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Abstract

In this paper, we address the role of syntactic parsing for distributional similarity. On the one
hand, we are exploring distributional similarities as an extrinsic test bed for unsupervised parsers.
On the other hand, we explore whether single unsupervised parsers, or their combination, can
contribute to better distributional similarities, or even replace supervised parsing as a prepro-
cessing step for word similarity. We evaluate distributional thesauri against manually created
taxonomies both for English and German for five unsupervised parsers. While for English, a
supervised parser is the best single parser in this evaluation, we find an unsupervised parser to
work best for German. For both languages, we show significant improvements in word similarity
when combining features from supervised and unsupervised parsers. To our knowledge, this is
the first work where unsupervised parsers are systematically evaluated extrinsically in a seman-
tic task, and the first work to show that unsupervised parsing can complement and even replace
supervised parsing, when used as a pre-processing feature.

1 Introduction

While the field has seen increased interest in automatically inducing syntactic structures from raw or part-
of-speech (POS) tagged text, the evaluation of unsupervised data-driven parsers has almost exclusively
been conducted either by introspection or by automatic comparison to treebanks. It might be due to
comparatively low scores on reproducing a treebank’s syntactic annotation that hardly anyone has yet
attempted to use the output of unsupervised parsers for an NLP task other than parsing itself.

A further complication with unsupervised parsers – be it dependency parsers, constituency parsers
or combinatory categorial grammar parsers – is that the categories induced by such parsers cannot be
straightforwardly mapped to linguistically-inspired categories as defined in a treebank. But also when
considering only unlabeled syntactic annotations, an unsupervised parser is hardly to blame if it does not
adhere to sometimes arbitrary conventions: e.g. for dependencies, it is not a priori clear how to connect
auxiliary and main verbs, where to attach the complementizer of subordinate clauses, how to represent
a conjunction and its conjuncts, how to relate the preposition and the nominal in prepositional phrases,
and how to handle punctuation, cf. Nivre and Kübler (2006), Schwartz et al. (2011).

When it comes to utilizing syntactic structures, however, it is more important that they are consistent
across different sentences than that they adhere to specific syntactic theories and conventions. Here, we
choose a task that makes only intermediary use of syntactic structures: we employ unsupervised parsing
for preprocessing corpora for the purpose of computing distributional similarities. Since it is generally
accepted (e.g. (Lin, 1997; Curran and Moens, 2002)), that syntactic preprocessing plays an important
role for the quality of distributional thesauri, and comparing words along their syntactic contexts does
rely on the existence of such a structure rather than its actual representation, we believe that distribu-
tional similarities are an excellent test bed for addressing the following two research questions: (1) How
do unsupervised parsers compare to supervised parsers when used as feature providers for building Dis-

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer are
added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1435



tributional Thesauri (DTs) in comparison to supervised parsers? (2) Can the combination of syntactic
parsers increase DT quality?

2 Related Work

2.1 Unsupervised Parser Evaluation

As with other unsupervised approaches, the premise of unsupervised induction of syntactic structure
is to alleviate the bottleneck of expensive manual annotations for improving NLP applications. For
grammar induction, the potential is extremely high due to the complexity of the subject matter: treebanks
belong to the most work-intensive NLP datasets. On the other hand, this complexity is hard to grasp for
unsupervised systems, which is probably the reason why unsupervised parsing technology is still in its
infancy, despite more than a decade of work on this topic.

