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Abstract

In this paper, we apply reinforcement learning for automatically learning cooperative persuasive
dialogue system policies using framing, the use of emotionally charged statements common in
persuasive dialogue between humans. In order to apply reinforcement learning, we describe a
method to construct user simulators and reward functions specifically tailored to persuasive dia-
logue based on a corpus of persuasive dialogues between human interlocutors. Then, we evaluate
the learned policy and the effect of framing through experiments both with a user simulator and
with real users. The experimental evaluation indicates that applying reinforcement learning is
effective for construction of cooperative persuasive dialogue systems which use framing.

1 Introduction

With the basic technology supporting dialogue systems maturing, there has been more interest in recent
years about dialogue systems that move beyond the traditional task-based or chatter bot frameworks. In
particular there has been increasing interest in dialogue systems that engage in persuasion or negotiation
(Georgila and Traum, 2011; Georgila, 2013; Paruchuri et al., 2009; Heeman, 2009; Mazzotta and de
Rosis, 2006; Mazzotta et al., 2007; Nguyen et al., 2007; Guerini et al., 2003). We concern ourselves
with cooperative persuasive dialogue systems (Hiraoka et al., 2013), which try to satisfy both the user
and system goals. For these types of systems, creating a system policy that both has persuasive power
and is able to ensure that the user is satisfied is the key to the system’s success.

In recent years, reinforcement learning has gained much attention in the dialogue research community
as an approach for automatically learning optimal dialogue policies. The most popular framework for
reinforcement learning in dialogue models is based on Markov decision processes (MDP) and partially
observable Markov decision processes (POMDP). In these frameworks, the system gets a reward repre-
senting the degree of success of the dialogue. Reinforcement learning enables the system to learn a policy
maximizing the reward. Traditional reinforcement learning requires thousands of dialogues, which are
difficult to collect with real users. Therefore, a user simulator which simulates the behavior of real users
is used for generating training dialogues. Most research in reinforcement learning for dialogue system
policies has been done in slot-filling dialogue, where the system elicits information required to provide
appropriate services for the user (Levin et al., 2000; Williams and Young, 2007).

There is also ongoing research on applying reinforcement learning to persuasion and negotiation
dialogues, which are different from slot-filling dialogue (Georgila and Traum, 2011; Georgila, 2013;
Paruchuri et al., 2009; Heeman, 2009). In slot-filling dialogue, the system is required to perform the
dialogue to achieve the user goal, eliciting some information from a user to provide an appropriate ser-
vice. A reward corresponding to the achievement of the user’s goal is given to the system. In contrast,
in persuasive dialogue, the system convinces the user to take some action achieving the system goal.
Thus, in this setting, reward corresponding to the achievement of both the user’s and the system’s goal is
given to the system. The importance of each goal will vary depending on the use case of the system. For
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example, a selfish system could be rewarded with an emphasis on only achievement of the system goal,
and a cooperative system could be rewarded with an emphasis on achievement of both of the goals. In
addition, negotiation dialogue could be considered as a kind of the persuasive dialogue where the user
also tries to convince the system to achieve the user’s goal.

In this paper, our research purpose is learning better policies for cooperative persuasive dialogue sys-
tems using framing. We focus on learning a policy that tries to satisfy both the user and system goals. In
particular, two elements in this work set it apart from previous works:
• We introduce framing (Irwin et al., 2013), which is known to be important for persuasion and a

key concept of this paper, as a system action. Framing uses emotionally charged words to explain
particular alternatives. In the context of research that applies reinforcement learning to persuasive
(or negotiation) dialogue, this is the first work that considers framing as a system action.

• We use a human-to-human persuasive dialogue corpus of Hiraoka et al. (2014) to train predictive
models for achievement of a human persuadee’s and a human persuader’s goals, and introduce these
models to reward calculation to enable the system to learn a policy reflecting knowledge of human
persuasion.

To achieve our research purpose, we construct a POMDP where the reward function and user simulator
are learned from a corpus of human persuasive dialogue. We define system actions based on framing and
general dialogue acts. In addition, the system dialogue state (namely, belief state) is defined for tracking
the system’s rewards. Then, we evaluate the effect of framing and learning a system policy. Experimental
evaluation is done through a user simulator and real users.

