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Abstract

We consider multilingual semantic parsing – the task of simultaneously parsing semantically
equivalent sentences from multiple different languages into their corresponding formal semantic
representations. Our model is built on top of the hybrid tree semantic parsing framework, where
natural language sentences and their corresponding semantics are assumed to be generated jointly
from an underlying generative process. We first introduce a variant of the joint generative pro-
cess, which essentially gives us a new semantic parsing model within the framework. Based on
the different models that can be developed within the framework, we then investigate several ap-
proaches for performing the multilingual semantic parsing task. We present our evaluations on a
standard dataset annotated with sentences in multiple languages coming from different language
families.

1 Introduction

Semantic parsing, the task of parsing natural language sentences into their formal semantic representa-
tions (Mooney, 2007) is one of the most important tasks in the field of natural language processing and
artificial intelligence. This area of research recently has received a significant amount of attention (Zettle-
moyer and Collins, 2005; Kate and Mooney, 2006; Wong and Mooney, 2006; Lu et al., 2008; Jones et
al., 2012b). Consider these example sentence-semantics pairs:

English: Which states have points that are higher than the highest point in Texas ?
Semantics: answer(state(loc1(place(higher2(highest(place(loc2(stateid(′TX ′)))))))))

English: What rivers do not run through Tennessee ?
Semantics: answer(exclude(river(all), traverse2(stateid(′TN ′))))

In the typical setting, the semantic parser learns from a collection of such sentence-semantics pairs a
model that can parse novel input sentences into their respective semantic representations. Such semantic
representations can then be used to interact with certain downstream components to perform interesting
tasks. For example, retrieving of answers from an underlying database, or performing certain actions
based on the generated executable semantic instructions.

Note that in the training data, although complete sentence-semantics pairs are given, specific word-
level semantic information is not explicitly provided. The model therefore needs to automatically learn
such latent mappings between natural language words/phrases and semantic units.

One natural assumption is that the semantics exhibit certain restricted structures, such as the recursive
tree structures. Under such an assumption, one can convert the second semantics appeared above as the
tree structure illustrated in Figure 1. More details about such tree structured representations will be given
in Section 2.1.

Currently, researchers only focused on the semantic parsing task under a single language setting where
the input is a sentence from one particular language. However, natural language is highly ambiguous,
and identifying the correct semantics associated with words with limited background information is a
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QUERY : answer(RIVER)

RIVER : exclude(RIVER, RIVER)

RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : (′tn′)

RIVER : river(all)

What rivers do not run through Tennessee ?
什么河流不贯穿田纳西州？

Welche Flüsse fließen nicht durch Tennessee ?

Figure 1: An example tree-structured semantic representation (above) and its corresponding natural language sentences (in
English, Chinese and German).

challenging task. Researchers resorted to performing context-dependent semantic parsing to alleviate
such an issue (Zettlemoyer and Collins, 2009).

On the other hand, researchers have successfully exploited parallel texts for improved word-level se-
mantic processing (Chan and Ng, 2005). This is because words from different languages that convey
the same semantics can be used to disambiguate each other’s semantics. In fact, texts from different
languages that convey the same semantic information becomes increasingly available nowadays. Web
crawlers such as Google and Yahoo! are able to rapidly aggregate a large volume of news stories ev-
ery day. One crucial fact is that many such news articles written in different languages are actually all
discussing the same underlying story and therefore convey similar or identical semantic information. To
build better automatic systems for improved natural language understanding, it is therefore helpful to
develop algorithms that can simultaneously process the underlying semantic information associated with
all these documents coming from different language sources together. For example, consider the fol-
lowing example taken from the multilingual version of the dataset, which shows semantically equivalent
sentences from three different languages and their corresponding semantics:

English: What rivers do not run through Tennessee ?
Chinese: 什么河流不贯穿田纳西？
German: Welche Flüsse fließen nicht durch Tennessee ?

Semantics: answer(exclude(river(all), traverse2(stateid(′TN ′))))

As a step towards the above-mentioned goal, this work focuses on the development of an automated
system that is capable of simultaneously parsing semantically equivalent natural language texts in differ-
ent languages into their underlying semantics.