One of the early works inducing structure from raw sentences and yielding better performance than
a random baseline was achieved by van Zaanen and of Leeds. School of Computer Studies (2001),
who used an Alignment Based Learning (ABL) approach. This algorithm compares all sentences of
a given set and considers matching sequences as constituents. Klein and Manning (2002) presented
another approach focusing on constituent sequences called the Constituent-Context Model (CCM). It is
an EM-based iterative approach that makes use of the linguistic phenomenon that long constituents often
have shorter representations of the same grammatical function that occur in similar contexts. A hybrid
approach combining CCM with a dependency model, called Dependency Model with Valence (DMV),
shows even better performance and is the first unsupervised system to outperform the right-branching
baseline (Klein and Manning, 2004). A great number of recent works are based on DMV, such as the
system by Headden III et al. (2009), who improved DMV by adding lexical information, and Gillenwater
et al. (2010) who added posterior regularization during the training process. Bod (2007) takes a slightly
different direction by following an “all subtrees approach”, where all possible binary trees are generated
for each sentence. It generates all possible binary trees for each sentence. The parse of a new sentence is
determined by selecting the most probable tree based on the previously accumulated subtree frequencies.
Most of the evaluation of these parsers was performed against a treebank, offering manually annotated
and linguistically motivated parse trees. Schwartz et al. (2011) underline the fact that treebanks contain
linguistically problematic annotations, cases without linguistic consensus, such as the decision on the
head of a verb phrase or a sequence of nouns. They show that the neglectance of these cases has a
significant but unjustified negative influence on the evaluation outcomes and propose a new measure,
Neutral Edge Direction (NED), which alleviates this problem. Bod (2007) argues that parser evaluation
against a treebank favors supervised approaches and therefore measures the parser quality on the outcome
of a syntax based Machine Translation (MT) task where the dependency parsers are evaluated as language
models. In Motazedi et al. (2012), a single unsupervised parser is evaluated in an extrinsic evaluation
for realisation ranking, and does not compare favorably against a supervised parser. Other extrinsic
evaluations with supervised dependency parsers have been performed in information extraction systems
(Miyao et al., 2008; Buyko and Hahn, 2010) or semantic role labeling (Johansson and Nugues, 2008).

2.2 Evaluating Distributional Similarity

Distributional thesauri have been evaluated both extrinsically and intrinsically. Extrinsic evaluations have
been performed e.g. for automatic set expansion (Pantel et al., 2009) or phrase polarity identification
(Goyal and Daumé, 2011). In this work, we will conduct an intrinsic evaluation, which is more common
for the evaluation of DTs and lexical semantic similarity. Lin (1997; 1998) introduced two measures
using WordNet (Miller, 1995) and Roget’s Thesaurus. Using WordNet, he defines context (synsets a
word occurs in Wordnet or subsets when using Roget’s Thesaurus) and then builds a gold standard
thesaurus using a similarity measure on these contexts. Then he evaluates his automatically computed
Distributional Thesaurus (DT) with respect to the gold standard thesauri. Weeds et al. (2004) evaluate
various similarity measures based on 1000 frequent and 1000 infrequent target terms. Curran (2004)
created a gold standard thesaurus by manually extracting entries from several English thesauri for 70
words. His automatically generated DTs are evaluated against this gold standard thesaurus. All these
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systems employ context representations based on syntactic parsing for computing word similarity.
We are going to use a comparatively simple WordNet-based measure, which calculates the similarity

between two terms using the WordNet::Similarity path measure (Pedersen et al., 2004), and averages
path scores between a target term and its n most similar terms. The score between two terms is inversely
proportional to the shortest path between all the synsets of both terms. If two terms share a synset,
the highest possible score of one is assigned. The score is 0.5 for terms that stand in a direct hypernym
relation, and so on. While the absolute scores are hard to interpret due to inhomogeneity in the granularity
of WordNet, they are well-suited for relative comparison when operating on the same set of target terms.
The evaluation in this work is performed by comparing the average score of the top ten entries in the
DT for each of the target terms and report separately on frequent and rare words. Riedl and Biemann
(2013) also show that the results, using the WordNet based approach, are highly correlated to the results
observed with Curran’s approach using a manually created thesaurus. This justifies the usage of manually
created taxonomies for this evaluation.

3 Methodology

3.1 Parsers

In our evaluation, we use five unsupervised parsers, which we will describe briefly. They have been
selected to span several paradigms of unsupervised syntax induction, and due to software availability.

