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Abstract

We describe a novel approach to error detection in adjective–noun combinations. We present and
release a new dataset of annotated errors where the examples are extracted from learner texts and
annotated with error types. We show how compositional distributional semantic approaches can
be applied to discriminate between correct and incorrect word combinations from learner data.
Finally, we show how the output of the compositional distributional semantic models can be used
as features in a classifier yielding good precision and accuracy.

1 Introduction

The task of error detection and correction (henceforth, EDC) in non-native writing in English has been
a focus of research in recent years. However, usually research in this area focuses on EDC in the use of
function words, such as articles or prepositions (Leacock et al., 2010; Dale et al., 2012), while much less
attention has been paid to errors in the choice of content words.

Errors in function words are some of the most common error types in learner writing (Dalgish, 1985;
Leacock et al., 2010), so it is important for any EDC system to be able to deal with such errors. Certain
properties of these errors facilitate their detection and correction. As function words belong to closed
classes, the set of possible corrections is limited by the size of the function word set. Since errors in
function words are systematic and highly recurrent, in practice, each article or preposition has an even
smaller number of appropriate alternatives. We illustrate this point with the following examples on (1)
article and (2) preposition errors:

(1) I am 0*/a student. (2) Last October, I came in*/to Tokyo.

In (1) an EDC system would consider {a, an, the} as possible corrections for the missing article. To
correct the preposition in in (2), an EDC system would consider the most frequent prepositions {on,
from, for, of, about, to, at, with, by}, among which at or to would have a higher chance to be appropriate
corrections as these are most often confused with in. Confusion sets can be learnt from learner texts, and
probabilities can be set up according to the distribution of the confusions (Rozovskaya and Roth, 2011).

EDC is usually cast as a multi-class classification task, with the number of classes equal to the number
of target corrections. Detection and correction can occur simultaneously: an error is detected when an
EDC system suggests using a word different from the one originally used by the learner, and the sug-
gested word can be used as a correction. Each occurrence of a function word is represented with a feature
vector, where features are derived from the surrounding context. This is usually highly informative for
function words: for example, a context of I am and student or a similar noun requires the use of an
indefinite article, while the only correct preposition to relate a verb of movement like come to a locative
like Tokyo is to.

In this work, however, we focus on errors in the choice of content words, which have received much
less attention in spite of being the third most frequent error type in learner writing (Leacock et al., 2010).
Errors in content words are more challenging than errors in function words, since the number of possible

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1740



confusions and corrections cannot be reduced to a finite set. For example, consider incorrect choice of
adjectives in the following sentences extracted from learner data:

(3) A big*/great damage has been made to the environment.

(4) I have tried a rock‘n’roll dance and a classic*/classical dance already.

The confusion in (3) is caused by semantic similarity of the adjectives big and great, while in (4) it is
due to similarity in form between classic and classical. It is much harder to cast the EDC in content words
as multi-class classification, unless we consider the full set of English adjectives as possible classes. The
surrounding contexts are much sparser and less informative, and in addition to that, often contain further
errors. In this work, we address error detection and focus on adjective-noun combinations (ANs), which
are representative of the more general task of EDC in content word combinations and are a frequent error
type in learner text.

We have created a dataset of ANs, where the combinations are extracted from learner texts and man-
ually error-coded using a novel annotation scheme. This scheme is motivated by observations about
typical learner confusions in the choice of adjectives and nouns – for example, semantically-related or
form-related confusions. Since errors in content words are related to semantics, we derive semantically-
motivated features through models of compositional distributional semantics and use these features for
error detection. We treat error detection as a binary classification task, following the usual convention in
EDC.

The original contributions of this paper are that we:

• present and release an error-annotated AN dataset extracted from learner data;

• show how compositional distributional semantic models can be applied to detect semantic anomalies
in this dataset;

• demonstrate that the output of these models can be used to derive features for error detection in AN
combinations.

2 Previous work

2.1 Error Detection in Content Words
Previous work on EDC for content words has either focused on correction alone assuming that errors
are already detected (Liu et al., 2009; Dahlmeier and Ng, 2011), or has reformulated the task as writing
improvement (Shei and Pain, 2000; Wible et al., 2003; Chang et al., 2008; Futagi et al., 2008; Park et al.,
2008; Yi et al., 2008; Östling and Knutsson, 2009).

