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Abstract

In this paper we introduce a novel single-document summarization method based on a hidden
semi-Markov model. This model can naturally model single-document summarization as the
optimization problem of selecting the best sequence from among the sentences in the input doc-
ument under the given objective function and knapsack constraint. This advantage makes it
possible for sentence selection to take the coherence of the summary into account. In addition
our model can also incorporate sentence compression into the summarization process. To demon-
strate the effectiveness of our method, we conduct an experimental evaluation with a large-scale
corpus consisting of 12,748 pairs of a document and its reference. The results show that our
method significantly outperforms the competitive baselines in terms of ROUGE evaluation, and
the linguistic quality of summaries is also improved. Our method successfully mimicked the
reference summaries, about 20 percent of the summaries generated by our method were com-
pletely identical to their references. Moreover, we show that large-scale training samples are
quite effective for training a summarizer.

1 Introduction

Single-document summarization is attracting much more attention as a key technology in providing
better information access in a commercial context. The Financial Times and CNN have been providing
summaries of articles in their websites to attract users, and Summly, which has been acquired by Yahoo!,
provided the service of automatically summarizing articles on the Internet. Given the cost of manual
summarization, we can greatly improve the information access of Internet users by creating an automatic
summarizer that can approach the summarization quality of humans.

To mimic manually-written summaries, one important aspect is coherence (Nenkova and McKeown,
2011). Although coherence has been studied widely in a field of multi-document summarization (Kara-
manis et al., 2004; Barzilay and Lapata, 2005; Nishikawa et al., 2010; Christensen et al., 2013), it has not
been studied enough in the context of single-document summarization. In this paper, we revisit the prob-
lem of coherence and employ it to produce both informative and linguistically high-quality summaries.

To obtain such summaries, we introduce a novel summarization method based on a hidden semi-
Markov model. The method has the properties of both the popular single-document summarization
model, the knapsack problem, which packs the sentences into the given length and the hidden Markov
model, which takes summary coherence into account by determining sentence context when selecting
sentences. By leveraging this, we can build a summarizer that naturally achieves coherence.

We state the novelty and contributions of this paper as follows:

e We regard single-document summarization as a combinatorial optimization problem modeled by a
hidden semi-Markov model and propose an efficient decoding algorithm for the problem.

e We introduce various features related to coherence in a combinatorial formulation. We extend a
hidden semi-Markov model to achieve discrimination, so our method can take advantage of many
features for predicting coherence.
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e We show that our large-scale corpus greatly improves the performance of summarization.

This paper is organized as follows. In Section 2, we describe related work. In Section 3, we detail
our proposed model. We also explain how the parameters in our model are optimized and how sentences
are compressed. In Section 4, we explain how variants of the original sentences are generated. In
Section 5, we explain the decoding algorithm for our method. In Section 6, we explain the settings of
our experiments, our corpus, and compared methods. In Section 7, we show results of the experiments
conducted to evaluate our method. In Section 8, we conclude this paper.

2 Related Work

2.1 Single-Document Summarization

Basically, single-document summarization can be done through sentence selection (Nenkova and McK-
eown, 2011) . The document to be summarized is decomposed into a set of sentences and then the
summarizer selects a subset of the sentences as a summary.

McDonald (2007) pointed out that single-document summarization can be formulated as a well-known
combinatorial optimization problem, the knapsack problem. Given a set of sentences together with their
lengths and values, the summarizer packs them into a summary so that the total value is as large as possi-
ble but the total length is less than or equal to a given maximum summary length. Interestingly, a hidden
semi-Markov model (Yu, 2010) can be regarded as a natural extension of the knapsack problem, we take
advantage of this property for single-document summarization. We elaborate the relation between the
knapsack problem and the hidden semi-Markov model in Section 3.

To generate coherent summaries in single-document summarization, there are two types of ap-
proaches] : tree-based approaches (Marcu, 1997; Daume and Marcu, 2002; Hirao et al., 2013) and
sequence-based approaches (Barzilay and Lee, 2004; Shen et al., 2007). The former rely on the tree
representation of a document based on the Rhetorical Structure Theory (RST) (Mann and Thompson,
1988). Basically, the former approaches (Marcu, 1997; Daume and Marcu, 2002; Hirao et al., 2013) trim
the tree representation of a document by making use of nucleus-satellite relations among sentences. The
advantage of RST-based approaches is that they can take advantage of global information about the doc-
uments. However, a drawback is that they depend heavily on the RST parser that is used. Performance
is remarkably sensitive to the accuracy of RST parsing, and hence we have to build a good RST parser.
Instead of making use of the global structure of the document, the sequence-based methods rely on and
take advantage of the local coherence of sentences. As one advantage over the tree-based approaches,
the sequence-based approaches do not require tools as RST parsers, and hence they are more robust. For
this reason, this paper focuses on sequence-based approaches.