Gillenwater et al. (2010)1 use a model based on the DMV (Klein and Manning, 2004) and improve
performance by adding sparsity biases on dependency types. They assume a corpus annotated with POS
tags. The aim of this bias is to limit unique head-dependent tag pairs, which is achieved by a constraint
on model posteriors during the learning process.

The work of Marecek and Straka (2013)2 is another enhancement of the DMV and is subsequently
referred to as Unsupervised Dependency Parser (UDP). It additionally uses prior knowledge in the form
of stop estimates that are computed on a large raw corpus using the reducibility principle: a sequence
of words is considered as reducible if a word can be removed from the phrase and the remaining part
appears another time in the corpus. The assumed property, that the first word of a reducible sequence
does not have any left children and the last word of this sequence does not have any right children, is
used for the calculation of such stop estimates. The authors show that estimates computed on a large
corpus such as Wikipedia can be used for the parsing of new text.

Bisk and Hockenmaier (2013) use an EM approach to induce a Combinatory Categorial Grammar
(CCG), based on very general linguistic assumptions. It creates a model that can be used to parse un-
seen data. The algorithm requires a corpus, previously assigned with POS tags, in order to be able to
distinguish between word classes (mainly to find the verb), and employs general knowledge such as that
sentences are headed by verbs. Further language-specific properties are induced from the training data.

Seginer (2007)3 takes an incremental parsing and learning approach. It operates directly on the plain
text without the need for POS tags, by using Common Cover Links (CCL), which can be directly con-
verted to dependency arcs. This parser learns during parsing and can be used without a prior learning
step. This should result in increased parsing quality towards later stages, which suggests several passes
over the training data. The obtained model can then be reused to parse unseen data.

The approach of Søgaard (2012) is different from all other approaches discussed here: This algorithm
does not require any training data and can operate with or without POS tags. For this reason, it can be
applied to arbitrary amounts of data, since it operates sentence-wise without memorizing previous inputs,
and produces non-projective dependency parses. The words of a phrase are ordered by centrality and a
parse is determined by the ranking of a parsing algorithm, which uses general linguistic knowledge for
grammar induction. This knowledge is inspired by the rules of Naseem et al. (2010), and the approach
has been tuned (once and for all, for all languages) on development data from the Penn Treebank.

1http://code.google.com/p/pr-toolkit/
2http://ufal.mff.cuni.cz/udp/
3http://www.seggu.net/ccl/
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Figure 1: Parses for an example sentence for several parsers. Here, Bisk’s parser looks most similar to
the parses extracted from the Stanford parser. Gillenwater and UDP seem to have some problems with
the full stop. Søgaards parser mostly connects neighbors.

Baseline Søgaard Gillenwater UDP Bisk Seginer Seginer
English 53.2 59.9 64.4 55.4 70.3 55.6 (WSJ 40) 74.2 (WSJ 10)
German 33.7 57.6 35.7 52.4 68.4 38.2 (Negra 40) 48.0 (Negra 10)

Table 1: Unlabeled accuracy values of different unsupervised parsers based on the CoNLL-X shared task
(Buchholz and Marsi, 2006). Seginers results show F-measure values for the Negra and the WSJ corpus,
used with maximum sentence of lengths of 10 and 40.

An example sentence and the according parses coming from the 10M model, except for UDP, where
the 1M model is used (cf. Table 2 in Section 4.3.1), are shown in Figure 1.

Table 1 reports the accuracy of four parsers for the English and the German treebanks from the CoNLL-
X shared task (Buchholz and Marsi, 2006) predicting unlabeled dependency parses for sentences with
length equal and smaller than 10 tokens. Seginer reports only F-scores for WSJ and Negra considering
sentences with a maximum length of 10 and 40. The best baselines reported in Canisius et al. (2006) are
a left branching method for English and a nearest neighbor branching method for German, which is a
combination of left and right branching.