In the first case, the task is reduced to the search for the most suitable correction among the alternatives
typically composed of synonyms, homophones or L1-related paraphrases (Dahlmeier and Ng, 2011),
while the more challenging error detection step is omitted. In the second case, error detection is integrated
into suggestion of alternatives and their comparison to the originally used word combination according
to some metric of collocational strength. Such approaches aim to improve the fluency of non-native
texts by correcting erroneous idioms or collocations, where low frequency or low collocational strength
clearly signifies an error.

These approaches might be useful for correcting collocations, but they are less suitable for error detec-
tion in free word combinations. As they compare original word combinations to their alternatives using
corpus statistics, they are not applicable to unseen word combinations, while learner texts contain many
previously unseen combinations, not all of which are errors. Moreover, some word combinations may
be correct even though less fluent than some of their alternatives. For example, appropriate concern,
though it is correct, would have lower collocational strength than its alternative proper concern, and
would, according to this approach, be tagged as an error. From the educational point of view, tagging an
acceptable combination as an error is misleading for language learners and should be avoided.

We implement a baseline model inspired by such comparison-based approaches and demonstrate that it
cannot be usefully applied to error detection in content word combinations. Then we present an approach
that is capable of dealing with unseen data and does not rely on direct corpus-based comparison.
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2.2 Semantic Anomaly Detection

Learner errors in content words often result from a semantic mismatch between the chosen words. A
similar problem of semantic anomaly detection in content word combinations has been addressed with
compositional distributional semantic models.

These models are based on distributional representations for words which are then composed to derive
phrase representations. They rely on the assumption that a word meaning can be approximated by its
distribution across its contexts of use. Words are represented as vectors in a high-dimensional space with
each dimension encoding a word’s co-occurrence with one of its contextual elements. Distributional
models are less suitable for representing content word combinations directly since these will be very
sparse and will often remain unattested even in an extremely large corpus.

A promising solution is provided by compositional distributional semantic models, which combine
distributional vectors for the component words using some function over such vectors. Compositional
distributional semantic representations have been previously used to detect semantic anomaly in AN
combinations (Vecchi et al., 2011). Vecchi et al. have applied the additive and multiplicative models
of Mitchell and Lapata (2008) and adjective-specific linear maps of Baroni and Zamparelli (2010) to a
set of corpus-unattested ANs. They show that there is a distinguishable difference in the compositional
semantic representations for the semantically acceptable and anomalous combinations, suggesting that
compositional distributional models can be used to detect semantic anomaly without relying directly on
corpus statistics.

Kochmar and Briscoe (2013) have applied the same models of semantic composition to distinguish
between correct and incorrect ANs extracted from learner texts. Their results support the assumption
that there is a distinguishable difference between the composite vectors for the correct and incorrect
ANs, but they did not address the question of how to integrate these semantic models into an error
detection system.

Recent work by Lazaridou et al. (2013) has shown that measures used for quantifying the degree of
semantic anomaly in phrases derived from their compositional distributional semantic representations
can be used as features by a classifier to help resolve syntactic ambiguities.

Our goals are to test, using a new and larger AN dataset, whether semantic models can distinguish
between correct and incorrect AN combinations, which cannot be dealt with using simpler error detection
approaches, and to implement an error detection system using these semantically-based features.

3 Data Annotation

We present and release a dataset of AN combinations which, on the one hand, exemplify the typical
errors committed by language learners in the choice of content words within such combinations, and, on
the other hand, are challenging for an EDC system.

For that, we examined the publicly available CLC-FCE dataset (Yannakoudakis et al., 2011), used
the error annotation (Nicholls, 2003), and analysed the typical errors in AN combinations committed by
language learners. We have compiled a list of 61 adjectives that are most problematic for learners.

Most typically, learners confuse semantically related words: for example, they are unable to distin-
guish between synonyms, near-synonyms or co-hyponyms and choose an appropriate one from the set.
Our list of adjectives contains some frequent ones that are confused with each other due to their similarity
in meaning. For example, the adjectives within the set {big, large, great} are frequently confused with
each other as in:

(5) big*/large quantity (6) big*/great importance

Another common source of error related to the high-frequency adjectives involves using them instead
of more specific ones: in such cases, learners are unable to distinguish between the more specific terms
and they choose the most frequent adjective, usually encompassing a variety of related meanings, to
represent the whole class of similar words. For example, adjectives big and large encompass a variety of
meanings including those of high, wide or broad. As learners often lack intuitions about which of these
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more specific adjectives should be chosen, they use the ones with more general meaning. This results in
errors like:

(7) big*/long history

(8) bigger*/wider variety

(9) greatest*/highest revenue

(10) large*/broad knowledge

The reverse of this – an incorrect selection of a more specific term instead of the more general one –
also leads to learner errors.