The previous works most closely related to our method are those proposed by Barzilay and Lee (2004)
and Shen et al. (2007). Barzilay and Lee built a hidden Markov model to capture the content structure of
documents and used it to identify the important sentences. Shen et al. (2007) extended the HMM-based
approach to make it discriminative by making use of conditional random fields (Lafferty et al., 2001).
Conditional random fields can incorporate various features to identify the importance of a sentence and
they showed its effectiveness. A shortcoming of these approaches is that their model only classifies sen-
tences into two classes, it cannot take account of output length directly. This deficiency is problematic
because in practical usage the maximum length of a summary is specified by the user; hence, the sum-
marizer should be able to control output length. In contrast to their method, our approach naturally takes
the maximum summary length into account when summarizing a document.

2.2 Coherence

In the context of multi-document summarization, coherence has been studied widely. In multi-document
summarization, sentences are selected from different documents, and hence some way of ordering the
sentences is required. Sentence ordering (Barzilay et al., 2002; Althaus et al., 2004; Karamanis et al.,

'As an interesting related work, Clarke and Lapata (2007) compresses documents by making use of Centering Theory

(Grosz et al., 1995). However, in their approach, the desired length of an output summary could not be specified and hence they
said their method was compression rather than summarization.
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Figure 1: An example of the hidden semi-Markov model. The system observes a sequence consisting
of 10 symbols 07...019 over time t1...t19 and transitions between states s;...s3. Unlike the basic hidden
Markov model, states can persist for a non-unit length. In this figure, state so and state s3 persist for
non-unit lengths. Hence, the system traverses only 6 states despite observing 10 symbols.

2004; Okazaki et al., 2004) is a task to order extracted sentences and is closely related to coherence
(Lapata, 2003; Barzilay and Lapata, 2005; Nenkova et al., 2010; Pitler et al., 2010; Louis and Nenkova,
2012). Many effective features have been found out to capture coherence and we utilize these features.

Some work proposed a model that could jointly taking the content of the summary and its coherence
into account (Nishikawa et al., 2010; Christensen et al., 2013). Since extracted sentences in multi-
document summarization must be ordered, a task that is NP-hard, they relied on integer linear program-
ming (Nishikawa et al., 2010) or a local search strategy (Christensen et al., 2013). The former can locate
the optimal solution at a heavy computation cost, while the latter runs quickly but there is no guarantee
of locating the optimal solution. In contrast to their trade-off, our proposed algorithm, based on dynamic
programming, can locate the optimal solution quickly because the single-document summarization can
skip the ordering operation by reproducing the original order of the input sentences.

In this paper, we show that coherence also takes an important role in single-document summarization.
We model the coherence between adjacent sentences in the summary by leveraging the hidden semi-
Markov model, which can naturally capture the coherence between sentences.

3 Summarization with Hidden Semi-Markov Model

We first introduce the knapsack problem, which can naturally model single-document summarization.
Next, we explain the hidden semi-Markov model and show its relationship to the knapsack problem.
Then, we elaborate our summarization method.

3.1 Knapsack Problem

The knapsack problem is a type of combinatorial optimization problem (Korte and Vygen, 2008). Given
a set of elements, each of which has a score and size, the problem is formulated as the task of finding
the best subset in terms of maximizing the sum of their scores under the size limitation. As mentioned
above, single-document summarization can be regarded as an instance of the knapsack problem. The
best combination of input sentences can be found by calculating the value of each sentence and packing
them into a summary through the dynamic programming knapsack algorithm.