3.2 Computing Distributional Thesauri

The extraction of context features, used to calculate similarities between terms, is performed in accor-
dance with the generic scheme proposed in (Biemann and Riedl, 2013): A (typed or untyped) parser
arc is split into term and context feature, which consists of the edge direction and label (if any), and the
connected term. Similarity between terms is subsequently computed on the overlap of their most salient
context features. We represent the term t and the context feature c as a pair < t, c > and extract a depen-
dency triple (or dependency pair, as most unsupervised dependency parsers do not label the edges). For
the dependency between I and gave (nsub;gave;I) in I gave her the book, terms and context features
would look like <gave,(nsub,I,@)> and <I,(nsub,@,gave)>. In this example, the term gave
is characterized by the context information that I is its nominal subject, and term I is characterized by
being the subject of gave. We build distributional thesauri using the JoBimText4 open-source framework.
This framework scales to large data and has proven to outperform other methods, when using large data
(Riedl and Biemann, 2013). The computation of the distributional thesaurus within this framework is
following the MapReduce paradigm and scales to very large corpora. This is achieved by applying a
significance measure between term and context feature, retaining only the most salient 1000 context fea-
tures per term, and computing the cardinality of the set overlap between the respective context features

4www.jobimtext.org, (Biemann and Riedl, 2013)
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per term, which defines the similarity between terms. Per term, the most similar terms are subsequently
ranked, resulting in a distributional thesaurus as introduced by Lin (1997).

4 Evaluation

We report experimental results on German and English corpora. Both corpora are compiled from 10
million sentences (about 2 Gigawords) each from the Leipzig Corpora Collection5, randomly sampled
from online newspapers. The semantic similarity in English DTs is assessed using WordNet 3.1 as a
lexical resource, as proposed by Riedl and Biemann (2013). For evaluating the German DTs, we replace
WordNet by its German counterpart, GermaNet 8 (Hamp and Feldweg, 1997). We report results sepa-
rately for frequent and infrequent targets and average the path scores for the most similar 10 words per
entry. The evaluation of the English DTs is performed using 1000 frequent and 1000 infrequent nouns,
as previously employed by Weeds et al. (2004). These nouns are randomly sampled from the British
National Corpus (BNC) and all occur in WordNet. For the evaluation of German DTs, we randomly
selected 1000 frequent and 1000 infrequent nouns from our German corpus that all occur in GermaNet.

4.1 Experimental Settings

The DTs are calculated using the dependencies from the unsupervised parsers, one at a time. To show
the impact of corpus size, we down-sampled our corpora, and used 1 million (1M), 100,000 (100K) and
10,000 (10K) sentences (raw or automatically POS-tagged with the TreeTagger6) for training/inducing
the parsers. Not all parsers were able to deal with the large training sets in feasible runtime, which might
either be due to their computational complexity or their implementation. While it would be preferable to
keep the corpus size for DT computations constant, this was not possible since some of our unsupervised
parsers cannot be applied to unseen text. Hence, we decided to report DT quality results for two setups:
Setup A uses the same data for training the parsers and the DT computation. Setup B uses the full
corpus of 10M sentences for DT computation, parsed with unsupervised parsers induced on differently
sized corpus samples. We feel that Setup B is better reflecting the possible utilization of unsupervised
parsers for semantic similarity, since DT quality is known to increase with corpus size. However, we
still wanted to assess the quality of parsers that cannot be operated on unseen text in their current state
of development.

4.2 Four Baselines

We compare the results of unsupervised parsers against four baselines. As a lower-bound baseline, we
use a random dependency parser that connects each word in a sentence with a randomly chosen other
word. As a supervised upper-bound baseline, we use Stanford collapsed dependencies (Marneffe et al.,
2006) for the English data and dependencies coming from the Mate tools (Bohnet, 2010) for the German
corpus. Finally, to gauge whether the potential of unsupervised parsing to model long-range depen-
dencies – as opposed to local n-gram contexts – lead to better distributional similarities, we use word
bigrams and trigrams as n-gram-based systems. The bigram system simulates left- and right-branching.
We characterize the word in the first and in the second position of two neighboring words, which re-
sults to the following term feature pairs according to the example in Section 3.2: <I,(@,gave)> and
<gave,(I,@)>. Using the trigram, we characterize the word in the second position with the context
feature formed by the pair of words in first and third position. The term-feature pair for gave would be
<gave, (I,@,her)>.