2 Reinforcement learning

Reinforcement learning is a machine learning technique for learning a system policy. The policy is a
mapping function from a dialogue state to a particular system action. In reinforcement learning, the
policy is learned by maximizing the reward function. Reinforcement learning is often applied to models
based on the framework of MDP or POMDP.

In this paper, we follow a POMDP-based approach. A POMDP is defined as a tuple
⟨S,A, P, R, O,Z, γ, b0⟩ where S is the set of states (representing different contexts) which the system
may be in (the system’s world), A is the set of actions of the system, P : S ×A → P (S,A) is the set of
transition probabilities between states after taking an action, R : S×A → ℜ is the reward function, O is
a set of observations that the system can receive about the world, Z is a set of observation probabilities
Z : S × A → Z(S, A), and γ a discount factor weighting longterm rewards. At any given time step i
the world is in some unobserved state si ∈ S. Because si is not known exactly, we keep a distribution
over states called a belief state b, thus b(si) is the probability of being in state si, with initial belief state
b0. When the system performs an action αi ∈ A based on b, following a policy π : S → A, it receives
a reward ri(si, αi) ∈ ℜ and transitions to state si+1 according to P (si+1|si, αi) ∈ P . The system then
receives an observation oi+1 according to P (oi+1|si+1, αi). The quality of the policy π followed by the
agent is measured by the expected future reward also called Q-function, Qπ : S ×A → ℜ.

In this framework, it is critical to be able to learn a good policy function. In order to do so, we use
Neural fitted Q Iteration (Riedmiller, 2005) for learning the system policy. Neural fitted Q Iteration is an
offline value-based method, and optimizes the parameters to approximate the Q-function. Neural fitted
Q Iteration repeatedly performs 1) sampling training experience using a POMDP through interaction and
2) training a Q-function approximator using training experience. Neural fitted Q Iteration uses a multi-
layered perceptron as the Q-function approximator. Thus, even if the Q-function is complex, Neural
fitted Q Iteration can approximate the Q-function better than using a linear approximation function1.

3 Persuasive dialogue corpus

In this section, we give a brief overview of Hiraoka et al. (2014)’s persuasive dialogue corpus between
human participants that we will use to estimate the models described in later sections.

1In a preliminary experiment, we found that Neural fitted Q Iteration had high performance compared to using the linear
approximation of the Q-function in this domain.
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Table 1: The beginning of a dialogue from the cor-
pus (translated from Japanese)

Speaker Transcription GPF Tag
Cust Well, I am looking for a camera, PROPQ

do you have camera B?
Sales Yes, we have camera B. ANSWER

Sales Did you already take a look at
it somewhere? PROPQ

Cust Yes. On the Internet. ANSWER

Sales It is very nice. Don’t you think? PROPQ
Cust Yes, that’s right, yes. INFORM

Table 2: Sytem and user’s GPF tags
Inform Answer Question PropQ
SetQ Commisive Directive

Table 3: An example of positive framing
(Camera A is) able to achieve performance
of comparable single-lens cameras
and can fit in your pocket, this is a point.

3.1 Outline of persuasive dialogue corpus

As a typical example of persuasive dialogue, the corpus consists of dialogues between a salesperson
(persuader) and customer (persuadee). The salesperson attempts to convince the customer to purchase a
particular product (decision) from a number of alternatives (decision candidates). This type of dialogue
is defined as “sales dialogue.” More concretely, the corpus assumes a situation where the customer is in
an appliance store looking for a camera, and the customer must decide which camera to purchase from 5
alternatives.

Prior to recording, the salesperson is given the description of the 5 cameras and instructed to try to
convince the customer to purchase a specific camera (the persuasive target). In this corpus, the persuasive
target is camera A, and this persuasive target is invariant over all subjects. The customer is also instructed
to select one preferred camera from the catalog of the cameras, and choose one aspect of the camera that
is particularly important in making their decision (the determinant). During recording, the customer and
the salesperson converse and refer to the information in the camera catalog as support for their dialogues.
The customer can close the dialogue whenever they want, and choose to buy a camera, not buy a camera,
or reserve their decision for a later date.