3.2 Hidden Semi-Markov Model

The hidden semi-Markov model (HSMM) is an extension of the hidden Markov model (HMM) (Yu,
2010). In the popular hidden Markov model, each state persists for only one unit length. For example,
if a system observes 10 discrete symbols, it outputs 10 hidden states. In the HSMM, each state can
persist for some unit lengths through the concept of duration. For example, if a system observes 10
discrete symbols and each state persists for two unit lengths, i.e., their duration is 2, the system outputs
5 hidden states. We show an example in Figure 1. The system observes a sequence consisting of 10
symbols 01 ...01¢ over time ¢;...t1g9 and transitions between states s;...s3. Unlike the basic HMM, states
can persist for a non-unit length. In this figure, state so and state s3 persist for a non-unit length. Hence,
the system traverses 6 states even though it observes 10 symbols. This property has been utilized for
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sequential tagging, such as named entity recognition (Sarawagi and Cohen, 2004), scene text recognition
(Weinman et al., 2008) and phonetic recognition (Kim et al., 2011).

The hidden semi-Markov model is closely related to the knapsack problem. The length, K, of the
observed symbols can be regarded as a knapsack constraint. We can consider that the system tries to pack
the states of the model into the observed sequence of symbols by transitioning over the states under the
knapsack constraint so as to maximize the likelihood. Therefore, the hidden semi-Markov can naturally
be used for single-document summarization. Suppose that the document to be summarized consists of
10 sentences and the length of each of them is measured by the number of words. In this case, the system
transitions over 10 states corresponding to the 10 sentences until it cannot select any further sentence due
to the given length requirement. Since each state persists for the length of the corresponding sentence,
the remaining length decreases every time the system transitions to a new state.

While an HMM is basically a generative model, Collins (2002) extended it to create a discriminative
model. An HSMM can also be extended to become discriminative model (Sarawagi and Cohen, 2004).
Our discriminative HSMM learns through the application of max-margin training.

3.3 Formulation

We consider there are n input sentences si, So, ..., Sp. These sentences have lengths /1, /o, ..., £, and
weights wy, wa, ..., w,. We assume that a sentence that has a high weight should be present in the output
summary. We also consider each sentence, s;, has m; variants s; 1, s; 2, ..., S; m» €ach produced by some
sort of sentence compression or paraphrase module. These variants also have lengths ¢; 1, 0; 2, ..., {; m,
and weights w; 1, w; 2, ..., w; m,. For simplicity, we hereinafter note the original sentences s1, 52, ..., 5p,
as 51,0, 52,0, ---, Sn,0. Hence we have original sentence s; o and variants s; 1, 8; 2, ..., Sim . Let s and
Sn+1,0 be special symbols indicating the beginning of a document and the end of a document, respec-
tively. We define coherence ¢, 5, ; ; as the coherence between sentence s, j, and sentence s; ;. An output
summary is described as a sequence of input sentences, g. Let G be the entire set of sequences that can be
constructed from the input sentences, i.e., g € G. Finally, let K be the maximum length of the summary
desired. With these notations, our proposed method can be formulated as the following optimization
problem:

g" = argmax Z wi,j + Z Cg,hi,j M
9€eG sq,j€sent(g) (5g,n54,5)€adj(g)
s.t. Z E@j S K, (2)

sq,j€sent(g)

where sent(g) and adj(g) indicate a set of sentences in g and a set of adjacent sentences in g, respec-
tively. That is, our model tries to find the best sequence of sentences under the knapsack constraint so as
to maximize the sum of weights and sentence coherence. In contrast to the common knapsack problem
which cannot take the variants and sentence coherence into account, our method, based on the hidden
semi-Markov model, does so naturally.

3.4 Parameter Optimization

Here we elaborate how parameters in the model are optimized to achieve the desired summaries. The
goal is to determine the value of wj; ; for all ¢, j and ¢, 5, ; ; for all g, h, 4, j. We define w; ; and ¢y p, ; ; as
follows:

wij = Wy - fu(sij) 3)

Cohij = We fe(Sgns8ij), 4)

where f,, and f,. are d,,-dimensional and d.-dimensional feature vectors for sentences and sentence pairs,
respectively, and w,, and w,, are d,,-dimensional and d.-dimensional parameter vectors for sentences and
sentence pairs, respectively. The goal of optimization is to determine the values of both vector w,, and
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W, given feature function f,, and f.. For simplicity, let s be a summary, let f = (f,,, f.) be a (d, + d.)-
dimensional feature function for the whole summary and let w = (w,,, w.) be a (d,, + d.)-dimensional
weight vector. The value that the objective function outputs for summary s is w - f(s).