Form-related confusions represent another typical source of learner errors, and we have included pairs
of adjectives such as classic and classical, economic and economical and the like in our dataset:

(11) classic*/classical dance (12) economical*/economic crisis

Using this set of 61 adjectives, we have extracted AN combinations from the Cambridge Learner
Corpus (CLC),1 a large corpus of texts produced by English language learners, sitting Cambridge As-
sessment’s examinations.2 We have focused on AN combinations previously unseen in a native English
corpus, as we hypothesise that they would have a higher chance of containing an error. Such combina-
tions are more challenging for EDC algorithms since:

• these ANs cannot be effectively handled with simple comparison-based approaches like the ones
overviewed in section 2.1;

• language learners are creative in their writing, so there is a substantial number of such previously
unseen combinations;

• as no corpus could cover all possible acceptable content word combinations in language, the fact that
these combinations are not seen in the corpus cannot be used as definitive evidence of incorrectness.

To summarise, it is important for an EDC algorithm to handle such combinations, but their absence in
a native corpus of English makes it impossible to rely on simpler approaches and suggests that semantic
analysis of such combinations would be more effective. In our research, we used the British National
Corpus (BNC)3 to select the corpus-unattested combinations.

We have compiled a set of 798 AN combinations.4 An annotation scheme has been devised to annotate
these examples as correct or incorrect, and for the incorrect combinations, to identify the locus of error
(adjective, noun or both) and the type of confusion (incorrect synonym, form-related word, or non-related
word). The most appropriate corrections are included in the dataset.

We also distinguish between out-of-context (OOC) and in-context (IC) annotation. The motivation
behind this distinction is as follows: some combinations may appear to be correct when considered
out of their original context of use, because there might be other contexts where the same combination
would be appropriate. For example, classic dance is annotated as correct out of context because one
could imagine using it in a context where it would denote some typical dance like:

(13) They performed a classic Ceilidh dance.

However, in practice, the AN classical dance is used much more frequently, and classic dance is most
often errorful in context, as in (4) above.

Some ANs in our dataset are represented with more than one context of use, and in that case the
in-context annotation can be conditioned on each context, or used to derive the most typical annotation
for the AN. Both types of information are useful, as EDC systems which make use of the surrounding
context should rely on the annotation in each particular context of use and, for example, be able to detect

1http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/item3646603/
Cambridge-International-Corpus-Cambridge-Learner-Corpus/

2http://www.cambridgeenglish.org
3http://www.natcorp.ox.ac.uk/
4This dataset is released and publicly-available at http://www.ilexir.com/
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Type Cor. Incor. LB UB
OOC 633 165 0.7932 0.8650
IC 394 404 0.5063 0.7467

Table 1: Distribution of correct (cor.) and incorrect (incor.) ANs in the dataset.

that classic dance is correct in one specific context, while in others it is incorrect. EDC systems that do
not make use of the context can simply rely on the most frequent in-context annotation and detect that
classic dance is typically an error in learner writing.

To create the two-level annotation, the annotators were first presented with an AN combination and
asked to tag each word as correct or incorrect depending on whether they can think of some appropriate
contexts of use for it. Next, the same combination was presented in its context of use from the CLC and
the annotators were asked to annotate it with respect to its context.

The dataset was primarily annotated by a professional linguist. To ensure that the annotation scheme
is clear and efficient, the dataset was split into 100 and 698 ANs, and the 100 ANs were first annotated
by the same professional annotator and three other annotators. We have measured the inter-annotator
agreement for the two levels of annotation using the mean values for the observed agreement within
each pair of annotators, as well as mean Cohen’s kappa value (Cohen, 1960). In Table 1 we report
the mean inter-annotator agreement for the correct versus incorrect combinations at the two annotation
levels, which represents the upper bound (UB) in our experiments. We have obtained the mean kappa
values of 0.65 and 0.49 at the two levels of annotation, which are interpreted as substantial and medium
agreement between annotators and confirm that the annotation scheme is clear.5 Table 1 presents the
distribution of ANs and the majority class baseline which we further use as a lower bound (LB).

