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Abstract

Temporal evidence classification, i.e., finding associations between temporal expressions and re-
lations expressed in text, is an important part of temporal relation extraction. To capture the
variations found in this setting, we employ a distant supervision approach, modeling the task as
multi-class text classification. There are two main challenges with distant supervision: (1) noise
generated by incorrect heuristic labeling, and (2) distribution mismatch between the target and
distant supervision examples. We are particularly interested in addressing the second problem
and propose a sampling approach to handle the distribution mismatch. Our prior-informed distant
supervision approach improves over basic distant supervision and outperforms a purely super-
vised approach when evaluated on TAC-KBP data, both on classification and end-to-end metrics.

1 Introduction

Temporal relation extraction is the problem of extracting the temporal extent of relations between entities.
A typical solution to the temporal relation extraction problem has three main components: (1) passage
retrieval, (2) temporal evidence classification, and (3) temporal evidence aggregation. A community-
based effort to evaluate temporal relation extraction was introduced in 2011 as a TAC Knowledge Base
Population task: Temporal Slot Filling, or TSF for short (Ji et al., 2011).

An illustration of temporal slot filling is as follows. Having identified a per: spouse relation be-
tween two entities (Freeman Dyson, Imme Dyson), a system must establish the temporal boundaries
from its supporting sentence. In the case of the sentence “In 1958, he married Imme Dyson”, the goal
is to find that the relation lasts from 1958 until the present day. Within the TSF setting, the boundaries
are represented as beginning and ending intervals in a tuple (77, 15, T3, T}) instead of an exact time
expression, so as to allow uncertainty in the system output. We investigate temporal relation extraction
following this setting. We focus on the temporal evidence classification part.

One of the challenges with relation extraction is the limited amount of training data available to capture
the variations in a target corpus: temporal relation extraction faces the same challenge. Employing distant
supervision (Mintz et al., 2009) is a way to address the challenge. But generating example training data
in the temporal setting is not straightforward: we have to find not only the query and related entity, but
also the time expression, in a single text segment.

Employing distant supervision for temporal evidence classification will introduce noise, in the form
of labels and additional contexts (e.g., lexical features). A lot of previous work in distant supervision has
been dedicated to reducing noise in distant supervision (Bunescu and Mooney, 2007; Riedel et al., 2010;
Wei et al., 2012). We are interested in another phenomenon: the class distributions found in training
data generated by a distant supervision approach. These distributions become an issue if the distant
supervision corpus has a different structure and different characteristics compared to the target corpus,
e.g., Wikipedia vs. news articles. We observe that in the case of temporal evidence, news articles and
Wikipedia do indeed contain different class distributions. Our working hypothesis is that incorporating
prior information about temporal class distribution helps improve our distant supervision approach. We
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test this hypothesis by comparing a distant supervision strategy with class priors to a distant supervision
without class priors. We also demonstrate the effectiveness of our method by contrasting it with a purely
supervised approach. In addition, we investigate how the difference in performance in temporal evidence
classification affects the final score obtained in the overall end-to-end task.

We discuss related work in Section 2. In Section 3, we describe our distant supervision approach for
temporal evidence classification. Our experimental setup is detailed in Section 4. We follow with results
in Section 5 and a conclusion in Section 6.

2 Related Work

We discuss two groups of related work: on temporal slot filling and on distant supervision.

2.1 Temporal slot filling

Some previous work uses a pattern-based approach (Byrne and Dunnion, 2011); patterns are defined in
terms of query entity, temporal expression, and slot value. For example, the word divorce should trigger
that the relation per:spouse is ending. Other work uses temporal linking between time expressions and
events in an event-based approach (Burman et al., 2011), where the source documents are annotated with
TimeML event annotations (Pustejovsky et al., 2003); the authors use intra-sentence event-time links,
and inter-sentence event-event links, following a TempEval approach (UzZaman et al., 2012). Garrido
et al. (2012) use a graph-based document representation; they convert document context to a graph
representation and use TARSQI to determine links between time expressions and events in documents
and later map the resulting links into five temporal classes.

Li et al. (2012) combine flat and structured approaches to perform temporal classification. Their
approach relies on a custom SVM kernel designed around flat (window and shallow dependency) features
and structured (dependency path) features. The structured approach is designed to overcome the long
context problem. They use a distant supervision approach for the temporal classification part, obtained
on Freebase relations. They further extend their approach with self-training and relabeling (Ji et al.,
2013).