To optimize the parameter, we employ the Passive-Aggressive algorithm (Crammer, 2006), a widely-
used structured learning method. Since the algorithm offers online learning, it can learn the parameter
quickly and is easy to implement. To learn the parameter so that the output summary is optimized to
the evaluation criteria popular in document summarization research, ROUGE (Lin, 2004), we introduce
ROUGE as the loss function. The parameter is estimated by solving the following formula iteratively?:

1
w" = argmin §HW — wold|)2 Q)
w

st. w-f(r) —w-f(s) > loss(s;r),

new g the parameter vector after update, w°< is the parameter vector before update, r is a

reference summary, and loss is the loss function. We define loss as 1 — ROUGE(s;r). Among the
variants of ROUGE, we used ROUGE-1 for the loss function.

where w

3.4.1 Sentence Feature

The features introduced in this section are used to calculate the weights of sentences, w; ;.

Term Frequency: Term frequency is a classic feature in document summarization (Luhn, 1958). We
calculate the total number of times each content word occurs in the document and then, for each sentence,
sum the totals of the content words that appear in the sentence as the value of this feature.

Word: We also use the words and parts-of-speech as features.

Named Entity: Named entities such as a name of person or organization are important. We use named
entities and classes as features.

Length: The length of a sentence may indicate the information value of its content. We use the length of
a sentence, measured by character number, as a feature.

Position: The position of a sentence is a classically important feature. We use the position of a sentence,
the relative position of a sentence, whether the sentence is the first in the document and whether the
sentence is the first in a paragraph, the position of the paragraph in which the sentence is, as features.

3.4.2 Coherence Feature

The features introduced in this section are used to calculate sentence coherence, ¢y 4 ; i

Lexical Transition: Lapata (2003) showed that the structure of the document can be captured by word-
pairs consisting of words of two adjacent sentences. We use this feature for capturing the links between
two sentences®>. We build a set of word pairs where one occurs in a precedent sentence and the other
occurs in a succeeding one, and use the elements of the set as a feature.
Lexical Cohesion: Pitler et al. (2010) showed that the similarity of two sentences is one of the strongest
features for predicting coherence. We reproduce this feature for generating coherent summaries. We
calculate cosine similarity between two sentences and use its value as a feature.
Entity Grid: Previous studies showed that Entity Grid (Barzilay and Lapata, 2005) is a strong feature
for predicting coherence (Pitler et al., 2010). We also employ this feature for summarization. While the
entity vector made from the entity grid was originally defined for whole documents, we build the entity
vector for each pair of two sentences because our model is based on the Markovian assumption, and
hence the coherence score is defined between two sentences.

2As we explain later in Section 5, computation complexity of our algorithm is pseudo-polynomial, and hence the best
solution of our model can be located quickly. This is also advantageous in the learning phase because to learn parameters using
structured learning, the learner has to generate a summary to calculate the loss. Since our algorithm can quickly find the best
solution and generate a summary, it can also contribute to shortening the time required for learning.

31t is expected that this feature will also contribute to sentence selection. Barzilay and Elhadad (1997) showed that a closely
related word-pair was a good indicator for sentence selection. This feature captures this property by learning.
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documents.

4 Generating Sentence Variants

Since our model can take the variants of an original sentence in the input document as in the multi-
candidate reduction framework (Zajic et al., 2007), we incorporate sentence compression.

We generate a few variants of each original sentence by trimming the dependency tree of the sentence;
this simple operation is sufficient for reproducing reference summaries. By aligning sentences in a refer-
ence summary with those in the corresponding input document*, we found that human summaries were
quite conservative. Among the 36,413 sentences in the references, 16,643 were identical to the aligned
sentences in the input documents. Furthermore, most remaining sentences were virtually identical to the
original sentences; revisions were minor, and can be reproduced by simple operations. Few sentences
exhibited paraphrasing or more sophisticated operations. We plot the distribution of Levenshtein distance
in the aligned sentences in Figure 2. According to this observation, we produce the following types of
variants by sentence compression:

1. Removing information in parentheses. Some sentences contain parentheses containing additional
information for readers. The first type of variant deletes text in parentheses.

2. Shortening sentences by trimming their dependency trees. Basically this method follows the sen-
tence trimmer proposed by Nomoto (2008). While using his method, we keep the predicate and its
obligatory arguments in the sentences to keep the sentences grammatical. If a predicate is trimmed,
its obligatory arguments are also trimmed and vice versa. Since there are an exponential number
of subtrees in one tree, we use only n-best subtrees by ranking them according to n-gram language
likelihood and dependency-based language likelihood. We used the dependency parser proposed by
Imamura et al (Imamura et al., 2007) to acquire the dependency tree.

