networks (Meurs et al.,
2009); see also overviews of NLU in (De Mori et al., 2008; Tur and De Mori, 2011), but typically neither
provide situated interpretations nor incremental specifications of the representations; incremental NLU

(DeVault et al., 2009; DeVault et al., 2011; Aist et al., 2007; Schlangen and Skantze, 2009), which
focuses on incrementality, but not on situational grounding; as well as integration of gaze into language
understanding (Prasov and Chai, 2010).

We move beyond this work in that we present a model that is incremental, uses a form of grounded se-
mantics, can easily incorporate multi-modal information sources, and which inference can be performed
quickly, satisfying the demands of real-time dialogue.

3 Task and Model

3.1 Task

The task for our model is as follows: to compute at any moment a distribution over possible intentions
which the speaker wanted to convey in the utterance, expressed as semantic frames, given the unfolding
utterance and information about the state of the world in which the utterance is happening. The slots of
these frames are to be filled with semantic constants, that is, they are uniquely resolved, if appropriate,
to objects in the shared environment. This is illustrated in Figure 1 where the words of the utterance give
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rise to the part-of-speech tags, the incrementally growing syntax, semantic representation, and, finally,
the intention. Note how x14 in the bolded NLU frame resolves to an object identifier for a real object in
the shared scene (red cross in the bottom-left of the game board shown on the right in the figure).

3.2 Model
Kennington et al., (2013) presented a simple, incremental model of NLU, which is an update model
(i.e., increments build on previous ones) and which can potentially work in real time and in situated
environments. The goal of the model is to recover I , the intention of the speaker behind the utterance,
word by word. We observe U , the current word (or in this paper, a semantic meaning representation,
see below) and an unobserved mediating variable R which represents visual or abstract properties of the
object of the intention. Formally, we are interested in P (I|U), the probability of a certain intention I
underlying utterance U . We assume a latent variable R (pRoperties of entities in the world), and build
a generative model (that is, model the joint P (I, R, U)). Going from P (I, R|U) and making certain
independence assumptions, we arrive at

P (I|U) =
P (I)
P (U)

∑
r∈R

P (U |R = r)P (R = r|I) (1)

That is, we assume that R is only conditional on I , and U is only conditional on R, and we can move
P (I) and P (U) out of the summation, as they do not depend on R. This is an update model in the usual
sense that the posterior (P (I|U)) at one step becomes the prior (P (I)) at the next. P (R|I) provides the
link between the intentions and the properties.

Another variant of the model which we will use in this paper is as follows: we rewrite P (U |R) using
Bayes’ rule, which cancels P (U) and introduces P (R) into the summation, but P (R) can be dropped
since (in this work) it can be approximated with a uniform distribution, yielding:

P (I|U) = P (I)
∑
r∈R

P (R = r|U)P (R = r|I) (2)

There are, however, three important differences between the realisation of our model and the one
presented in Kennington et al., (2013), all of which are a direct result of replacing, as we do here, the n-
gram model represented by P (U |R) with output from a parser that produces a Robust Minimal Recursion
Semantics (RMRS) semantic representation (Copestake, 2007). Such a representation provides our model
with a structured way to abstract over the surface forms. We will first give a brief explanation of the
RMRS framework, then describe each of the three differences between our model and that of Kennington
et al., (2013), namely (1) how the language grounds with the world, (2) how the frame is built, and (3)
when to consider evidence for the slots in the frame.

RMRS RMRS is a framework for representing semantics that factors a logical form into elementary
predicates (EP). For example in Table 1, the first row represents the first word of an utterance, take, and
the corresponding RMRS representation; the EPs take and addressee are produced. The EPs in this exam-
ple have anchor variables and in most cases, an EP has an argument entity. Relations between EPs can be
expressed via argument relations, e.g., for take in the table, there is an ARG1 relation, denoting addressee
as the first argument of the predicate take. Other relations include ARG2 and BV (relating determiners to
the words they modify). A full example of an utterance and corresponding RMRS representation can be
found in Table 1, where each row in the word column makes up the words of the example utterance.