Finally, Surdeanu et al. (2011) use n-grams around temporal expressions to train a distant supervision
system. To be able to use Freebase facts, they find example sentences in Wikipedia, and use a window
of five words from the temporal expression, using Freebase facts as start and end trigger. They use
Jaccard correlation between n-grams to determine the association to start and end. Sil and Cucerzan
(2014) performed distant supervision using facts obtained from Wikipedia infoboxes. From Wikipedia
infoboxes, they retrieve the relevant sentences and build n-gram language models of the relations. In
a slightly different setting (exploratory search), Reinanda et al. (2013) establish the temporal extent of
entity associations simply by looking at their co-occurrence within documents in the corpus.

Our approach to temporal evidence classification differs from most existing approaches in its distant
supervision scheme. We use distant supervision to directly perform a multi-class classification of tem-
poral evidence against the five main temporal classes (including the before and after class), where most
of the previous systems train a model to detect the beginning and ending of relationships only.

2.2 Reducing noise in distant supervision

With distant supervision (Mintz et al., 2009), indirect examples in the form of relations from a knowledge
base such as Freebase and DBPedia are used. From these relation tuples, instances of relations in the
form of sentences in the corpus are searched. Text features are later extracted from these sentences that
are then used to train classifiers that can identify relations in the text corpus.

Reducing noise is an important ingredient when working with a distant supervision assumption. Re-
labeling is one such approach; Tamang and Ji (2012) perform relabeling based on semi-supervised lasso
regression to reduce incorrect labeling. Wei et al. (2012) show that instances may be labeled incorrectly
due to the knowledge base being incomplete. They propose to overcome the problem of incomplete
knowledge bases for distant supervision through passage retrieval model with relation extraction.
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Ritter et al. (2003) focus on the issue of missing data for texts that contain rare entities that do not exist
in the original knowledge base. Riedel et al. (2010) work with a relaxed distant supervision assumption;
they design a factor graph to explicitly model whether two entities are related, and later train this model
with a semi-supervised constraint-driven algorithm; they achieve a 31 percent error reduction.

Bunescu and Mooney (2007) introduce multiple instance learning to handle the weak confidence in
the assigned label. They divide the instances into a positive bag (at least one positive example) and
a negative bag (all negative examples). They design a custom kernel to work with this weaker form of
supervision. Surdeanu et al. (2012) operate on the same principle, but model the relation between entities
and relation classes using graphical models. Hoffmann et al. (2011) also use multi-instance learning, but
focus on overlapping relations.

What we add on top of existing work is the use of sampling techniques to correct for skewed distri-
butions introduced through distant examples. We propose prior sampling, correcting the distributions of
the classes in the generated examples to fit the target corpora.

3 Method

The temporal slot filling task is defined as follows: given a relation R = (g, r, s), where q is a query
entity, r is a related entity, and s is a slot type, one must find T, a tuple of four dates (11, 15, T3, T})
where R holds, where T} and 75 form the beginning interval of the relation, and 73 and T} is the ending
interval. A system first must retrieve all passages or sentences expressing the relation between ¢ and r.
Each sentences and any time information within them will serve as intermediate evidence. This temporal
evidence will later be aggregated and converted to tuple representation 7.

In this paper, we focus on temporal evidence classification. That is, assuming the passage retrieval
component has retrieved the relevant passages as intermediate evidence of temporal relations, we must
classify whether the time expression ¢ in the passage belongs to one these classes: BEGINNING, END-
ING, BEFORE, AFTER, and WITHIN. In the training and evaluation data available to us, only the offsets
of the time expression within the document are given for each intermediate evidence, therefore we first
extract the paragraph and find the context sentence mentioning .

Distant supervision for temporal classification The temporal slot filling task, as specified by TAC-
KBP, defines 7 types of temporal-intensive relations. In our distant supervision approach, we use a
separate knowledge base to find instances of the equivalent relations. We use Freebase as our reference
knowledge base. That is, we use the temporal information found in Freebase to generate training exam-
ples. We manually map the TAC-KBP’s 8 temporal relations into 6 Freebase mediator relations. The
complete mapping of the relations can be found in Table 1.

In an article, entities and time expressions are not always referred to using their full mentions within a
single sentence. Sometimes information is scattered around several sentences: the query entity ¢ in the
first sentence, later referred to using a pronoun in the second sentence that contains a time expression,
etc. One common way to deal with this problem is to run full co-reference resolution, therefore ensuring
all mentions are resolved. We handle this problem by relaxing the distant supervision rule. Rather than
retrieving sentences, we retrieve passages containing the query entity ¢, and related entity r instead. We
later replace every pronoun found within the passage with q. Based on our analysis of the Wikipedia
articles, this simple heuristic should work, because most Wikipedia articles are entity-centric, and a lot
of the pronouns mentioned in the articles will refer to the query entity q.