4 Semantic Models for Error Detection

We replicate the semantic approaches, which have previously shown promising results in detecting se-
mantic anomaly and content word errors (Vecchi et al., 2011; Kochmar and Briscoe, 2013), and test their
performance on our dataset of corpus-unattested correct and incorrect AN combinations.

4.1 Experimental Setting
We use the additive (add) and multiplicative (mult) models of Mitchell and Lapata (2008), and the
adjective-specific linear maps (alm) of Baroni and Zamparelli (2010).

The first two models derive the composite phrase vector through addition and multiplication of the
components of the word vectors. These models have a clear mathematical interpretation and require
no training. Their principal weakness is that they are symmetric, and fail to represent the difference in
grammatical function of the component words. The alm model provides a theoretically more appropriate
way of representing ANs based on this asymmetry: nouns are represented by their distributional vectors,
while attributive adjectives are functions mapping from noun meanings to a composite noun-like vector
for the ANs. Adjectives are represented as weight matrices which are learned from corpus-attested
examples of noun–AN mappings, and composition is defined by matrix-by-vector multiplication.

We use the experimental setting previously described (Vecchi et al., 2011; Kochmar and Briscoe,
2013) and populate the semantic space with the constituent nouns and adjectives from the test ANs,
frequent nouns and adjectives from the BNC and the AN combinations containing these frequent words.
We use about 8K nouns, 4K adjectives and 64K ANs following Kochmar and Briscoe (2013). The
semantic space is represented by a matrix encoding word co-occurrences, where the rows represent the
76K elements mentioned above, and the columns represent a selected set of 10K context elements.
The 10K context elements include the most frequent nouns, adjectives and verbs from the corpus. The
word co-occurrence counts are estimated using the BNC. The corpora have been lemmatized, tagged and
parsed with the RASP system (Briscoe et al., 2006; Andersen et al., 2008; Yannakoudakis et al., 2011),
and all statistics are extracted at the lemma level.

5Further details of the annotation experiment are described in the dataset release.
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We transform the raw sentence-internal co-occurrence counts into Local Mutual Information
scores (Baroni and Zamparelli, 2010; Evert, 2005), and perform dimensionality reduction applying Sin-
gular Value Decomposition to the noun and adjective matrix rows, projecting the AN rows onto the same
reduced space following Baroni and Zamparelli (2010). The original 76K × 10K matrix is reduced to a
76K × 300 matrix. This allows us to perform training and other calculations in the semantic space more
efficiently.

The weight coefficients for the alm model are estimated with multivariate partial least squares re-
gression using the RPLS package (Mevik and Wehrens, 2007). The weight matrix is learned for each
adjective separately.

4.2 Semantic Cues
In previous work (Vecchi et al., 2011; Kochmar and Briscoe, 2013) several semantic measures for de-
tecting semantic anomaly have been introduced. We reimplement these measures (1 to 8), but also test
some additional measures (9 to 13) that we hypothesise can also help distinguish between correct and
incorrect word combinations:

1. Vector length (VLen): vectors for correct and incorrect combinations may differ with respect to
their length, and the latter are expected to be shorter;

2. Cosine to the input noun (cosN): the distance between the model-generated AN vector and the
input noun vector is expected to be greater for the incorrect combinations, as the noun meaning is
typically ‘distorted’;

3. Cosine to the input adjective (cosA): analogical to cosN measure, the adjective meaning might be
‘distorted’ as well, especially as two of the composition functions are symmetric;

4. Density of the neighbourhood populated by 10 nearest neighbours (dens) is calculated as the
average distance from the model-generated vector to the 10 nearest neighbours in the original se-
mantic space, and is expected to be higher for the correct ANs;

5. Density among the 10 nearest neighbours (densAll) is a modification of dens, which is estimated
as an average for the 11 density values calculated for each member within the set consisting of the
AN vector and its 10 neighbours;

6. Ranked density in close proximity (Rdens) relies on the notion of close proximity, which is defined
as a neighbourhood populated by some very close neighbours (for example, within a distance of
≥ 0.8). It is calculated as: RDens =