In this paper we are interested in processing utterances incrementally. As argued in Peldzsus et al.,
(2012), RMRS is amenable to incremental processing by allowing for underspecification in how relations
are represented (RMRS can also underspecify scope, but we don’t consider that here). Table 1 has an
example of an underspecified relation: when the second word the is uttered, the RMRS segment predicts
that the entity represented by x14 will be the ARG2 relation of the EP for take, but the actual word that
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word RMRS segment
take a7 : addressee(x8), a1 : take(e2), ARG1(a1, x8)
the a13 : def(), ARG2(a1, x14), BV (a13, x14)
red a33 : red(e34), ARG1(a33, x14)

cross a19 : cross(x14)
next to a49 : next(e50), ARG1(a49, x14), ARG2(a49, x53)

the a52 : def(), BV (a52, x53)
blue a72 : blue(e73), ARG1(a72, x53)

piece a58 : piece(x53)

Table 1: Example RMRS representation for the utterance take the red cross next to the blue piece. Each
row represents an increment of the utterance.

produces the EP that has x14 as an argument has not yet been uttered. Each row in the table represents
what we would want an RMRS parser to produce for our model at each word increment.

A more detailed explanation of RMRS can be found in Copestake (2007). We will now discuss the
three key differences of our model with that of previous work.

(1) Grounding Semantics with the Visual World In Kennington et al., (2013), the utterance was
represented via n-grams, which was used to ground with the world. Here, we ground RMRS structures
with the world. For example, Figure 1 shows which words produced which RMRS increments; our model
learns the co-occurances between those increments and properties of objects (real properties such as
colors, shapes, and spatial placements, or abstract properties; e.g., take is a property of the action take).

(2) Building the Frame In this paper, intentions are represented as frames. However, unlike Kenning-
ton et al., (2013), we don’t assume beforehand that we know the slots of the frame. To determine the
slots, we turn again to RMRS and build a slot for each entity that is produced (more on this below). This
kind of frame, coupled with the RMRS representation, shows not just a meaning representation, but also
interpretation of the representation in the current model (the real situation / visual domain of discourse),
outputted incrementally making our model fully incremental in the sense of Heintze et al., (2010). The
final, bolded NLU frame in Figure 1 shows the addressee (in this case, the dialogue system) as the recip-
ient of the request, the request itself is a take request, where the object to be taken is obj5, as indexed
by the real world, and that object happens to be red (i.e., e12 represents the notion of redness).

(3) Driven by Sematics Another important difference is when to consider the semantic evidence and
when to ignore it, in terms of when to apply the model for interpretation of the slots. In Kennington et
al., (2013), each slot in the frame was processed at each increment in the entire utterance, regardless of
whether n-grams in that segment contributed to the interpretation of that slot. In our approach, again,
we turn to RMRS. At each word increment, RMRS produces a corresponding, underspecified semantic
meaning represenation which is added to at the next increment. Our model takes the new information
and only attempts to process the interpretation for those “active” entities. For example, by the time red is
uttered in Figure 1, the processing for entities x8, e2, and e12 is complete, but the processing for x14
is under way, and active as long as x14 is referenced as an entity in the RMRS increment.

With these important extensions, our model of NLU is highly driven by the semantic meaning repre-
sentation that is being built incrementally for the utterance. We will now show through two experiments
how our approach improves upon previous work.

4 Experiments

Similar to Kennington et al., (2013), we use the model represented formally in Equation 2, where
P (R|U) is realised using a maximum entropy classifier (ME) that predicts properties from RMRS evi-
dence.1 We use the German RMRS parser described in Peldszus et al (2012), Peldszus and Schlangen
(2012) which is a top-down PCFG parser that builds RMRS structure incrementally with the parse.

We train an individual model for each RMRS entity type (e.g., e and x), where the features are the
entity type, relations, and predicates of an RMRS increment and the class label are the visual properties.

1http://opennlp.apache.org/
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The RMRS representations are not checked for accuracy (i.e., they do not represent ground truth); we use
the top-predicted output of the RMRS parser explained in Peldszus et al (2012).