Specifically, in this work, we first introduce a new variant of a semantic parsing model under an
existing framework. This new variant can be used together with other models for jointly making semantic
parsing predictions, leading to an improved multilingual semantic parsing system. We demonstrate the
effectiveness of this new variant through experiments. Although bilingual parsing has been extensively
studied in fields such as statistical machine translation (Wu, 1997; Chiang, 2007), to the best of our
knowledge, bilingual or multilingual semantic parsing that focuses on parsing sentences from multiple
different languages into their formal semantic representations has not yet been studied. We present the
very first work on performing multilingual semantic parsing that simultaneously parses semantically
equivalent sentences from multiple different languages into their semantics. We believe this line of work
can potentially lead to further developments and advancements in areas such as multilingual semantic
processing and semantics-based machine translations (Jones et al., 2012a).

2 Background

2.1 Semantics
Researchers have focused on various semantic formalisms for semantic parsing. Popular examples
include the tree-structured semantic representations (Wong and Mooney, 2006; Kate and Mooney,
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QUERY : answer(RIVER)

?RIVER : exclude(RIVER, RIVER)

RIVER : traverse(STATE)

STATE : stateid(STATENAME)

STATENAME : (′TN ′)

Tennessee

run through

do notRIVER : river(all)

rivers

What

Figure 2: An example hybrid tree. Such a hybrid tree is generated from the generative process, and captures the correspon-
dences between natural language words and semantic units.

2006), the lambda calculus expressions (Zettlemoyer and Collins, 2005; Wong and Mooney, 2007),
and dependency-based semantic representations (DCS) (Liang et al., 2013). In this work, we specifically
focus on the tree-structured representations for semantics.

Each semantic representation consists of semantic units as its tree nodes, where each semantic unit is
of the following form:

ma ≡ τa : pα(τb∗) (1)

Herema is used to denote a complete semantic unit, which consists of its semantic type τa, its function
symbol pα, as well as a list of types for argument semantic units τb∗ (here ∗ means 0, 1, or 2; we assume
there are at most two arguments for each semantic unit). In other words, each semantic unit can be
regarded as a function which takes in other semantic representations of specific types as arguments, and
returns a new semantic representation of a particular type. For example, in Figure 1, the semantic unit at
the root has a type QUERY, a function name answer, and a single argument type RIVER.

2.2 Related Work
Substantial research efforts have focused on building monolingual semantic parsing systems. We survey
in this section several of them.

WASP (Wong and Mooney, 2006) is a model motivated by statistical synchronous parsing-based ma-
chine translation (Chiang, 2007), which essentially casts the semantic parsing problem as a phrase-based
translation problem (Koehn et al., 2003). KRISP (Kate and Mooney, 2006) makes use of Support Vector
Machines with string kernels (Lodhi et al., 2002) to recursively map contiguous word sequences into
semantic units to construct a tree structure. The SCISSOR model (Ge and Mooney, 2005) performs in-
tegrated semantic and syntactic parsing. The model parses natural language sentences into semantically
augmented parse trees whose nodes consist of both semantic and syntactic labels and then builds seman-
tic representations based on such augmented trees. The hybrid tree model (Lu et al., 2008; Lu et al.,
2009), whose code is publicly available, makes the assumption that there exists an underlying generative
process for jointly producing both the language and semantics. The model employs efficient dynamic
programming algorithms for learning a distribution over the latent hybrid trees which jointly encode both
language and semantics. An example hybrid tree representation is shown in Figure 2. Jones et al. (2012b)
recently proposed a framework that performs semantic parsing with tree transducers. The model learns
representations that are similar to the hybrid tree structures using a generative process under a Bayesian
framework.