The corpus includes a role-playing dialogue with participants consisting of 3 salespeople from 30 to
40 years of age and 19 customers from 20 to 40 years of age. All salespeople have experience working
in an appliance store. The total number of dialogues is 34, and the total time is about 340 minutes. Table
1 show an example transcript of the beginning of one dialogue. Further examples are shown in Table 8
in the appendix.

3.2 Annotated dialogue acts

Each utterance is annotated with two varieties of tags, the first covering dialogue acts in general, and the
rest covering framing.

As a tag set to represent traditional dialogue acts, we use the general-purpose functions (GPF) defined
by the ISO international standard for dialogue act annotation (ISO24617-2, 2010). All annotated GPF
tags are defined to be one of the tags in this set (Table 2).

More relevant to this work is the framing annotation. Framing uses emotionally charged words to
explain particular alternatives. It has been suggested that humans generally evaluate decision candidates
by selecting based on several determinants weighted by the user’s preference, and that framing is an
effective way of increasing persuasive power. This corpus focuses on negative/positive framing (Irwin
et al., 2013; Mazzotta and de Rosis, 2006), with negative framing using negative words and positive
framing using positive words.

In the corpus, framing is defined as a tuple ⟨a, p, r⟩ where a represents the target alternative, p takes
value NEG if the framing is negative, and POS if the framing is positive, and r represents whether the
framings contains a reference to the persuadees preferred determinant (for example, the performance or
price of a camera), taking the value TRUE if contained, and FALSE if not contained. The user’s preferred
determinant is annotated based on the results of a questionnaire.

Table 3 shows an example of positive framing (p=POS) about the performance of Camera A (a=A). In
this example, the customer answered that his preference is the price of camera, and this utterance does
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Figure 1: Dynamic Bayesian network of the user simulator. Each node represents a variable, and each
edge represents a probabilistic dependency. The system cannot observe the shaded variables.

not contain any description of price. Thus, r=NO is annotated. Further examples of positive and negative
framing are shown in Tables 9 and 10 in the appendix.

In this paper, we re-perform annotation of the framing tags and evaluate inter-annotator agreement,
which is slightly improved from Hiraoka et al. (2014). Two annotators are given the description and
examples of tags (e.g. what a positive word is), and practice with these manuscripts prior to annotation.
In corpus annotation, at first, each annotator independently chooses the framing sentences. Then, framing
tags are independently annotated to all utterances chosen by the two annotators. The inter-annotator
agreement of framing polarity is 96.9% (kappa=0.903).

4 User simulator

In this section, we describe a statistical dialogue model for the user (customer in Section 3). This model
is used to simulate the system’s conversational partner in applying reinforcement learning.

The user simulator estimates two aspects of the conversation:

1. The user’s general dialogue act.
2. Whether the preferred determinant has been conveyed to the user (conveyed preferred determinant;

CPD).

The users’ general dialogue act is represented by using GPF. For example, in Table 1, PROPQ, ANSWER,
and INFORM appear as the user’s dialogue act. In our research, the user simulator chooses one GPF
described in Table 2 or None representing no response at each turn. CPD represents that the user
has been convinced that the determinant in the persuader’s framing satisfies the user’s preference. For
example, in Table 3, the “performance” is contained in the clerk’s positive framing for camera A. If the
persuadee is convinced that the decision candidate satisfies his/her preference based on this framing,
we say that CPD has occurred (r=YES)2. In our research, the user simulator models CPD for each of
the 5 cameras. This information is required to calculate reward described in the following Section 5.1.
Specifically, GPF and CPD are used for calculating naturalness and persuasion success, which are part
of the reward function.

The user simulator is based on an order one Markov chain, and Figure 1 shows its dynamic Bayesian
network. The user’s GPF Gt+1

user and CPD Ct+1
alt at turn t + 1 are calculated by the following equations.