While we expect the scores of any reasonable unsupervised parser to fall somewhere between the
lower bound and the upper bound when compared in the same setting, the n-gram baselines serve as a
measure for whether it is worth the trouble to induce and run the unsupervised parser for our evaluation
application, as opposed to relying on an arguably simpler system for this purpose.

5corpora.uni-leipzig.de, (Richter et al., 2006)
6www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/, (Schmid, 1997)
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4.3 Results

4.3.1 Single Parser Results for English

We summarize the results for the English evaluation for Setup A and Setup B in Table 2. All unsu-
pervised parsers beat the random baseline in all setups, with higher improvements observed using more
training data, which somewhat validates their approaches. Also, more data for DT computation results
in higher similarity scores, and rare words generally receive lower scores on average, which is expected
and validates the DT computation framework.

10k 100k 1M 10M
Parser freq rare freq rare freq rare freq rare

Setup A

Random 0.115 0.029 0.128 0.082 0.145 0.103 0.159 0.113
Trigram 0.133 0.020 0.179 0.082 0.200 0.120 0.236 0.151
Bigram 0.140 0.029 0.173 0.088 0.208 0.129 0.246 0.159
Stanford 0.151 0.028 0.209 0.128 0.261 0.176 0.280 0.209
Seginer 0.136 0.027 0.176 0.085 0.211 0.127 0.240 0.155

Gillenwater 0.135 0.026 0.159 0.077 0.195 0.117 0.223 0.141
Søgaard 0.120 0.027 0.147 0.083 0.185 0.117 0.227 0.144

UDP 0.127 0.017 0.169 0.063 0.204 0.119 * *
Bisk 0.118 0.017 * * * * * *

Setup B
Seginer 0.200 0.063 0.236 0.139 0.241 0.156 0.240 0.155

Gillenwater 0.220 0.140 0.221 0.142 0.221 0.141 0.223 0.141
Søgaard 0.227 0.144 0.227 0.144 0.227 0.144 0.227 0.144

Bisk 0.220 0.139 * * * * * *

Table 2: Setup A English: Parser induction and DT computation on the same corpus. Wordnet path
scores averaged on top 10 similar words, for 1000 frequent and 1000 rare nouns. A * denotes that the
evaluation failed because of computational constraints. Setup B English: Parser induction on different
corpus sizes, and DT computation on 10M sentences.

In comparison to the n-gram baselines, only the parser by Seginer yields a higher score for frequent
words and 1M sentences training in Setup A. However, the difference is very small and is confirmed on
the 10M sentences only in comparison to the Trigram baseline. It seems that Seginer’s training procedure
saturates somewhere between 100K and 1M sentences, and shows even slightly worse performance on
10M sentences of training in Setup B. All parsers do not seem to be particularly useful as preprocessing
steps for DT computation, since better similarity can consistently be reached by context features based
on bigram statistics.

Comparing the unsupervised parsers, we note that Seginer’s approach consistently scores highest in
Setup A, while UDP comes in second for frequent words but not for rare words. While Gillenwater’s
approach reaches comparably high scores for small corpora in Setup A, it is beaten by Søgaard’s no-
training approach for larger corpora: It seems that Gillenwater’s training procedure can hardly make use
of additional training, which is shown in Setup B, where practically no differences are observed between
10K and 10M sentences of parser training. Differences in Setup A are thus solely due to increased corpus
size for DT computation for the Gillenwater experiments.