Each relation that we mapped from Freebase has temporal boundaries from and to. Following Li et al.
(2012), we use Algorithm 1 to generate the training examples, but adapt it suit to our assumption.

Sampling the DS examples We manually compared our main corpus (TAC document collection) and
our distant supervision corpus (Wikipedia) and noticed some discrepancies. The main corpus mainly
consists of newswire articles; one of the main difference between Wikipedia articles and newswire ar-
ticles is that Wikipedia articles mainly consist of milestone events. In terms of class distribution, this
means that most of the generated examples will be in the form of BEGINNING and ENDING class,
followed by the BEFORE and AFTER class, with the smallest number of examples belonging to the
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TAC Relations Freebase Relations

per:spouse marriage

per:title employment-tenure,
goverment-position-
held

per:employee-of employment-tenure

per:member-of political-party-tenure

per:cities-of- places-lived

residence

per:stateorprovinces-  places-lived
of-residence

per:countries-of- places-lived
residence
org:top- organization-

employees/members  leadership

Table 1: Relation mapping to Freebase.

Data: Freebase temporal relation (g, r, from, to)
Result: labeled training examples

Retrieve the Wikipedia article of the query entity g;
Split article into passages;

Retrieve the passages containing g, r;

Extract all time expressions from the passages;

for time-expression t do

Retrieve the context sentence s containing ¢;

If tis from : use s, t as BEGINNING example;
If tisto: use s, t as ENDING example;

If t before from : use s, t as BEFORE example;
If t after to : use s, t as AFTER example;

If t between from and to : use s, t as WITHIN example;

end

Algorithm 1: Training data generation.

WITHIN class. In newswire, however, we tend to see something different; most of the time expressions
will belong to the WITHIN class.

We argue that using the training data with a “smarter” prior is important. More data not only means
more information, but may also mean more noise. This is particularly important with the relaxed dis-
tant supervision assumption that we have. Therefore, we choose to sample instead of using all of the
generated training examples.

We employ two sampling strategies: uniform, sampling from our generated training data and deliber-
ately fitting them to a uniform distribution; and prior-sampling, where we deliberately construct training
data to fit a prior distribution. One way to estimate such a prior is by looking at the distributions of classes
in the gold-standard training data that we have. In the case where gold-standard data is not available, we
can use a heuristic to estimate the distributions of temporal classes based on domain knowledge or on
observations of the target corpora.

In summary, we generate the final training data according to the following steps. First, generate train-
ing data with the DS approach described before. Next, estimate class distributions from the (supervised)
training data. Then, sample examples from the generated DS data with the probability estimated from
the supervised training data (i.e., the empirical prior). Keep sampling the training examples until we
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reach the target percentage of the DS data. Finally, use the sampled training data to train the multi-class
classifier.

Feature representation Both for the training, evaluation, and DS data, we extract the context sentence,
i..e, the sentence containing the relation and time expression .

We normalize the context sentence as follows. First, we detect named entities within the sentence and
replace the mentions with their entity types (PERSON, ORGANIZATION, or LOCATION). Second, we
detect other time expressions within the context and normalize them with regard to the main time expres-
sion t, i.e., by normalizing them into TIME-LT and TIME-GT. The idea is to capture the relationships
between time expressions as features.

We extract lexical features from the normalized sentence. This comprises tokens surrounding the
query entity, related entity (slot filler), and time expression. We consider the following four models as
our feature representations:

Model-1: bag-of-words All tokens within the normalized sentences are used as features.

Model-2: context window All tokens within the proximity of 3 tokens from the query entity, related
entity, and time expression are used as features.

Model-3: context window with trigger words lexicon All tokens within the proximity of 3 token from
the query entity, related entity, and time expression are used as features. In addition, a list of
keywords which might indicate the beginning and ending of relationships are used as gazetteer
features. These list of keywords are expanded by using WordNet to extract related terms.

Model-4: context window with position All tokens within the proximity of 3 tokens from the query
entity, related entity, and time expression are used as features. Rather than considered as bag-of-
words tokens, the positions of word occurrences are now taken into account as features.

4 Experimental Setup

We introduce the dataset and the setup of our experiments. Before that we formulate our research ques-
tions as these dictate our further choices.

Research questions We aim to answer the following research questions:

RQ1 How does a purely supervised approach with different features and learning algorithms perform
on the task of temporal evidence classification?

RQ2 How does the performance of a distant supervision approach compare to that of a supervised
learning approach on the task of temporal evidence classification?

RQ3 How does the performance of a prior-informed distant supervision approach compare to that of a
basic distant supervision approach on the task of temporal evidence classification?