S Decoding with Dynamic Programming

To solve Equation 1 under the constraints of Equation 2, we use dynamic programming. Algorithm
1 shows the pseudo code of the decoding algorithm. Line 1 to Line 7 initializes the variables used in
the algorithm. Vector x = (zy, ..., Zp+1) stores which sentence and which variants are included in the
output summary. If 3 = 2, s3 9 is included in the summary. V, P and S are two-dimensional arrays,
each of which is used as a dynamic programming table. They store the process of dynamic programming.

4 Alignment proceeds in two steps: first, we calculate the Levenshtein distance between sentences in the document and its
reference, and then we align sentences so as to minimize the distance between them.
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Algorithm 1 Decoding Algorithm: Filling Table

I: x = (0, ..., Tns1)

2: fori=0ton + 1do

3: x; = —1

4: V[0][i] « —1

5: P[0][5] «— —1

6: S[0][i] — 0

7: vio][o] =0

8: fork = 1to K do

9: for i = 1ton do

10: Vk][i] — V[k — 1][4]

11: P[k][i] « P[k — 1][3]

12: S[k][i] < S[k — 1][4]

13: for v = 0 to m; do

14: if£; , < k then

15: forh =0toi — 1do

16: u=V/k—£]h]

17: ifu# —1ASk— 4 ][R +wiv~+ Ch,u,i,o > S[k][z] then
18: V[k][l] — v

19: Plk][i] — h
20: S[k][z] — Sk — £i,0][R] + wiv + Chyu,io

21: VIK+1][n+1] <0

22: PIK +1][n+1] <0

23: S[K +1][n+1] <0

24: for h = 1ton do

25: w=V[K][A]

26: if S[K][h] + ch,u,nt+1,0 = S[K + 1][n + 1] then
27: PIK +1][n+1] « h

28: S[K -+ 1][71 + 1] — S[K][h] + Ch,u,n+1,0

Document Reference

Avg. # of characters 476.2 142.0
Avg. # of words 298.6 88.3
Avg. # of sentences 9.7 2.9

Table 1: The statistics of our corpus.

V'[k][i] stores which variants are used at time k,:. If V[k][i] = 0, original sentence s; ¢ is selected at
time k, 4. If V]k][i]] = —1, no sentence is selected at time k,i. P[k][i] stores a pointer to the sentence
connected to the front of the current sentence. S|[k][i] stores the value of the objective function at time
k.. Line 8 to Line 36 locates the best sequence of sentences based on the following recurrence formula:

S[k — 1][ B). ©

i = {maxhzo...il,v:[]...m Sk — i p][h] + Wi + chyip—t; Jhiw (D)
where case A is: £;, < k A S[k —1][i] < Sk — &iy][h] + win + e v[k—t, ,]n]i0 and case B is:
otherwise. This recurrence formula means that at time k, ¢ the best variant to be selected as can be
determined at time k — ¢; ,,, h. Hence, for all £ € 1...K and 7 € 1...n, the algorithm finds the best
sequence of sentences at time k, . After Algorithm 1 locates the best sequence of sentences by filling
the tables, the best sequence can be restored by backtracing along the pointers stored in P. Finally, the
algorithm outputs x, which stores which sentences and variants are used in the best sequence. Since
this algorithm is based on a dynamic programming knapsack algorithm (Korte and Vygen, 2008), it runs
in pseudo-polynomial time. This is a significant advantage over the methods that rely on integer linear
programming solvers due to their substantial computation cost.

6 Experiments

6.1 Data

We prepared 12,748 pairs of Japanese newspaper articles and their manually-written reference sum-
maries. This is one of the largest corpus available for single-document summarization research. The
length of all references is within 150 characters. All references in the corpus were written by a specialist
staff in a Japanese newspaper company and the company sold these summaries for commercial purposes.
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We list the statistics of our corpus in Table 1. As shown, the task is to summarize the document in about
a third of its original length in terms of the number of words.