∑N
i=1 rankidistancei with N being the total number of

close neighbours within close proximity, each with its rank and distance;

7. Number of neighbours within close proximity (num) is used as another measure, and is assumed
to be lower for incorrect combinations, which are expected to be more isolated in the semantic
space;

8. Overlap between the 10 nearest neighbours and constituent noun/adjective (OverAN) assumes
correct ANs should be surrounded by similar words and combinations. It is calculated as the pro-
portion of the 10 nearest neighbours containing the same constituent words as in the tested ANs;

9. Overlap between the 10 nearest neighbours and input noun (OverN) is a variant of the OverAN
with only the noun considered;

10. Overlap between the 10 nearest neighbours and input adjective (OverA) is a variant of the
OverAN with only the adjective considered;

11. Overlap between the 10 nearest neighbours for the AN and constituent noun/adjective
(NOverAN) assumes that correct ANs and their constituent words should be placed in similar neigh-
bourhoods. It is calculated as the proportion of the common neighbours among the 10 nearest
neighbours for the model-generated AN and the constituent words;
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Metric add mult alm
VLen 0.7589 0.7690 0.1676
cosN 0.1621 0.0248 0.0227
cosA 0.0029 0.4782 0.0921
dens 0.6731 0.1182 0.1024
densAll 0.4967 0.1026 0.1176
RDens 0.2786 0.8754 0.1970
num 0.3132 0.4673 0.3765
OverAN 0.8529 0.1622 0.2808
OverA 0.0151 0.6377 0.4886
OverN 0.0138 0.0764 0.4118
NOverAN 0.3941 0.6730 0.0858
NOverA 0.0009 0.3342 0.1575
NOverN 0.0018 0.1463 0.1497

Table 2: p values, out-of-context annotation

Metric add mult alm
VLen 0.6675 0.0027 0.0111
cosN 0.0417 0.0070 0.1845
cosA 0.00003 0.1791 0.1442
dens 0.4756 0.7120 0.1278
densAll 0.2262 0.7139 0.5310
RDens 0.8934 0.8664 0.1985
num 0.7077 0.7415 0.4259
OverAN 0.1962 0.8635 0.5669
OverA 0.00007 0.7271 0.6229
OverN 0.0017 0.9680 0.7733
NOverAN 0.0227 0.3473 0.1587
NOverA 0.000004 0.3749 0.1576
NOverN 0.0001 0.6651 0.2610

Table 3: p values, in-context annotation

12. Overlap between the 10 nearest neighbours for the AN and input noun (NOverN) is a variant
of the NOverAN with only the noun considered;

13. Overlap between the 10 nearest neighbours for the AN and input adjective (NOverA) is a
variant of the NOverAN with only the adjective considered.

4.3 Results

We evaluate the models and report the results following the procedure that has been used before in Vecchi
et al. (2011) and Kochmar and Briscoe (2013). For each model and semantic measure, we report the p
value denoting statistical significance of the difference between the groups of correct and incorrect ANs.
The statistical significance is reported at the p<0.05 level, and if a measure applied to the two groups of
ANs shows statistically significant difference we interpret that as an ability of this measure to distinguish
the correct ANs from the incorrect ones in general. The results for the out-of-context annotation are
reported in Table 2, and those for the in-context annotation in Table 3.

The results show that the difference between the vector representations for the correct and incorrect AN
combinations can be reliably detected with a number of the proposed measures. Measures which show
statistically significant results with at least one model are marked in bold. These results also suggest that
the values for the semantic measures can be used to derive discriminative features for a classifier.

5 Error Detection as Classification Task

5.1 Baseline System

We implement a simple comparison-based baseline system inspired by previous work on error detection
in content words (see section 2.1). For every AN, we create a set of possible alternatives crossing the
confusion set for the adjective with that for the noun, and compare the collocational strength of the
original combination with that for each of the alternatives. If an alternative has higher collocational
strength than the original combination, the original combination is tagged as an error and the alternative
is chosen as a correction. Since semantically related confusions are a rich source of learner errors in
content word combinations, we include adjective synonyms in the confusion set for an adjective, and
noun synonyms and hyponyms in the confusion set for a noun. All synonyms and hyponyms are retrieved
using WordNet 3.0 without word sense disambiguation.