RQ4 How do the approaches listed above compare in terms of their performance on the end-to-end
temporal relation extraction task?

Corpora and knowledge base We use the TAC 2011 document collection, which contains 1.7M docu-
ments, consisting of news wires, web texts, broadcast news, and broadcast conversation. We use a recent
version of Freebase (October 2013) as our knowledge base and retrieve the latest version of Wikipedia
as our distant supervision corpus.

Ground truth We use the TAC-KBP 2011 Temporal Slot Filling Task dataset (Ji et al., 2011) as the
ground truth in our experiments. The ground truth comes in two forms: intermediate evidence (with
classification labels) and tuples (boundaries of each relation). We use the intermediate evidence to eval-
uate our temporal evidence classification framework. We later use the provided tuples to evaluate the
end-to-end result.

The dataset contains 173 examples in the training set and 757 examples in the evaluation set. The
distribution of the classes is shown in Table 2.
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Class Training Evaluation DS Training

WITHIN 66 357 6,129
BEGINNING 59 217 22,508
ENDING 30 110 16,775
BEFORE 9 45 24,932
AFTER 9 28 12,499

Table 2: Class distribution statistics.

Evaluation metric We use F1 as the main evaluation metric for the temporal evidence classification
task. For the end-to-end temporal information extraction task, we use the evaluation metric proposed in
TAC-KBP 2011, i.e., the @ score. Given a relation r and the ground truth interval tuple G,., Q(T}), the
quality score of a tuple 7, returned by system S is computed as follows:

Q(Tr) =

PN

4 1
Z 1+d;°
i=1

where d; is the absolute difference between 7; in system response and the ground truth tuple G; (mea-
sured in years). To obtain an overall system () score, we average the () scores obtained from each relation
tuple returned.

Experiments We run four contrastive experiments. In Experiment 1, we contrast the performance on
the temporal evidence classification task of the different choices for our supervised methods (Model-1,
-2, -3, -4), using either Support Vector Machine, Naive Bayes, Random Forest, or Gradient Boosted
Regression Tree. In Experiment 2 we examine our distant supervision method and contrast its perfor-
mance with the supervised methods from Experiment 1. In Experiment 3, we contrast different sampling
methods for our distant supervision method.

In Experiment 4 we consider the overall performance on the temporal relation extraction task of our
methods; in this experiment we use three “oracle runs” that we have not introduced yet: first, the Label-
Oracle run uses the actual temporal classification label from the ground truth, use these ground truth
label to aggregate the evidence and create the temporal tuples, and compute the end-to-end score; second,
Within-Oracle assigns all temporal evidence to the WITHIN class; third, Nil-Baseline is a lower-bound
run that assigns NIL to every element of the temporal tuples.

We use the implementations of the learning algorithms in the Scikit-learn machine learning package
(Pedregosa et al., 2011).

5 Results and Discussion
We present the outcomes of the four experiments specified in the previous section.

5.1 Preliminary experiment

To answer RQ1, How does the performance of the supervised learning approaches on the temporal
evidence classification task vary with different representations and learning algorithms?, we start with
a preliminary experiment. The aim of this experiment is to get an idea of the classification performance
with a purely supervised approach. The results are shown in Table 3.

As shown in Table 3, Model-4 with the SVM and NB classifiers achieves the best overall performance.
There seems to be a gradual increase in performance from the simpler to the more complex model with
SVM and NB classifiers, with the exception of RF. Interestingly, GBRT seems only slightly affected by
the different choice of model in this supervised setting.

5.2 Distant supervision experiments

Next, we evaluate the distant supervision approach. We aim to answer RQ2, How does the performance
of the distant supervision approach compare to that of the supervised learning approach? We generate
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Model SVM NB RF  GBRT

Model-1 0.405 0.361 0.402 0.422
Model-2 0.409 0.417 0.354 0.420
Model-3 0.412 0418 0361 0.420
Model-4 0.426 0.424 0.241 0.422

Table 3: Experiment 1. Supervised approaches to temporal evidence classification.

training examples with the approach described in Section 3, and use the full generated training data to
train SVM and Naive Bayes classifiers with the same representation models that we use in the previous
experiments. The results are shown in Table 4.