UDP did not finish parsing 10M sentences after running for 157 days, and it is not trivial to disable
its update procedure, which is why we could not include UDP in Setup B. Bisk’s parser is a special
case in this evaluation, since it only selects sentences shorter than 15 tokens for training, and hence was
effectively trained on a 5400 sentence subset of the 10K corpus. While we did not manage to train it on
larger corpora, we could apply this model on 10M sentences in Setup B, where it lands slightly below
the no-training Søgaard parser, but clearly above Seginer’s approach for 10K training.

4.3.2 Single Parser Results for German

A different picture is drawn for the German evaluation (see Setup A in Table 3). Comparing the results
of the unsupervised parsers, Seginer’s parser does not only outperform the trigram and bigram baseline
for frequent nouns but also the supervised Mate parser for all corpus sizes. Yet, the improvements over

1440



the Mate parser are not significant for all results using a paired t-test7. Also, Søgaards parser exceeds the
trigram and bigram baseline for 10 million sentences. The remaining unsupervised parsers can beat the
random baseline for frequent nouns but none of the n-gram baselines. Again we are not able to parse the
10 million sentences using UDP and also Gillenwater’s parser failed, parsing this corpus. Comparing the
baselines in Setup A (see Table 3), we observe a difference between the sophisticated baselines and the
random baseline only for frequent words.

10k 100k 1M 10M
Parser freq rare freq rare freq rare freq rare

Setup A

Random 0.097 0.002 0.108 0.010 0.123 0.051 0.143 0.077
Trigram 0.102 0.002 0.130 0.014 0.159 0.067 0.179 0.086
Bigram 0.112 0.003 0.130 0.009 0.163 0.053 0.192 0.082
Mate 0.111 0.004 0.126 0.014 0.170 0.027 0.204 0.090

Seginer 0.113† 0.002 0.137† 0.012 0.171 0.068 0.208 0.091
Gillenwater 0.104 0.002 0.118 0.009 0.132 0.040 * *

Søgaard 0.104 0.002 0.123 0.010 0.161 0.054 0.193 0.077
UDP 0.107 0.001 0.129 0.004 0.151 0.021 * *
Bisk 0.101 0.002 * * * * * *

Setup B

Seginer 0.153 0.004 0.186 0.021 0.200 0.092 0.208 0.091
Gillenwater 0.189 0.080 0.190 0.082 0.189 0.080 * *

Søgaard 0.193 0.077 0.193 0.077 0.193 0.077 0.193 0.077
Bisk 0.185 0.069 * * * * * *

Table 3: Setup A and B for German corpora.

Furthermore, we see that the supervised Mate parser results in worse scores for the frequent nouns
using the 10k and 100k dataset in comparison to the bigram baseline. This could be attributed to the
heavier tail in German’s word frequency distribution, which results in sparser context features for small
data8. For the 1M and 10M datasets, the supervised parser yields the best similarities for frequent nouns.

The results for Setup B for the German corpora are shown at the bottom in Table 3. We observe
similar trends to the ones for the English data: using more data for the training does not seem to help the
performance of Gillenwater’s algorithm. Noticeable is the increase of Seginer’s results for rare words as
training data size increases. Seginer’s algorithm even beats both n-gram baselines for the 10M corpus
when trained only on 1 million sentences.

4.3.3 Combining Parsers for DT Quality Improvement

To clarify the best practice for building a DT of high quality, we combine different parsers: the two
best-performing unsupervised parsers (Søgaard’s and Seginer’s), the baselines and the supervised parser.
Additionally, these two parsers where the only ones which could be applied to the largest dataset for both
languages.

For English (see Table 4), we observe a boost in performance when combining unsupervised parsers.
Combining the supervised Stanford parser with the bigram and the trigram baselines also leads to a sig-
nificant improvement (p < 0.01)9 over the Stanford parser alone, which is about the same as combining
the supervised parser with the two unsupervised parsers, and combining all five types of features for
DT construction. Overall, a relative improvement of 3.5% on the average WordNet::Path measure for
frequent words and a relative 4% improvement for rare words is obtained over the Stanford parser alone.