We measure collocational strength using normalized pointwise mutual information (npmi) of the ad-
jective a and noun n, which is defined as:
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npmi(a, n) =
pmi(a, n)
−log[p(a, n)]

(1) pmi(a, n) = log
p(a, n)

p(a)p(n)
(2)

All probabilities are estimated from the BNC. This approach performs poorly on the unseen ANs in
our dataset, since any alternative AN seen in the BNC would be preferred by this system over the original
unseen AN. This ensures that less fluent (in this case, unseen) word combinations are substituted with
more fluent (seen) ones. As a result, even though an original AN important conversation in our dataset
is correct, it is still “corrected” by this system to serious conversation. At the same time, some incorrect
combinations are not recognised if no appropriate alternative is found (e.g., *high shyness). It shows that
this approach lacks deeper semantic analysis and is also too dependent on the set of alternatives found
for a word combination.

We measure accuracy (acc) as the proportion of true positives (TP) and true negatives (TN) to the total
number of test items:

Acc =
TP + TN

TP + FP + TN + FN
(3)

Accuracy reflects how often an error detection system correctly identifies that an AN is correct or
incorrect. We compare the results to the lower and upper bounds set as the majority class distribution
and inter-annotator agreement, respectively (see section 3).

With this approach we get quite low accuracy of 0.3897 on the out-of-context annotation since most
of the test items are correct out of context (LB=0.7932), and the baseline system overcorrects many of
those. Accuracy of the baseline system on the in-context annotation is 0.5147, which is slightly above
the lower bound of 0.5063. These results are used as a baseline and included in Table 4.

Type Accuracy Baseline LB UB
OOC 0.8113 ± 0.0149 0.3897 0.7932 0.8650
IC 0.6535 ± 0.0189 0.5147 0.5063 0.7467

Table 4: Decision Tree classification results

Type P (correct) P (incorrect)
OOC 0.8193 0.7500
IC 0.6241 0.6850

Table 5: Classification precision

5.2 Classification
We implement a supervised classifier which uses output of the semantic models as features. We have
tested a number of classifier models but the best results so far have been obtained with the Decision
Tree classifier using NLTK (Bird et al., 2009). We assume that this classifier effectively learns the
inter-dependencies between the features within the small feature set that we use in our experiments. We
use feature binning where the whole range of feature values is divided into 10 bins according to the
distribution of values for each feature. This feature representation technique combined with the classifier
helps generalise over feature values, reducing feature space dimensionality. The order of the feature
application to the data is determined by the classifier on the basis of the information gain for the features
and their values.

We apply 5-fold cross-validation and report average accuracy over the folds. The 798 ANs are split
into 5 subsets with 80% in each of the splits used for training and 20% for testing. We keep the AN error
rate in the training and test sets, as well as for each adjective, approximately the same across the splits to
avoid any bias. Error detection is cast as a binary classification task. The output of the semantic models
is used to derive numeric features for the classifier. Most values are in the range of [0, 1], and we apply
normalisation to VLen, RDens and num which originally have a different range.

The full feature set contains 14 features, with 13 features derived from the semantic measures, and
1 feature representing adjective identity. We hypothesise that introduction of this feature might help
classifier learn that, for example, an AN containing an adjective classic has a higher chance of being
incorrect, as most of the ANs with this adjective in the learner data are incorrect and involve confusions
with classical. We also hypothesise that it facilitates learning correlations between the adjective and other
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feature values: it might be the case that ANs with an adjective adj1, on the average, have higher cosN
values than ANs with an adjective adj2. This feature helps the classifier establish such dependencies
between the adjective and the values of the semantic measures. For instance, in our data ANs with
the adjective true have significantly higher cosine between AN vectors and vectors for their constituent
nouns than ANs with the adjective false: this is in accordance with an intuition that, for example, true
happiness is more similar to happiness than false happiness is.

The best results in our experiments have been obtained with the mult model. We have performed
ablation tests incrementally removing features that did not improve classifier performance in order to
find an optimal feature set. The best-performing feature set we found for the mult model on the out-
of-context annotation uses adjective, cosN and RDens features, while for the in-context annotation the
best-performing feature set found uses a combination of features including adjective, VLen, densAll,
NOverA, NOverN, RDens and num features.