Besides these approaches, recently there are also several works that take alternative learning ap-
proaches for semantic parsing which do not require annotated semantic representations (Poon and
Domingos, 2009; Clarke et al., 2010; Goldwasser et al., 2011; Liang et al., 2013; Artzi and Zettle-
moyer, 2013). Most of such approaches rely on either weak supervision or certain forms of indirect
supervision. Some of these works also focus on optimizing specific downstream tasks rather than the
semantic parsing task itself.
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Figure 3: Two example hybrid trees. Their leaves are natural language words, and the internal nodes are semantic units. Both
hybrid trees correspond to the same n-m pair 〈w1 w2 w3 w4 w5 w6 w7 w8 w9 w10, ma(mb(mc, md))〉. Thus they can be
viewed as two different ways of generating such a pair from the joint generative process.

We note there also exist various multilingual or cross-lingual semantic processing works. Most of
such works focus on semantic role labeling(SRL), the task of recovery of shallow meaning. Examples
include multilingual semantic role labeling (Björkelund et al., 2009), multilingual joint syntactic and se-
mantic dependency parsing (Henderson et al., 2013), and cross-lingual transfer of semantic role labeling
models (Kozhevnikov and Titov, 2013). Researchers also looked into exploiting semantic information
for bilingual processing such as machine translations (Chan et al., 2007; Carpuat and Wu, 2007; Jones et
al., 2012a).

In this work, we focus on the task of multilingual semantic parsing under the setting where the in-
put consists of semantically equivalent sentences from multiple different languages, and the outputs
are formal semantic representations. We specifically focus on the hybrid tree model, a state-of-the-art
framework for semantic parsing. We first make an extension to the model, and investigate methods for
performing such a multilingual semantic parsing task by aggregating a few variants of the models under
such a framework.

3 Approach

In this section, we first discuss the hybrid tree model of Lu et al. (2008), and introduce a novel extension.
Next we discuss the approach used for multilingual semantic parsing.

3.1 The Hybrid Tree Model

For a given n-m pair (where n is a complete natural language sentence, and m is a complete semantic
representation), the hybrid tree model assumes that both n and m are generated from an underlying
generative process in a top-down, left-to-right, level-by-level, recursive manner. The joint generative
process for the pair results in a new tree-structured representation called a hybrid tree, which consists of
natural language words as leaves, and semantic units as internal nodes.

There are three types of model parameters involved in the generative process. The meaning repre-
sentation model parameters (ρ) are used for generating one semantic unit from its parent semantic unit.
The hybrid pattern parameters (φ) are used for deciding how natural language words and semantic units
are organized together to form the next level of the nodes of the hybrid tree structure. The emission
parameters (θ) are used for generating natural language words from its corresponding semantic unit.

For a given n-m pair, there are multiple possible hybrid trees that can jointly represent such a pair.
See Figure 3 for two possible hybrid trees that contain the same n-m pair. Consider the first example
hybrid tree illustrated there. The probability of generating such a hybrid tree h (i.e., jointly generating
both the natural language sentence n and the semantics m) is:

P (n,m,h) = ρ(ma)× φ(Xw|ma)× θ(X|ma,Λ)× θ(w9|ma,Λ)× θ(w10|ma,Λ)
×ρ(mb|ma, arg = 1)× φ(XwYw|mb)× θ(X|mb,Λ)× θ(w3|mb,Λ)

×θ(w4|mb,Λ)× θ(w5|mb,Λ)× θ(Y|mb,Λ)× θ(w7|mb,Λ)× θ(w8|mb,Λ)
×ρ(mc|mb, arg = 1)× φ(w|mc)× θ(w1|mc,Λ)× θ(w2|mc,Λ)

×ρ(md|mb, arg = 2)× φ(w|md)× θ(w6|md,Λ) (2)
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Note that Xw refers to a pattern which says the next level of the hybrid tree is expected to consist
of the first child semantic unit, followed by a contiguous sequence of natural language words. Similar
definitions can be given to the patterns XwYw and w, where X and Y refer to the first and second
child semantic unit, respectively. The symbols X and Y appear in emission parameters are used to
denote placeholders for the first and second child semantic unit, respectively.