P (Gt+1
user|Gt

user, F
t
sys, G

t
sys, Salt) (1)

P (Ct+1
alt |Ct

alt, F
t
sys, G

t
sys, Salt) (2)

Gt
sys represents the system GPF at time t. F t

sys represents the system framing at t. These two variables
correspond to system actions, and are explained in Section 5.2. Gt

user represents the user’s GPF at t.
Ct

alt represents the CPD at t. Salt represents the users’s original evaluation of the alternatives. In our
2Note that the persuader does not necessarily know if r=YES because the persuader is not certain of the user’s preferred

determinants.
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research, this is the camera that the user selected as a preferred camera at the beginning of the dialogue3.
We use the persuasive dialogue corpus described in Section 3 for training the user simulator, considering
the customer in the corpus as the user and the salesperson in the corpus as the system. In addition, we
use logistic regression for learning Equations (1) and (2).

5 Learning cooperative persuasion policies

Now that we have introduced the user model, we describe the system’s dialogue management. In par-
ticular, we describe the reward, system action, and belief state, which are required for reinforcement
learning.

5.1 Reward

We follow Hiraoka et al. (2014) in defining a reward function according to three factors: user satisfac-
tion, system persuasion success, and naturalness. As described in Section 1, we focus on developing
cooperative persuasive dialogue systems. Therefore, the system must perform dialogue to achieve both
the system and user goals. In our research, we define three elements of the reward function as follows:

Satisfaction The user’s goal is represented by subjective user satisfaction. The reason why we use
satisfaction is that the user’s goal is not necessarily clear for the system (and system creator) in
persuasive dialogue. For example, some users may want the system to recommend appropriate
alternatives, while some users may want the system not to recommend, but only give information
upon the user’s request. As the goal is different for each user, we use abstract satisfaction as a
measure, and leave it to each user how to evaluate achievement of the goal.

Persuasive success The system goal is represented by persuasion success. Persuasion success represents
whether the persuadee finally chooses the persuasive target (in this paper, camera A) at the end of
the dialogue. Persuasion success takes the value SUCCESS when the customer decides to purchase
the persuasive target at the end of dialogue, and FAILURE otherwise.

Naturalness In addition, we use naturalness as one of the rewards. This factor is known to enhance the
learned policy performance for real users (Meguro et al., 2011).

The reward at each turn t is calculated with the following equation4.

rt = (Sattuser + PSt
sys + N t)/3 (3)

Sattuser represents a 5 level score of the user’s subjective satisfaction (1: Not satisfied，3: Neutral，
5: Satisfied) at turn t scaled into the range between 0 and 1. PSt

sys represents persuasion success (1:
SUCCESS，0: FAILURE) at turn t. Nt represents bi-gram likelihood of the dialogue between system and
user at turn t as follows.

Nt = P (F t
sys, G

t
sys, G

t
user|F t−1

sys , Gt−1
sys , Gt−1

user) (4)

In our research, Sat and PS are calculated with a predictive model constructed from the human per-
suasion dialogue corpus described in Section 3. In constructing these predictive models, the persuasion
results (i.e. persuasion success and persuadee’s satisfaction) at the end of dialogue are given as the su-
pervisory signal, and the dialogue features in Table 4 are given as the input. In the reward calculation,
the dialogue features used by the predictive model are calculated by information generated from the dia-
logue of the user simulator and the system. Table 4 shows all features used for reward calculation at each
turn5. Note that, for the calculating TOTAL TIME, average speaking time corresponding to speakers and
dialogue acts is added at each turn.

3Preliminary experiments indicated that the user behaved differently depending on the first selection of the camera, thus we
introduce this variable to the user simulator.

4We also optimized the policy in the case where the reward (Equation (3)) is given only when dialogue is closed. However,
the convergence of the learning was much longer, and the performance was relatively bad.

5Originally, there are more dialogue features for the predictive model. However as in previous research, we choose signifi-
cant dialogue features by step-wise feature selection (Terrell and Bilge, 2012).
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Table 4: Features for calculating reward. These
features are also used as the system belief state.

Satuser Frequency of system commisive
Frequency of system question

PSsys Total time
Calt (for each 6 cameras)
Salt (for each 6 cameras)

N System and user current GPF
System and user previous GPF
System framing

Table 5: System framing. Pos represents positive
framing and Neg represents negative framing. A, B,
C, D, E represent camera names.