We note that the sets of best performing features in the classification experiments do not coincide with
the semantic measures that showed the highest statistically significant difference (Tables 2 and 3). We
conclude that although the p values reported in Tables 2 and 3 show that some semantic measures can
distinguish one group of ANs from another on the basis of the statistically significant difference between
the means of the two groups, when the measures are used as features for a classifier the results depend
on how these features interact with each other as well as on their individual discriminativeness across the
test dataset. For example, Figure 1 illustrates a small part of the decision tree constructed using the best
performing feature set on the in-context annotation:

Figure 1: Decision Tree classifier pseudocode.

Figure 1 shows how interaction of feature values for num and VLen in combination with the adjective
identity feature can help classify the two ANs containing adjective large as correct (1) or incorrect (-1).

In Table 4 we report results for the out-of-context (OOC) and in-context (IC) annotation. The accuracy
is reported with its mean ± standard deviation over the 5 data splits. We compare the Decision Tree
classifier results to those obtained with the baseline system, as well as to the lower and upper bounds set
as before (see section 3). The results show that a classifier that uses output of the semantic models as
features outperforms the comparison-based baseline system by a large margin.

6 Discussion

In the previous section, we showed that a classifier that uses output of the semantic models as features
outperforms the comparison-based baseline system and shows good accuracy. In this section, we analyse
the classifier’s performance in more detail.

We note that, from an educational point of view, it is important for an EDC system to have high
precision. For example, it has been shown that grammatical error detection systems with high preci-
sion maximize learning effect, and that systems with high precision but lower recall are more useful
in language learning than systems with high recall and lower precision (Nagata and Nakatani, 2010).
This suggests that learners might be misled and confused if they are frequently notified by a system that
something is an error when it is not.

Since precision is measured as the proportion of true positives (TP) to the sum of true positives and
false positives (FP):
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P =
TP

TP + FP
(4)

an EDC system that achieves precision less than 0.5 is, in fact, misleading for language learners: for
example, precision of less than 0.5 on the class of errors means that the system misidentifies correct use
as an error more frequently than it correctly detects an error.

Our classifier achieves good precision values with respect to both out-of-context and in-context anno-
tations, on correct and incorrect examples. Precision (P ) values are reported in Table 5. As precision
figures are higher than 0.5 in each case, it shows that the implemented error detection system would, on
balance, help guide a learner to text regions in need of reformulation.

With respect to the out-of-context annotation, the error detection system has good precision and recall
on correct examples (P = 0.8193, R = 0.9762). Precision on the incorrect examples is also high
(P = 0.7500). This is a very encouraging result, suggesting the system would rarely misidentify an
originally correct AN combination as an error.

For the in-context annotation, both precision and recall on correct and incorrect examples are quite
high: P = 0.6241 and R = 0.7169 on the correct examples, and P = 0.6850 and R = 0.5849 on the
incorrect examples.

Error analysis on the classifier’s output shows that the majority of the incorrect examples misclassified
as correct (missed errors) contain semantically-related confusions. It appears that the classifier relying
on semantically-motivated features misses a number of cases where the original AN and its correction
are semantically similar: for example, it misses the errors in big*/great anger, biggest*/greatest painter
and small*/short speech. Since the ANs in these pairs are semantically similar, the features based on
their semantic representations might not be discriminative enough. In contrast, the classifier is more
effective in detecting errors in cases where the original AN and its correction are only similar in form, or
not related to each other.

7 Conclusion

We have presented and released a dataset of learner errors in ANs, which has been extracted from learner
texts and annotated with error types and corrections. The dataset contains examples not seen in a native
corpus of English, and error annotation shows that a substantial number of such examples are correct.
Error detection in this dataset is a challenging task, since absence of the ANs in a corpus of English
cannot be used as definitive evidence of incorrectness. We have implemented a simple baseline system
inspired by previous work on improving content word combinations and shown that such a system would
not be effective for error detection in our dataset.

We have cast error detection as a binary classification task and implemented a supervised classifier
that uses semantically-motivated features. The features are derived from the compositional distributional
semantic representations of the AN combinations. We use a number of semantic measures that describe
and distinguish between semantic representations for correct and incorrect combinations. We have intro-
duced new semantic measures in addition to the ones used in previous work and show that they can be
effectively applied to this task.

The best results in our experiments are obtained with a Decision Tree classifier, and we show that the
resulting error detection system can identify errors with high precision and accuracy. We aim to extend
this system to perform error correction on ANs, as well as error detection and correction on other types
of content word combinations.
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