6.2 Evaluation Criteria

ROUGE; ROUGE is an automatic evaluation method for automatic summarization proposed by Lin
(2004). We used ROUGE-1 and ROUGE-2 to evaluate the summaries. Since our document-reference
pairs are written in Japanese, we segmented the sentences into words using the Japanese morphological
analyzer developed by Fuchi and Takagi (1998). When calculating the ROUGE score, we used only
content words (i.e. nouns, verbs and adjectives) and so excluded function words as stop words.
Linguistic Quality: To evaluate the linguistic quality of the summaries generated by our method, we
performed a manual evaluation according to quality questions proposed by the National Institute of
Standards and Technology (NIST) (2007)°. We randomly sampled 100 summaries from the outputs of
each method described below and asked 7 subjects to evaluate the summaries according to the questions.
All subjects were Japanese native and none were among the authors. Since the quality questions by
NIST (2007) were designed for multi-document summarization, we used 3 of the 5 NIST questions for
single-document summarization: grammaticality, referential clarity, and structure/coherence. We also
asked the subjects to evaluate overall summary quality.

6.3 Compared Methods
We compared the following 8 methods.

Random: Random method selects sentences in the input document randomly.

Lead: Lead method is a classic baseline in single-document summarization. It only extracts the words
from the beginning of the document until the extracted words reach the given length. We simply extracted
150 characters from the beginning of each document.

Knapsack: The knapsack problem can be used as a single-document summarization model (McDonald,
2007). In this baseline, the weight of each sentence was calculated based on the average probabilities
of the words in the sentence (Nenkova and Vanderwende, 2005). Then, a summary was generated by
solving the knapsack problem.

Knapsack with Supervision: Instead of the average word probabilities used in the above baseline, we
used only sentence features f,, to weigh a sentence.

Conditional Random Fields: Conditional random fields can be used to weigh sentences (Shen et al.,
2007). Since CRFs required binary labels in learning, we aligned sentences in an input document with
the sentences in its reference as explained in Section 4. We used the probabilities of sentences from
CREFs as the weights of the knapsack problem.

Hidden Semi-Markov Model: This is our proposed method without variants of the original sentences.
It selected sentences only from the set of original sentences.

Hidden Semi-Markov Model with Compression: This is our proposed method with variants of the
original sentences. It selected from among the variants and the original ones.

Human: In the linguistic quality evaluation, we added references to the summaries generated by the
above methods to show the upper bound.

When learning, we did 10-fold cross validation. In the experiments, statistical significance was
checked by Wilcoxon signed-rank test (Wilcoxon, 1945). To counteract the problem of multiple com-
parisons, we used the Holm-Bonferroni method (Holm, 1979) to adjust the significance level, .

7 Results and Discussion

We show the results of our experiment in Table 2 and Table 3. In this section, first we discuss the results
of the ROUGE evaluation, and then we discuss the results of the linguistic quality evaluation.

In the ROUGE evaluation, all the compared methods except for RANDOM showed good performance.
This is because, as shown in Section 4, many references consisted of sentences identical to the original

>Some recent studies have tried to predict the readability of the text automatically (Pitler et al., 2010).
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Method R-1 R-2 Idt. Method Gram. Ref. S./C. Overall

RANDOM 0.417 0.291 1.2% LEAD 1.9 39 25 21
LEAD 0.779%S:UR (727CSUR 449 KP 41 37 34 35
KP 0.704% 0.611% 9.3% KP(S) 42 36 35 36"
KP(S) 0.729YVR  0.647UR 10.4% CRFs 41 39 378 360
CRFs 0.74198%  0.6755UR  113% HSMM  43F 40 4.1% 4.0
HSMM  0.769%5UR (.703CSUR 1529 HSMM(C) 4.0 39 40 39
HSMM(C) 0.785C:S:UR (.722C8UR 2049 HUMAN 4.7% 45 47% 438C

Table 2: Results of the ROUGE evaluation. Table 3: Results of the linguistic quality evalua-
“R-1” and “R-2” correspond to ROUGE-1 and tion. The values ranged from 1 (very poor) to 5
ROUGE-2, respectively. The values in the col- (very good) (National Institute of Standards and
umn of “Idt” are the percentage of summaries Technology, 2007). We show statistical signifi-
completely-identical to the corresponding refer- cance with the same notations as Table 2.

ences. In the table, ©SULR indicate statisti-

cal significance against CRFs, KP(S), KP, LEAD,

RANDOM, respectively.