Pos A Pos B Pos C Pos D Pos E None
Neg A Neg B Neg C Neg D Neg E

Table 6: System action.
<None, ReleaseTurn> <None, CloseDialogue>
<Pos A, Inform> <Pos A, Answer>
<Neg A, Inform> <Pos B, Inform>

<Pos B, Answer> <Pos E, Inform>

<None, Inform> <None, Answer>
<None, Question> <None, Commissive>
<None, Directive>

5.2 Action

The system’s action ⟨Fsys, Gsys⟩ is a framing/GPF pair. These pairs represent the dialogue act of the
salesperson, and are required for reward calculation (Section 5.1). There are 11 types of framing (Table
5), and 9 types of GPF which are expanded by adding RELEASETURN and CLOSEDIALOGUE to the
original GPF sets (Table 2). The number of all possible GPF/framing pairs is 99, and some pairs have not
appeared in the original corpus. Therefore, we reduce the number of actions by filtering. We construct
a unigram model of the salesperson’s dialogue acts P (Fsales, Gsales) from the original corpus, then
exclude pairs for which the likelihood is below 0.0056. As a result, the 13 pairs shown in Table 6
remained7. We use these pairs as the system actions.

5.3 Belief state

The current system belief state is represented by the features used for reward calculation (Table 4) and
the reward calculated at previous turn. Namely, the features for the reward calculation and calculated
reward are also used as the next input of the system policy. Note that the system cannot directly observe
Calt, thus the system estimates it through the dialogue by using the following equation.

P ( ˆCt+1
alt |Ĉt

alt, F
t
sys, G

t
sys, Salt) (5)

where ˆCt+1
alt represents the estimated CPD at t + 1. Ĉt

alt represents the estimated CPD at t. The other
variables are the same as those in Equation (2). In contrast, we assume that the system can observe
Guser and Salt. Guser is not usually observable because traditional dialogue systems have automatic
speech recognition/Spoken language understanding errors. However, in this work, we use Wizard of Oz
in place of automatic speech recognition/Spoken language understanding (Section 6.2). Thus, we can
ignore these factors8.

6 Experimental evaluation

In this section, we describe the evaluation of the proposed method for learning cooperative persuasive
dialogue policies. Especially, we focus on examining how the learned policy with framing is effective
for persuasive dialogue. The evaluation is done both using a user simulator and real users.

6We chose this threshold by trying values from 0.001 to 0.01 with incrementation of 0.001. We select the threshold that
resulted in the number of actions closest to previous work (Georgila, 2013).

7Cameras C and D are not popular, and don’t appear frequently in the human persuasive dialogue corpus, and are therefore
excluded in filtering.

8In addition to this reason, the Guser is not so essential to our research (GPF is general dialogue act), and we want to focus
the CPD. This is the other reason that we assume that Guser is observable.

1711



Figure 2: Average reward of each system. Error bars represents 95% confidence intervals. Rew repre-
sents the reward, Sat represents the user satisfaction, PS represents persuasion success, and Nat represents
naturalness.

6.1 Policy learning and evaluation using the user simulator

For evaluating the effectiveness of framing and learning the policy through the user simulator, we prepare
the following 3 policies.

Random A baseline where the action is randomly output from all possible actions.
NoFraming A baseline where the action is output based on the policy which is learned using only

GPFs. For constructing the actions, we remove actions whose framing is not None from the actions
described in Section 5.2. The policy is a greedy policy, and selects the action with the highest Q-
value.

Framing The proposed method where the action is output based on the policy learned with all actions
described in Section 5.2 including framing. The policy is also a greedy policy.

For learning the policy, we use Neural fitted Q Iteration (Section 2). For applying Neural fitted Q
Iteration, we use the Pybrain library (Schaul et al., 2010). We set the discount factor γ of learning to 0.9,
and the number of nodes in the hidden layer of the neural network for approximating the Q-function to
the sum of number of belief states and actions (i.e. Framing: 53, NoFraming: 47). The policy in learning
is the ϵ-greedy policy (ϵ = 0.3). These conditions follow the default Pybrain settings. We consider 50
dialogues as one epoch, and update the parameters of the neural network at each epoch. Learning is
finished when number of epochs reaches 200 (10000 dialogues), and the policy with the highest average
reward is used for evaluation.