4.1 Pento Puzzle with Speech

Figure 2: Example Pen-
tomino Board

ACTION rotate
OBJECT obj4
RESULT clockwise


Figure 3: Pento gold frame ex-
ample


X8 addr
E2 rotate
X14 obj4
E21 clockwise


Figure 4: Pento frame example
from our model

Data and Task The Pentomino domain (Fernández et al., 2007) contains task-oriented conversational
data which has been used in several situated dialogue studies (Heintze et al., 2010; Peldszus et al., 2012;
Kennington and Schlangen, 2012; Kennington et al., 2013). This corpus was collected in a Wizard-of-Oz
study, where the user goal was to instruct the computer to pick up, delete, rotate or mirror puzzle tiles on
a rectangular board (as in Figure 2), and place them onto another board. For each utterance, the corpus
records the state of the game board before the utterance, the immediately preceding system action, and
the intended interpretation of the utterance (as understood by the Wizard) in the form of a semantic frame
specifying action-type and arguments, where those arguments are objects occurring in the description of
the state of the board. The language of the corpus is German. See Figure 2 for a sample source board,
and Figure 3 for an annotated frame.

The task that we want our model to perform is as follows: given information about the state of the
world (i.e., game board), previous system action, and the ongoing utterance, incrementally build the
frame by providing the interpretation of each RMRS entity, represented as a distribution over all possible
interpretations for that entity (i.e., domain of discourse).

Procedure To make our work comparable to previous work, results were obtained by averaging the
results of a 10-fold validation on 1489 Pento boards (i.e., utterances+context, as in (Kennington and
Schlangen, 2012)). We used a separate set of 168 boards for small-scale, held-out experiments. For
incremental processing, we used INPROTK.2 We calculate accuracies by comparing against a gold frame,
with assumptions. We check to see if the slot values (3 slots in total) exist in the frame our model
produces. If a gold slot value exists in any slot produced by our model, it is counted as correct (it is
difficult to tell which slot from our model’s frame maps to which slot in the gold frame, we leave this for
future work). A fully correct frame would contain all three values. For example, each of the values for the
gold slots in Figure 3 exist in the example frame our model would produce in Figure 4, marking each gold
slot as correct, and the entire frame as correct since all three were correct together. To directly compare
with previous work, we will use the gold slot names action, object, and result in the Results
section. We perform training and evaluation on hand-transcribed data and on automatically transcribed
data, using the incremental speech recogniser (Sphinx4) in InproTK. We report results on sentence-level
and incremental evaluations.

On the incremental level, we followed previously used metrics for evaluation:
first correct: how deep into the utterance do we make the first correct guess?
first final: how deep into the utterance do we make the correct guess, without subsequent changes?
edit overhead: what is the ratio of unnecessary edits / sentence length, where the only necessary edit is
the first prediction for an entity?

Results Figure 5 shows the results of our evaluation in graph and table form. As expected, our model
dramatically improved the result value, which generally is verbally represented towards the end of

2https://bitbucket.org/inpro/inprotk
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ME+RMRS ME+NGRAMS MLN P
frame 78.75 74.08 74.76

(63.0) (67.2) (61.2)
action 92.11 93.62 92.62
object 90.44 90.79 84.71 64.3
result 94.0 82.34 86.65

Figure 5: Comparison of accuracies in Pento using the model presented here ME+RMRS, (Kennington
et al., 2013) ME+NGRAMS, (Kennington and Schlangen, 2012) MLN, (Peldszus et al., 2012) P; paren-
theses denote results from automatically transcribed speech. Bolded values represent the highest values
for that row. Note that the column chart begins at 60%. The chart and table show the same information.

an utterance. This resulted in a dramatic increase in frame accuracy (a somewhat strict metric). Our
model fares better than previous work using speech (in parentheses in the figure), but is outperformed by
the n-gram approach. These results are encouraging, however we leave improvements on automatically
transcribed speech to future work.