The results for German (see Table 5) show a similar trend. It is remarkable that merging the two un-
supervised parsers already outperforms the supervised Mate parser significantly9 with p < 0.01 (6.7%
for frequent and 8% relative improvement for rare words). The combination of the supervised and unsu-
pervised parsers again leads to further improvement, which is also significant over the supervised parser
alone, and again, adding the bigram and trigram baselines to the three parsers does not help.

7Significant improvements (p < 0.01) against the Mate parser are marked with the symbol † in Table 3 for frequent nouns.
8Within the 10M sentences, there are 22 million word types in the German corpus and 10 million word types in the English

corpus.
9We use a paired t-test to compare the DTs built using the supervised parser and the combinations.
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Parser frequent rare
Stanford (supervised) 0.280 0.209
Seginer 0.240 0.155
Søgaard 0.227 0.144
Seginer & Søgaard 0.248 0.162
Stanford & Bigram & Trigram 0.290† 0.217†
Stanford & Seginer & Søgaard 0.291† 0.217†
Stanford & Seginer & Søgaard &
Bigram & Trigram 0.290† 0.218†

Table 4: Combinations of different parsers
for computing English thesauri. The cross (†)
indicates significant improvements over the
supervised parser.

Parser frequent rare
Mate (supervised) 0.204 0.090
Seginer 0.208 0.091
Søgaard 0.193 0.077
Seginer & Søgaard 0.218† 0.097†
Mate & Bigram & Trigram 0.204 0.091
Mate & Seginer & Søgaard 0.222† 0.100†
Mate & Seginer & Søgaard &
Bigram & Trigram 0.222† 0.100†

Table 5: Combinations of different parsers
for computing German thesauri

4.3.4 Discussion

Overall, it is surprising how well Søgaard’s parser performs in comparison to others on this task, since it
neither uses training nor relies on POS tags. This hints at either unsupervised parsing being simpler than
commonly assumed or rather the immaturity of all unsupervised parsers tested. Further, we would have
expected that trained unsupervised parsers, as most unsupervised methods, would exhibit a better per-
formance when trained on larger corpora. This could not be confirmed for both systems that we trained
on various corpus sizes, i.e. Seginer’s and Gillenwater’s approach. The findings are only moderately
correlated with evaluations on treebanks, cf Table 1: Whereas Seginer’s and Søgaard’s parsers perform
favorably in our evaluation, they are outperformed by Bisk’s parser on treebanks, which currently does
not scale to large data. Gillenwater’s parser seems to be overly tuned to English treebanks, but cannot
capitalize on this in our evaluation for English.

POS information does not seem beneficial for unsupervised parser induction in noun similarity evalu-
ation, since the highest-scoring approach by Seginer does not use POS tags and a version of Søgaard’s
parser with POS tags scored slightly but consistently lower than the version without POS, as we found
in further experiments. This is in line with the findings of Cramer (2007), who reports no benefit from
manually corrected or unsupervised POS tags for a range of unsupervised parsers.

Comparing the results of previous intrinsic evaluations (see Table 1) and the results of our extrinsic
evaluation (see Table 2 and 3), we observe that the ranking of parsers is only mildly correlated. Thus,
our proposed evaluation covers different aspects than the adherence to (partially arbitrary) conventions
of manually labeled dependency data. Also, our current evaluation disregards all arcs that do not involve
nouns.

When combining parsers, we observe that we can improve the quality of DTs significantly. This leads
us to conclude that unsupervised parsers should at least be used for generating features when computing
distributional thesauri of high quality. In case no high-quality supervised parser is available for the
language or domain of interest, it might suffice to use combinations of unsupervised parsers.