We evaluate the system on the basis of average reward per dialogue with the user simulator. For
calculating average reward, 1000 dialogues are performed with each policy.

Experimental results (Figure 2) indicate that 1) performance is greatly improved by learning and 2)
framing is somewhat effective for the user simulator. Learned policies (Framing, NoFraming) get a
higher reward than Random. Particularly, both of the learned policies better achieve user satisfaction than
Random. On the other hand, only Framing is able to achieve better persuasion success than Random.
This result indicates that framing is effective for persuasive success. In contrast, naturalness of Framing
is not improved from Random. One of the reasons for this is that variance of Nat is smaller than those
of the other factors, and the optimization algorithm favored the other two factors which had a higher
variance.

6.2 Real user evaluation based on Wizard of Oz

To test whether the gains shown on the user simulator will carry over to an actual dialogue scenario, we
perform an experiment with real human users. In addition to the policies described in Section 6.1, we
add the following policy.

Human An oracle where the action is output based on human selection. In this research, the first author
(who has no formal sales experience, but experience of about 1 year in analysis of camera sales
dialogue) selects the action.
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Figure 3: The experimental environment based on Wizard of Oz. The rectangle represents information,
and the cylinder represents a system module. The information flow (dashed line) in the experiment
through the user simulator is also shown for comparison.

Experimental evaluation is conducted, based on the Wizard of Oz framework. In the experiment, the
wizard plays the salesperson, and the evaluator plays the customer. Dialogue is performed between the
wizard and the evaluator. The wizard and evaluator are divided by a partition, and the evaluator cannot
see or detect what the wizard is doing. The evaluator selects his/her preferred camera from the catalog
before starting evaluation. Then, the evaluator starts the dialogue with the wizard who is obeying one
of the policies (Figure 3). In particular, dialogue between wizard and evaluator proceeds based on the
following steps.

1. The evaluator talks to the wizard using the mic. In this step, the evaluators can close the dialogue if
they want.

2. The wizard listens to the evaluator’s utterance, translating the utterance into the appropriate Guser.
Then, the wizard inputs Guser to the policy module.

3. The policy module decides action sequences (Fsys, Gsys) based on Guser, then outputs the action to
the utterance database module. This module is constructed from the camera sales corpus (Section
3).

4. The utterance database module searches for similar sentences that match the history of input actions
and Guser so far, then outputs the top 6 similar utterances to the wizard.

5. The wizard generates the system utterance (Text) using the retrieved sentences. The wizard selects
one sentence which best matches the context9. If the wizard determines the sentence is hard to
understand, the wizard can correct the sentence to be more natural.

6. The wizard inputs the system utterance to text-to-speech, then waits for the next evaluator utterance
(back to step 1).

Finally, the evaluator answers the following questionnaire for calculating the evaluation measures in
Section 5.1.

Satisfaction The evaluator’s subjective satisfaction defined as a 5 level score of customer satisfaction
(1: Not satisfied，3: Neutral，5: Satisfied).

Final decision The camera that the customer finally wants to buy.

We use SofTalk (cncc, 2010) as text-to-speech software.
Evaluation criteria are basically same to those of previous section (described in Section 5.1). Note

that in the previous section, Satuser and PSsys are estimated from the simulated dialogue. In contrast
to the previous section, Satuser and PSsys are calculated from the result of the real user’s questionnaire

9Note that the wizard is not allowed to create the utterance with complete freedom, and selects an utterance from the
utterance database even when Human policy is used.
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Figure 4: Evaluation results for real users. Error bars represent 95% confidence intervals. Rew represents
the reward, Sat represents the user satisfaction, PS represents persuasion success, and Nat represents
naturalness.

Table 7: Part of a dialogue between Framing and an evaluator (translated from Japanese)
Speaker Transcription Fra GPF
Wiz Which pictures do you want to take? Far or near? None QUESTION

Wiz Camera B has 20x zoom, and this is good. Pos B ANSWER

Wiz How about it? RELEASET
Eva I think B sounds good. ANSWER

Wiz Yes, B is popular with zoom, Pos B INFORM

Wiz But, A has extremely good performance.
Camera A has almost the same parts as a single lens camera,
and is more reasonably priced than a single lens-camera. Pos A ANSWER

Wiz How about it? RELEASET

(described in the previous paragraph)10 based on the definition of Satuser and Satuser in Section 6.1. The
naturalness is automatically calculated by the system, in the same manner as described in the previous
section. Finally, reward is calculated considering Satuser, PSsys and naturalness according to Equation
3.