The hybrid tree model then focuses on the learning of these model parameters from the training data
using maximum likelihood estimation. In other words, the model tries to maximize:∑

i

logP (ni,mi; ρ, φ, θ) =
∑
i

log
∑
h

P (ni,mi,h; ρ, φ, θ) (3)

Since the correct hybrid tree associated with n-m pair is unknown, we marginalize over the hidden
variable h. The model parameters will then be estimated using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). Specifically, an inside-outside style algorithm (Baker, 2005) is used
where an additional layer of dynamic programming algorithms are used for efficient inference (Lu et
al., 2008). The complexity of the inference algorithm is O(mn3), where m is the size of the semantic
representation (number of semantic units), and n is the number of words in the input sentence.

Note that the generation of natural language words involves the context Λ. Specifically, if the context
is empty, the model is regarded as the unigram model. If the context is the previously generated word, the
model is called a bigram model. For example, consider the generation of the natural language word w4 in
the left hybrid tree in Figure 2. The probability for generating this word is θ(w4|mb) and θ(w4|mb, w3),
under the unigram and the bigram model, respectively. In Lu et al. (2008), the mixgram model (an
interpolation between the unigram model and the bigram model) was also considered when parsing
novel sentences, which yielded a better performance.

Once the model parameters are learned, we will be able to use them to parse novel sentences. Specifi-
cally, for each novel input sentence, we first find the most probable hybrid tree that contains the sentence
n, and then extract its internal nodes to form the semantic representation. Efficient dynamic program-
ming algorithms similar to the ones used for training can also be employed here. In addition, the algo-
rithm can also be extended to support exact top-k decoding, which will be useful later for combining
multiple lists of outputs with rank aggregation (to be discussed in Sec. 3.3).

3.2 The Backward Bigram Model
One assumption associated with the original hybrid tree model is that nodes at each level of the hybrid
tree are generated from the left to the right. An alternative assumption would be that the nodes at each
level are generated in the reverse order – from the right to the left. While this alternative assumption
will not introduce any difference in the unigram model (since each node is generated from its respective
parent semantic unit only, regardless of its context), such a new assumption will lead to a completely
new generative process under the bigram assumption.

To see this, again consider the emission probability for generating the word w4 in the hybrid tree on
the left of Figure 3. Under the assumption of our new model, the probability of generating this word is
θ(w4|mb, w5), since now the context Λ becomes the word to the right of the current word. The parameter
estimation and parsing (decoding) procedures are largely similar to those of the original bigram model,
where similar efficient dynamic programming algorithms can be employed.

3.3 Multilingual Semantic Parsing
In multilingual semantic parsing, the input consists of multiple semantically equivalent sentences, each
of which is from a different language. One approach for building such a multilingual semantic parsing
system is to develop a joint generative process from which both the semantic representations and the
sentences in different languages are generated simultaneously. However, building such a joint model
is non-trivial. Typically, sentences from different languages exhibit very different syntactic structures
and word orderings. It is also non-trivial to design efficient dynamic programming algorithms for this
case where multiple languages are involved in the joint generative process. Furthermore, the difficulty
of building such a joint generative model becomes higher as the number of input languages increases.
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Previous research efforts show that it can be beneficial to learn individual models independently, and
then combine the learned models only during the inference stage (Punyakanok et al., 2005; Chang et al.,
2012). Motivated by this, we take the approach that learns a separate semantic parser for each different
language first. Next, we combine these semantic parsers for different languages into a single multilingual
semantic parser only during the inference stage.

One common approach for combining different outputs from different systems is to perform majority
voting based on optimal predictions from each parser. We first obtain the best output semantic represen-
tation from each individual semantic parser, and then count the number of occurrences for each possible
output. The most frequent output semantic representation is returned as the final output of our system.
Naturally, this approach is only applicable when there are at least three systems/models.