Incremental Table 2 shows the incremental results of Kennington et al.,(2013), and Table 3 shows
our results. Utterances are binned into short, normal, and long utterance lengths (1-6, 7-8, 9-17 words,
respectively; 7-8 word utterances were the most represented). Previous work processed all three slots
throughout the ongoing utterance, whereas the model presented here only processed entities (that could
give rise to these slots) as dictated by the RMRS. This causes a later overall first correct, but an overall
earlier first final, with a much narrower window between them. This represents an ideal system that waits
for processing a slot until it needs to, but comes to a final decision quickly, without changing its mind
later. This is further evidenced by the edit overhead which is lower here than previous work. This has
implications in real-time systems that need to define operating points; i.e., a dialogue system would need
to wait for specific information before making a decision.

action 1-6 7-8 9-14
first correct (% into utt.) 5.78 2.56 3.64
first final (% into utt.) 38.26 36.10 30.84
edit overhead 2.37
object 1-6 7-8 9-14
first correct (% into utt.) 7.39 7.5 10.11
first final (% into utt.) 44.7 44.18 35.55
edit overhead 4.6
result 1-6 7-8 9-14
first correct (% into utt.) 15.16 23.23 20.88
first final (% into utt.) 42.55 40.57 35.21
edit overhead 10.19

Table 2: Incremental Results for Pento slots with
varying sentence lengths, Kennington et al.,(2013),
Edit overhead represents all lengths of utterances.

action 1-6 7-8 9-14
first correct (% into utt.) 12.03 7.8 12.59
first final (% into utt.) 37.84 26.02 24.11
edit overhead 1.57
object 1-6 7-8 9-14
first correct (% into utt.) 30.64 17.66 14.46
first final (% into utt.) 32.27 19.20 15.79
edit overhead 3.1
result 1-6 7-8 9-14
first correct (% into utt.) 59.72 54.50 48.94
first final (% into utt.) 62.80 64.13 60.72
edit overhead 7.71

Table 3: Incremental Results for Pento slots with
varying sentence lengths, current work. Edit over-
head represents all lengths of utterances.

4.2 Pento Puzzle with Speech, Gaze, and Deixis

Data and Task The second experiment uses data also from the Pentomino domain, as described in
(Kousidis et al., 2013; Kennington et al., 2013), also a Wizard-of-Oz study consisting of 7 participants,
example in Figure 1. The user was to select a puzzle tile (out of a possible 15) on a game board shown
on a large monitor, and then describe this piece to the “system” (wizard). Speech, eye gaze (tracked by
Seeingmachines FaceLab) and pointing gestures (tracked by Microsoft Kinect) were recorded. After the
participant uttered a confirmation, the wizard began a new episode, generating a new random board and
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the process repeated.
The task for the NLU in this experiment was reference resolution. The information available to our

model for these data included the utterance (hand-transcribed) the visual context (game board), gaze
information, and deixis (pointing) information, where a rule-based classifier predicted from the motion
capture data the quadrant of the screen at which the participant was pointing. These data were very noisy
(and hence, realistic) despite the constrained conditions of the task; the participants were not required to
say things a certain way (as long as it was understood by the wizard), their hand movements potentially
covered their faces which interfered with the eye tracker, and each participant had a different way of
pointing (e.g., different gesture space, handedness, distance of hand from body when pointing, alignment
of hand with face, etc.).

Procedure Removing the utterances which were flagged by the wizard (i.e., when the wizard mis-
understood the participant) and the utterances of one of the participants (who had misunderstood the
task) left a total of 1051 utterances. We used 951 for development and training the model, and 100 for
evaluation. We give results as resolution accuracy. All models were trained on hand-transcribed data,
but two evaluations were performed: one with hand-transcribed data, and one with speech automatically
transcribed by the Google Web Speech API.3 Gaze and deixis are incorporated by incrementally com-
puting properties to be provided to our NLU model; i.e., a tile has a property in R of being gazed at
if it is gazed at for some interval of time, or tiles in a quadrant of the screen have the property of being
pointed at. Figure 6 shows an example utterance, gaze, and gesture activity over time and how they
are reflected in the model. Our baseline model is the NLU without using gaze or deixis information;
random accuracy is 7%. We will compare our model with that of an NGRAM (up to trigram) model in the
evaluations, for each of the conditions (baseline, deixis, gaze, deixis and gaze).

We also include the percentage of the time the gold tile is in the top 2 and top 4 rankings (out of 15);
situations in which a dialogue system could at least provide alternatives in a clarification request (if it
could detect that it should have low confidence in the best prediction; which we didn’t investigate here).
For gaze, we also make the naive assumption that over the utterance the participant (who in this case is
the speaker) will gaze at his chosen intended tile most of the time.