Participants consist of 13 evaluators (3 female, 10 male) and one wizard. Evaluators perform one
dialogue with the wizard obeying each policy (a total of 4 dialogues) in random order.

Experimental results (Figure 4) indicate that framing is effective in persuasive dialogues with real
users, and that the reward of Framing is higher than NoFraming and Random, and almost equal to
Human. In addition, the score of NoFraming is almost equal to Random. This indicates that despite the
fact that it performed relatively well in the simulation experiment, NoFraming is not an effective policy
for real users. In addition, the score of NoFraming is lower than the score given by the user simulator.
In particular, persuasion success is drastically decreased. This indicates that framing is important for
persuasion.

We can see that some features in human persuasive dialogue appear in the dialogue between users
and the wizard using the Framing policy. An example of a typical dialogue of Framing is shown in
Table 7. The first feature is that the system also recommends camera B when the system does positive
framing of camera A, which is the persuasive target. This feature was found by Hiraoka et al. (2014) to
be an indicator of persuasion success in the camera sales corpus. The second feature is that the system
asks the user about the user’s profile at the first stage of the dialogue. This feature is often found when
user satisfaction is high. The second feature also appeared in the dialogue with NoFraming. However,
NoFraming does not use framing, and asks the user to make a decision (DIRECTIVE). An example
utterance from the DIRECTIVE class is “Please, decide (which camera you want to buy) after seeing the
catalog”.

Considering the evaluation result of the previous section, we can see that Sat and PS differ between
the user simulator and the real users (p < .05). While the general trend of showing improvements for

10Note that, though systems estimate the satisfaction and evaluator’s decision at each turn for the belief state, the human
evaluator answers the questionnaire only when the dialogue is closed.
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satisfaction and persuasive success is identical in Figures 2 and 4, the systems are given excessively high
Sat in simulation. In addition, systems (especially Framing) are given underestimated PS in simulation.
One of the reasons for this is that the property of dialogue features for the predictive model for reward
differs from previous research (Hiraoka et al., 2014). In this paper, dialogue features for the predictive
model are calculated at each turn. In addition, persuasion success and user satisfaction are successively
calculated at each turn. In contrast, in previous research, the predictive model was constructed with
dialogue features calculated at end of the dialogue. Therefore, it is not guaranteed that the predictive
model estimates appropriate persuasion success and user satisfaction at each turn. Another reason is
that the simulator is not sufficiently accurate to use for reflecting real user’s behavior. Compared to
other works (Meguro et al., 2010; Misu et al., 2012), we are using a relatively small sized corpus for
training the user simulator. Therefore, the user simulator cannot be trained to accurately imitate real user
behavior. Improving the user simulator is an important challenge for future work.

7 Related work

There are a number of related works that apply reinforcement learning to persuasion and negotiation
dialogue. Georgila and Traum (2011) apply reinforcement learning to negotiation dialogue using user
simulators divided into three types representing individualist, collectivist, and altruist. Dialogue between
a florist and a grocer are assumed as an example of negotiation dialogue. In addition, Georgila (2013)
also applies reinforcement learning to two-issue negotiation dialogue where participants have a party,
and decide both the date and food type. A handcrafted user simulator is used for learning the policy
of each participant. Heeman (2009) models negotiation dialogue, assuming a furniture layout task, and
Paruchuri et al. (2009) model negotiation dialogue, assuming the dialogue between a seller and buyer.

Our research differs from these in three major ways. The first is that we use framing, positive or
negative statements about the particular item, which is known to be important for persuasion (Irwin et
al., 2013). By considering framing, the system has the potential to be more persuasive. While there is
one previous example of persuasive dialogue using framing (Mazzotta et al., 2007), this system does not
use an automatically learned policy, relying on handcrafted rules. In contrast, in our research, we apply
reinforcement learning to learn the system policy automatically.