ones, and hence the references can be reproduced if important sentences are identified. Since the com-
pression rate in our corpus was relatively light, it made important information easy to identify. Among
the compared methods, both LEAD and our proposed method, HSMM(C), achieved the best result. There
was no significant difference between LEAD and HSMM(C). This surprising performance of LEAD was
due to the ROUGE evaluation. The words in the document leads were likely to be important, and LEAD
drew on this property. However, as we mentioned later, it sacrificed the linguistic quality to achieve the
high ROUGE score. Furthermore, it failed to yield summaries identical to the reference. In contrast to
LEAD, almost 20% of the summaries generated by HSMM(C) were identical to the references. This
shows that our method successfully mimicked human assessments. HSMM followed the best models.
There was a statistically significant difference between HSMM(C) and HSMM. Since some sentences,
especially the first sentence in the document, were long and the first sentence was particularly impor-
tant to summarize the document, sentence compression yielded a significant improvement. As shown
in Table 2, employing compression greatly improved the percentage of identical summaries. HSMM
significantly outperformed all of the baseline extractive methods except LEAD. While CRFs can take
advantage of all features used in HSMM, CRFs cannot take the evaluation measure such as ROUGE and
the knapsack constraint into account in learning. HSMM also significantly outperformed KP(S). This
difference is particularly important, and shows the usefulness of features related to coherence. While
KP(S) used only features about sentences, HSMM successfully mimicked the references as it drew on
the features related to coherence.

We show the learning curve of HSMM in Figure 3. We fixed 2,748 pairs for testing, and learned
parameters from 100, 250, 500, 1,000, 2,500, 5,000, 7,500 and 10,000 pairs. The curve in the figure
clearly shows the effectiveness of our large-scale corpus in learning. It seems that the curve does not
saturate and hence HSMM performance can be improved by more training samples. As in the results
recently shown by Filippova (2013), this result implies that large-scale data is important in the field
of document summarization as in other fields of computational linguistics. Past studies in document
summarization relied on relatively small datasets consisting of a few dozen or at most a few hundred
pairs of a document and its reference in learning. In contrast to the past studies, there are over 10,000
pairs in our dataset and the results show its effectiveness.

Second, we discuss the result of the linguistic quality evaluation. Unlike the ROUGE evaluation,
HSMM achieved the best result. As previous studies have pointed out (Nenkova and McKeown, 2011),
sentence compression commonly tends to degrade the linguistic quality of a summary while improving
its content. As shown in Table 3, the grammaticality of HSMM(C) is lower than that of HSMM, but the
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difference is not significant. Although we could not observe any significant difference between HSMM
and other extractive baselines, our proposals, HSMM and HSMM(C), yielded the best result in terms
of structure/coherence. By making use of the features related to coherence, we successfully improved
summary quality. In contrast to the surprising performance of LEAD in the ROUGE evaluation, in the
linguistic quality evaluation, LEAD yielded the worst performance. Since LEAD had to cut the sentences
when it reached the given length, it create ungrammatical fragments.

Finally, we touch on the balance between the quality of content and linguistic quality. Comparing
Table 2 to 3, we can see the correlation between the quality of content and linguistic quality. This re-
sult is reasonable because we can extract much more information from grammatical and well-organized
sentences. Although we optimized the parameter to maximize the ROUGE score, it also yielded im-
provements in linguistic quality. This is because the manually-generated reference summaries are ba-
sically grammatical and well-organized and the parameter is learnt to mimic them. However, there is
an inherent trade-off between the quality of content and linguistic quality. For example, under stricter
length limitations, instead of cohesive devices such as conjunctions, which can improve the coherence of
sentences, content words would be preferred for summary inclusion to augment information. Balancing
them to maximize reader satisfaction is an interesting problem.

8 Conclusions

In this paper we presented a novel single-document summarization method based on the hidden semi-
Markov model, which is a natural extension of the knapsack problem. Our model naturally takes account
of sentence context when identifying important sentences. This property is particularly important to
ensure the coherence of output summaries and to produce informative and linguistically high-quality
summaries. We also proposed an algorithm based on dynamic programming so the best solution can be
located quickly. Experiments on a very large-scale single-document summarization corpus showed that
our proposed method significantly outperforms competitive baselines.

As future work, we plan to tackle on the summarization task where higher compression is demanded.
To generate shorter summaries, we plan to employ more sophisticated approaches, such as paraphrasing.
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