An alternative approach is to allow each system to produce a ranked list of k most probable outputs,
each is associated with a score. Our system then aggregates these ranked lists to select the best output.
This problem is known as rank aggregation and has been extensively studied in fields such as data mining
and information retrieval (Dwork et al., 2001; Gleich and Lim, 2011; Li, 2011). For our task, we first
let each semantic parser (for each language) generate a ranked list of the top-k most probable outputs
(hybrid trees) for the given input. Next, based these hybrid trees we find a ranked list of most probable
semantic representations. Each such semantic representation is also associated with a score, which is
the log-likelihood of the hybrid tree, i.e., logP (n,m,h). Note that for each semantic representation,
we only consider the score associated with the most probable hybrid tree that contains such a semantic
representation. We use the standard approach for combining two ranked lists with scores. Consider a
ranked list from the j-th model/system that consists of n distinct items. Let’s use s(j)i to denote the
original score associated with the i-th semantic representation in the j-th ranked list. We normalize the
score s(j)i in the following way to obtain the new score s̃(j)i (normalized score, divided by the standard
deviation associated with the sample):

s̃
(j)
i =

s
(j)
i

nµ(j)δ(j)
where µ(j) = 1

n

∑n
k=1 s

(j)
k , δ(j) =

√√√√ 1
n− 1

n∑
k=1

(s(j)k − µ(j))2

Such new scores will then be used for aggregating the results to form a new ranked list. How do we
find the best output from multiple lists? Two useful sources of information that we may use include: 1)
the number of times each output appears in these lists; 2) the combined score

∑
j s̃

(j) for each output s.
We believe the more frequent an output appears in these lists (i.e., more systems/models predict such an
output in their top-k lists), the more likely it can be a good candidate. Therefore we first find the set of
most frequent outputs, next from such a set we select the output with the highest overall score

∑
j s̃

(j)

as the final output of our system.

4 Experiments

4.1 Data and Setup
We conducted our experiments on the multilingual GEOQUERY dataset released by Jones et al. (2012b).
This dataset consists of 880 instances of natural language queries related to US geography facts. Each
query is coupled with its corresponding semantic representation originally written in Prolog. The origi-
nal GEOQUERY dataset (Wong and Mooney, 2006; Kate and Mooney, 2006) contains natural language
queries in English only. Additional Chinese annotations were provided by Lu and Ng (2011) when per-
forming a natural language generation task. Jones et al. (2012b) further provided the following three
additional language annotations to this dataset: German, Greek and Thai. Thus, this dataset is now fully
annotated with five different languages, two of which (Chinese, Thai) are Sino-Tibetan languages, and
the rest are all Indo-European languages.

Following previous works on semantic parsing (Kwiatkowski et al., 2010; Jones et al., 2012b), we
split the dataset into two portions. The training set consists of 600 instances, and we report evaluation
results on the portion consisting of the remaining 280 instances. We used the identical split provided by
Jones et al. (2012b) for all the experiments. Following previous works, we used the standard approach for
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EN DE EL TH CN

Unigram 70.0 59.6 70.0 68.9 68.9
Bigram 75.4 56.1 65.4 70.7 68.9

Bigram (inv) 74.3 57.1 65.4 71.1 66.8
Mixgram 76.1 62.5 69.3 73.2 70.7

Voting (u,b,m) 76.1 61.1 70.4 73.6 70.0
Voting (u,b,bi) 76.4 61.4 71.8 74.3 72.1

Aggregation 78.6 60.0 72.1 71.4 73.2

Table 1: Monolingual semantic parsing results on all five languages (EN:English, DE:German, EL:Greek, TH:Thai,
CN:Chinese.). We report accuracy percentages in this table.

ENDE ENEL ENTH ENCN DEEL DETH DECN ELTH ELCN THCN

Unigram 74.6 76.1 76.4 75.0 76.8 72.1 74.3 80.4 79.6 74.0
Bigram 80.0 77.9 87.1 78.2 72.1 75.0 76.4 81.4 76.8 79.6

Bigram (inv) 78.2 76.8 86.4 75.7 72.5 75.7 76.1 82.1 75.7 79.3
Mixgram 77.9 76.4 82.5 81.1 76.1 75.7 74.3 81.1 80.7 77.9

Voting (u,b) 80.0 79.6 83.6 82.1 77.1 74.6 74.6 82.1 78.6 79.6
Voting (u,b,bi) 82.1 79.3 86.4 82.1 76.8 77.1 76.4 85.4 78.9 80.7