In addition, in these previous works, rewards and belief states are defined with heuristics. In contrast,
in our research, reward is defined on the basis of knowledge of human persuasive dialogue. In particular,
we calculate the reward and belief state using the predictive model of Hiraoka et al. (2014) for estimating
persuasion success and user satisfaction using dialogue features. In the real world, it is unclear what
factors are important for achieving the dialogue goal in many persuasive situations. By considering these
predictions as knowledge of human persuasion, the system can identify the important factors in human
persuasion and can track the achievement of the goal based on these.

Finally, these works do not evaluate the learned policy, or evaluate only in simulation. In contrast, we
evaluate the learned policy with real users.

8 Conclusion

We apply reinforcement learning for learning cooperative persuasive dialogue system policies using
framing. In order to apply reinforcement learning, a user simulator and reward function is constructed
based on a human persuasive dialogue corpus. Then, we evaluate the learned policy and effect of fram-
ing using a user simulator and real users. Experimental evaluation indicates that applying reinforcement
learning is effective for construction of cooperative persuasive dialogue systems that use framing.

In the future, we plan to construct a fully automatic persuasive dialogue system using framing. In this
research, automatic speech recognition, spoken language understanding and natural language generation
are performed by a human Wizard. We plan to implement these modules and evaluate system perfor-
mance. In addition, in this research, corpus collection and evaluation are done in a role-playing situation.
Therefore, we plan to evaluate the system policies in a more realistic situation. We also plan to consider
non-verbal information (Nouri et al., 2013) for estimating persuasive success and user satisfaction.
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Appendix

Table 8: The summary of one dialogue in the corpus (translated from Japanese)

Speaker Transcription GPF Tag
Customer Hello. INFORM

Customer I’m looking for a camera for traveling. Do you have any recommendations? PROPQ
Clerk What kind of pictures do you want to take? SETQ
Customer Well, I’m the member of a tennis club,

and want to take a picture of landscapes or tennis. ANSWER

Clerk O.K. You want the camera which can take both far and near. Don’t you? PROPQ
Clerk Well, have you used a camera before? PROPQ
Customer I have used a digital camera. But the camera was cheap and low resolution. ANSWER

Clerk I see. I see. Camera A is a high resolution camera.
A has extremely good resolution compared with other cameras.
Although this camera does not have a strong zoom,
its sensor is is almost the same as a single-lens camera. INFORM

Customer I see. INFORM

Clerk For a single lens camera,
buying only the lens can cost 100 thousand yen.
Compared to this, this camera is a bargain. INFORM

Customer Ah, I see. INFORM

Customer But, it’s a little expensive. right? PROPQ
Customer Well, I think, camera B is good at price. INFORM

Clerk Hahaha, yes, camera B is reasonably priced. ANSWER

Clerk But its performance is low compared with camera A. INFORM

Customer If I use the two cameras will I be able to tell the difference? PROPQ
Clerk Once you compare the pictures taken by these cameras,

you will understand the difference immediately.
The picture itself is very high quality.
But, camera B and E are lower resolution,
and the picture is a little bit lower quality. ANSWER

Customer Is there also difference in normal size pictures? PROPQ
Clerk Yes, whether the picture is small or large, there is a difference ANSWER

Customer Considering A has single-lens level performance, it is surely reasonable. INFORM

Clerk I think so too. INFORM

Clerk The general price of a single-lens is about 100 or 200 thousand yen.
Considering these prices, camera A is a good choice. INFORM

Customer Certainly, I’m interested in this camera. INFORM

Clerk Considering its performance, it is a bargain. INFORM

Customer I think I’ll go home, compare the pictures, and think a little more. COMMISIVE

Clerk I see. Thank you. DIRECTIVE

Table 9: Example positive framing of a salesperson’s utterance ⟨ai = B, pi = POS, ri = YES⟩. In this
example, the customer has indicated price as the preferred determinant.

Hahaha, yes, camera B is reasonably priced.

Table 10: Example negative framing of a salesperson’s utterance ⟨ai = B, pi = NEG, ri = NO⟩. In this
example, the customer has indicated price as the preferred determinant.

But, considering the long term usage, you might care about picture quality.
You might change your mind if you only buy a small camera (Camera B).
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