Figure 6: Human activity (top) aligned with how modalities are reflected in the model for Gaze and Point
(bottom) over time for example utterance: take the yellow t from this group here. The intervals of the
properties are denoted by square brackets.

Results Table 4 shows the results of our evaluation. Overall, the model that uses RMRS outperforms
the model that uses NGRAMS under all conditions using hand-transcribed data. The results for speech tell
a different story; speech with NGRAMS is generally better – an effect of the model here relying on parser
output. Overall, both model types increase performance when using hand-transcribed or automatically-
transcribed speech when incorporating other modalities, particularly pointing. Furthermore, the Top 2
and Top 4 columns show that this model has an overall good distribution, especially in the case of RMRS

and pointing, where the target object is in the top four ranks 90% of the time. This would allow a real-
time system to ask a specific clarification request to the human, with a high confidence that the object is
among the top four ranking objects.

Incremental For further incremental results, Figure 7 shows the rank of each object on an example
board using our baseline model for the utterance nimm das rote untere kreuz (take the red below cross /

3The Web Speech API Specificiation: https://dvcs.w3.org/hg/speech-api/raw-file/tip/
speechapi.html
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NLU Acc Top 2 Top 4
NGRAMS 68% 83% 87%

(speech) NGRAMS 44% 57% 69%
RMRS 73% 82% 88%

(speech) RMRS 36% 54% 66%
NLU + Pointing Acc Top 2 Top 4

NGRAMS 70% 83% 88%
(speech) NGRAMS 46% 60% 72%

RMRS 78% 85% 90%
(speech) RMRS 40% 56% 73%

NLU + Gaze Acc Top 2 Top 4
NGRAMS 68% 84% 88%

(speech) NGRAMS 43% 59% 71%
RMRS 74% 81% 88%

(speech) RMRS 39% 54% 67%
NLU + Gaze + Point Acc Top Top

NGRAMS 70% 84% 87%
(speech) NGRAMS 45% 61% 65%

RMRS 77% 85% 89%
(speech) RMRS 41% 56% 74%

Table 4: Results for Experiment 2. The highest scores for each column are in bold. Four evaluations are
compared under four different settings; Acc denotes accuracy (referent in top position), Top 2 and Top
4 respectively show the percentage of time the referent was between those ranks and the top.

take the red cross below). Once das (the) is uttered, RMRS makes an X entity and the model begins to
interpret. The initial distribution appears to be quite random as das does not have high co-occurence with
any particular object property. Once rote (red) is uttered, all non-red objects fall to the lowest ranks in
the distribution. Once untere (under / below) is uttered, all of the red pieces in the bottom two quadrants
increase overall in rank. Finally, as kreuz (cross) is uttered, the two crosses receive the highest ranks,
the bottom one being the highest rank and intended object. Note the rank of the cross in the top left
quadrant over time; it began with a fairly high rank, which moved lower once untere was uttered, then
moved into second rank once kreuz was uttered. As the utterance progresses the rank of the intended
object decreases, showing that our model predicted the correct piece at the appropriate word.

... das rote untere kreuz

Figure 7: Example of reference resolution for the utterance: nimm das rote untere kreuz / take the red
below cross; objects are annotated with their rank in the distribution as outputed by the NLU model at
each increment. The board size has been adjusted for formatting purposes.

5 Discussion and Conclusions

We have presented a model of NLU that uses a semantic representation to recover the intention of a
speaker utterance. Our model is general in that it doesn’t fit a template or ontology like other NLU ap-
proaches (though we would need to determine how a dialogue manager would make use of such a frame),
and grounds the semantic representation with a symbolic representation of the visual world. It works in-
crementally and can incorporate other modalities incrementally. It improves overall upon previous work
that used a similar model, but relied on n-grams. Our model implicitely handles complex utterances that
use spatial language. However, we leave important aspects, such as negation in an utterance, to future
work (they were not very common in our data).

The experiments in this paper were done off-line, but we have a real-time system currently working.
Our model incorporates in real-time the gesture and gaze information as it is picked up by the sensors,
as well as the speech of the user. We leave a full evaluation using this interactive setup with human
participants for future work.
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