Aggregation 78.9 82.1 85.7 83.6 76.4 73.6 76.8 83.9 81.4 79.3

Table 2: Semantic parsing results when two different input languages are considered (for example, the column ENDE gives the
results when each input to our system consists of a pair of semantically equivalent sentences written in English and German.).
Scores are accuracy percentages.

evaluation on the multilingual GEOQUERY dataset. Specifically, we first let our semantic parsers produce
semantic representations from multilingual input sentences. The resulting semantic representations are
then converted into Prolog queries in a deterministic manner, which can be used to interact with the
underlying knowledge base to retrieve answers. A predicted semantic representation is considered correct
if and only if it retrieves identical results as the correct reference semantic representation when both are
used for retrieving answers from the underlying database.

4.2 Results and Discussions

We performed experiments on the conventional monolingual semantic parsing task first. We report accu-
racy scores, which are defined as the number of correctly parsed inputs (i.e., the total number of correct
semantic representations) divided by the total number of input sentences. Baseline results for unigram,
bigram, and mixgram models, which are originally introduced in Lu et al. (2008) are reported under
“Unigram”, “Bigram”, and “Mixgram” respectively in Table 1. The results for backward bigram models
are reported under “Bigram(inv)”.

To assess the effectiveness of our methods for combining different outputs, we first conducted ex-
periments on voting over the outputs from the three models originally introduced in the work of Lu et
al. (2008) (Voting(u,b,m)). Next we performed voting over outputs from unigram model, bigram model,
as well as the backward bigram model introduced in this paper (Voting(u,b,bi)). These voting-based
approaches yielded better results over the first voting-based approach. Specifically, we compared this
new voting-based approach against the previous best model reported in Lu et al. (2008) – mixgram
model, which was also based on a combination of unigram and bigram models. We used the paired
t-test to assess the significance of the overall improvements across different languages when using our
new method. When comparing the approach “Voting(u,b,m)” over “Mixgram”, we obtained a one-tailed
p-value of 0.40. When comparing the approach “Voting(u,b,bi)” over “Mixgram”, we obtained a one-
tailed p-value of 0.11. We also investigated the effectiveness of the aggregation-based approach. This
approach is based on aggregating the two top-100 lists generated by unigram, bigram and backward
bigram models. When comparing this approach over “Mixgram”, we obtained a one-tailed p-value of
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ENDE ENDE ENDE ENEL ENEL ENTH DEEL DEEL DETH ELTH
EL TH CN TH CN CN TH CN CN CN

Unigram 79.6 78.2 79.3 83.2 83.2 79.3 81.8 79.6 77.1 81.4
Bigram 82.1 85.7 81.8 87.5 81.8 86.4 82.5 80.7 79.6 83.6

Bigram (inv) 82.9 85.4 79.6 86.8 81.1 85.4 82.1 80.4 78.9 83.2
Mixgram 81.4 83.2 81.8 85.0 83.2 84.3 82.9 80.7 79.3 82.9

Voting (u,b) 83.2 85.0 84.3 87.9 84.0 85.0 84.0 83.6 81.1 84.6
Voting (u,b,bi) 84.0 86.1 85.4 89.6 84.3 86.8 85.0 82.5 81.1 84.6

Aggregation 83.6 85.0 85.4 88.9 87.1 85.7 82.5 82.5 80.0 85.4

Table 3: Semantic parsing results when three different input languages are considered (for example, the column ENDEEL gives
the results when each input to our system consists of three semantically equivalent sentences, which are written in English,
German and Greek, respectively.). Scores are accuracy percentages.

ENDE ENDE ENDE ENEL DEEL ENDEEL
ELTH ELCN THCN THCN THCN THCN

Unigram 82.9 82.1 81.1 85.0 82.1 84.0
Bigram 86.1 83.6 84.3 87.1 85.0 86.1

Bigram (inv) 86.4 82.5 84.0 86.8 85.4 85.0
Mixgram 84.0 82.1 83.2 86.4 84.0 85.7

Voting (u,b) 87.5 86.1 86.4 89.6 86.4 89.3
Voting (u,b,bi) 88.6 86.8 87.1 90.0 85.7 89.6

Aggregation 87.1 87.1 86.1 88.9 86.1 88.6

Table 4: Semantic parsing results when four or five different input languages are considered (for example, the column
ENDEELTH gives the results when each input to our system consists of four semantically equivalent sentences, which are
written in English, German, Greek, and Thai respectively.). Scores are accuracy percentages.