We also report the computation times of the different parsers, for the English dataset for Setup A (see
Table 6). The results were computed on a server with 80 GB and 16 cores. Whereas all parsers require
different amounts of memory, all parsers are single-threaded10. While Søgaard’s parser is the fastest
for small datasets, Seginer’s runs faster on 10 million sentences. Whereas Gillenwater’s and Seginer’s

10k 100k 1M 10M
Seginer 210 224 261 508
Gillenwater 3248 3248 3280 5546
Søgaard 3 21 182 975
UDP 183 1220 11316 -

Table 6: Computation time in minutes for parsing the data according to the English corpora used in Setup
A, cf. Table 2

10As Søgaards algorithm parses sentence-wise without storing any information, it could be easily run multi-threaded.
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algorithm require almost the same time for parsing 10k, 100k or 1M sentences, the runtime of the UDP
and Søgaard’s parser is linear in time with the number of sentences to be parsed. We cannot report the
parsing times for the Bisk algorithm, as the parsing was not performed by us. Again it is noticeable that
the best two parsers are also the two unsupervised parsers that run quickest.

5 Conclusion

The contribution of this paper is two-fold: First, we have proposed and conducted a comparative extrin-
sic evaluation procedure for unsupervised parsers based on noun similarity in DTs. Second, we have
explored how to improve DT quality by combining features from several parsers. The transparency of
this method with respect to the kind of induced structures (dependencies, constituent trees, combinatory
categorial grammar) and with respect to labels of nodes and edges in the parse graph makes it possible to
compare different unsupervised parsers without having to rely on treebanks. Since semantic similarity,
especially for nouns, is a building block for many NLP applications, we feel that removing the depen-
dency on high-quality supervised parsers can give rise to semantic technologies in many languages. We
have conducted this evaluation with five different unsupervised parsers, and examined the influence of
corpus size for parser training and for the similarity computation in a series of experiments. Using estab-
lished methods for evaluating distributional similarity against lexical semantic resources, we were able
to measure differences between parsers in this task that are not reflected by intrinsic evaluations that
compare their induced structures to treebanks. These include the influence of corpus size on the training
procedure and the consistency of parse fragments on “frequent versus rare words” as well as different
languages. Further, we were able to pinpoint a crucial point in unsupervised parsers that has not received
much attention: approaches that do not induce an actual parser that can be run on unseen sentences but
merely produce syntactic annotations for a given fixed training corpus are hardly useful in applications.

Our evaluation results can be summarized as follows: For English, with its relatively fixed order,
Seginer’s parser achieves very scarce to no improvements compared to a simple n-gram baseline when
used to compute distributional similarities. But for German, Seginer’s parser outperforms all baselines
including a state-of-the-art supervised parser, and Søgaard’s simplistic approach compares favorably to
the n-gram baselines. Furthermore, we demonstrate that the quality of noun similarity can be improved
significantly when combining the features from supervised and unsupervised parsers.

While today’s unsupervised parsers might not be ready for their utilization for semantic similarity for
the English language, they can be applied to a large number of other languages where highly optimized
supervised parsers are not available. Additionally, we feel that our proposed evaluation method exhibits
enough sensitivity to be a meaningful test bed for future unsupervised parsers.

6 Outlook

Where do we go from here? We strongly argue that in times of availability of very large monolingual
corpora from the web, we should strive at unsupervised parser induction systems that can make use of
large training data, as opposed to focussing our efforts on complex models that scale poorly, and thus
cannot elevate to the performance levels needed in order to make unsupervised parsing a building block
in natural language processing applications.

For further work, we want to proceed in several ways: we would like to extend our evaluation frame-
work from nouns to other parts of speech. Furthermore, we will explore whether unsupervised parsers
can be tuned towards the task of computing a distributional thesaurus, e.g. by using only assignments
with a certain confidence, type, or from sentences with limited length. Additionally, we would like to ex-
plore the interaction of unsupervised POS induction and grammar induction (Headden, III et al., 2008),
in order to entirely remove language-dependent preprocessing for the purpose of semantic similarity
computations, while at the same time being able to leverage the advantages of structured representations,
cf. Erk and Padó (2008). Finally, we would like to test whether we can also detect a different ranking
for different supervised parsers when comparing their scores in the normal treebank setting versus using
them for building distributional thesauri.
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