0.29 under the paired t-test. These results indicate that the approach based on voting over the unigram,
bigram and backward bigram models gives the most promising results for monolingual semantic parsing,
demonstrating the usefulness of our proposed backward bigram model.

Next we move to the multilingual setting where we would like to simultaneously process more than
two languages. Specifically, we considered multilingual semantic parsing where there are two, three,
four and five input languages. Table 2, Table 3, and Table 4 summarize these results. Table 2 shows the
results for bilingual semantic parsing where we have two different input languages. The results reported
under “Unigram” are based on the aggregation approach over unigram models. Similarly for “Bigram”,
“Bigram(inv)”, and “Mixgram” (we also tried the voting-based approach for combining such baseline
systems, which yielded slightly worse results). From this table we can see that generally speaking by
considering two different languages as the input, our system is able to do better semantic parsing. We
compared the voting-based approaches against the baseline approaches. For the approach “Voting(u,b)”
(we excluded mixgram models in voting since now we have four models, two from each language, which
are sufficient for voting, and preliminary results show that the inclusion of the mixgram models is not
helpful), it does not outperform the bigram baseline approach (which is the most competitive amongst
all baseline approaches) significantly (p = 0.19). When comparing the aggregation approach against the
bigram baseline approach, we obtain p = 0.04. In contrast, the approach “Voting(u,b,bi)” outperforms
all the baseline systems significantly (p < 0.005). These results again demonstrate the effectiveness of
our newly proposed backward bigram model.

We can see from the results presented in Table 3 and Table 4 that, in general, the performance of the
multilingual semantic parser tends to improve as the number of input languages increases. However this
is not always the case. For example, consider the final system where we use all five languages as the input
(refer to the results in the column of ENDEELTHCN in Table 4); interestingly, when we remove German
(DE) from the inputs, we are able to build a better system in terms of accuracy (refer to the results in the
column of ENELTHCN). We believe this is partly due to the fact that the monolingual semantic parsing
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task with German as the input language (see DE in Table 1) is relatively more challenging. Nevertheless,
when all the languages are considered, the overall system is able to obtain an accuracy of 89.6% with the
voting-based approach where our proposed backward bigram model is incorporated. This is significantly
higher than any other monolingual system’s performance reported in the literature. According to Jones
et al. (2012b), the results of state-of-the-art monolingual semantic parsing systems on four of these five
languages considered here are: 82.1%(EN), 75.0%(DE), 75.4%(EL), and 78.2%(TH). Note that to date,
no single system reported in the literature can dominate all other systems across all these languages on
this dataset in terms of accuracy performance. We hypothesize that this is because semantic information
conveyed by the sentences from a single language tends to be highly ambiguous, and various linguis-
tic phenomenons can be difficult to capture under a monolingual setting for any existing monolingual
semantic parsing system. The multilingual semantic parsing system introduced in this work, in con-
trast, can exploit richer information from multiple languages to successfully disambiguate the semantics
associated with the inputs for improved semantic parsing.

5 Conclusions

In this work, we focused on multilingual semantic parsing, the task of simultaneously parsing sentences
from various different languages into their corresponding formal semantic representations. Our work is
built on top of the hybrid tree framework where different generative process can be developed for jointly
modelling the generation of both language and semantics. We first introduced a variant of the generative
process, leading to a new semantic parsing model. Next we presented methods for combining and ag-
gregating outputs from different models within the framework to build our multilingual semantic parsing
system. Our results demonstrate the effectiveness of our approaches for such a task. To the best of our
knowledge, this is the first work that tackles such a multilingual semantic parsing task which simulta-
neously parses sentences from multiple languages into formal semantic representations. Future work
include explorations on applications of our system in areas such as multilingual semantic processing,
cross-lingual semantic processing, and semantics-based machine translations (Jones et al., 2012a).
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