Model Supervised DS  DS-uniform DS-prior
Model-1 SVM 0.405 0.212 0.379 0.408
Model-2 SVM 0.409 0.185 0.389 0.450
Model-3 SVM 0.412 0.183 0.384 0.452
Model-4 SVM 0.426 0.200 0.400 0.463
Model-1 NB 0.361 0.413 0.379 0.431
Model-2 NB 0.417 0.299 0.372 0.451
Model-3 NB 0.418 0.300 0.368 0.446
Model-4 NB 0.424 0.270 0.400 0.486
Model-1 RF 0.402 0.162 0.406 0.397
Model-2 RF 0.354 0.177 0.399 0.418
Model-3 RF 0.361 0.176 0.391 0.403
Model-4 RF 0.241 0.171 0.399 0.446
Model-1 GBRT 0.422 0.142 0.316 0.344
Model-2 GBRT 0.420 0.137 0.343 0.418
Model-3 GBRT 0.420 0.138 0.343 0.403
Model-4 GBRT 0.422 0.140 0.399 0.433

Table 4: Experiment 2 and 3. Supervised, distant supervision, and distant supervision with sampling
approaches to temporal evidence classification.

We observe that the distant supervision approach trained on the full set of generated examples (the
column labeled “DS”) performs poorly, well below the supervised approach. We hypothesize that the
accuracy drops due to the amount of noise generated with our distant supervision assumption trained
from full data, and different class distribution statistics.

In Section 3, we proposed our prior-sampling approach for distant supervision. The next experiment
is meant to answer RQ3, How does the performance of our prior-informed distant supervision approach
compare to that of the basic distant supervision approaches? We sample 20 percent of the generated
examples datasets with the following strategies: uniform and prior. The results are also shown in Table 4,
in the columns labeled “DS-uniform” and “DS-prior,” respectively.

By observing the results in Table 4, we notice that distant supervision with prior sampling performs
the best, for every combination of model and classification method. Uniform sampling already helps
in improving the performance, and prior sampling successfully boosts the performance of the basic
distant supervision (for all four models) further. Distant supervision with prior sampling also performs
consistently better than the supervised approaches (Table 3) in many cases—interestingly, for GBRT,
DS-prior only outperforms the supervised methods with sufficiently complex queries (Model-4 GBRT).
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5.3 End-to-end experiments

Next, we answer RQ4. That is, we consider how the classification performance on temporal evidence
classification affects the end-to-end result. We take the best performing models from the previous exper-
iments and evaluate their end-to-end scores. The results are shown in Table 5.!

Model Avg-Q F1

Label-Oracle 0.925 1.000
Within-Oracle 0.676 0.302
Nil-Baseline 0.393 N/A

Supervised

Model-4 SVM  0.657 0.426
Model-4 NB 0.648 0.424
Model-4 RF 0.573  0.241
Model-4 GBRT 0.649 0.422

Distant supervision

Model-4 SVM 0.669 0.463
Model-4 NB 0.679 0.486
Model-4 RF 0.653 0.446
Model-4 GBRT 0.669 0.433

Table 5: Experiment 4. End-to-end scores (Avg-Q) next to F1 scores for temporal evidence classification.

From Table 5, we see that Model-4 RF (F1 on temporal evidence classification 0.446) and Model-4
GBRT (F1 on temporal evidence classification 0.433) translate into 0.653 and 0.669, respectively, in
terms of Q-score. This means that the misclassifications that Model-4 RF produces have a larger impact
than those of Model-4 GBRT. However, the difference in performance is not large.

The evaluation of this end-to-end task is important because not every misclassification has a similar
cost. Misclassification of class A into class B can result in a huge increase/decrease in performance. First,
the classification performance does not directly map to the end-to-end score. Second, several relations
have more pieces of evidence than others; performing misclassifications on relations that have a lot of
supporting evidence would probably have less effect on the final score.

The state of the art performance, using distant supervision (Li et al., 2012), achieves an end-to-end
Avg-Q score of 0.678 (on training data), where we achieve 0.679 (on evaluation data). However, our
scores are not directly comparable since we reduce the number of classes (and the amount of evidence)
in our evaluation. It is important to note that Li et al. (2012) use a complex combination of flat and
structured features as well as the web, where we use relatively simple features with Wikipedia and prior
sampling.

Furthermore, our approach manages to achieve the same level of end-to-end performance as the
Within-Oracle run, while achieving a significantly better F-score. More pieces of evidence were ac-
tually classified correctly, though this was not reflected directly in the end-to-end score due to issues
described above.

5.4 Error Analysis

We proceed to analyse parts of our end-to-end results to see what is causing errors in the temporal
evidence classification task. We found several common problems.

Semantic inference Some problems had to do with the fact that several snippets require semantic
inference. The fact that someone dies effectively ends any relationships that this person had. Another
example is when someone marries someone (A marries C'), and this beginning of relationships effectively

'As the Nil-Baseline is applied directly to the final tuples rather than the classification labels, there are is no F1 score for
this run.
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means the end of relationships for previous relations (A and B). A more complex method to deal with
this type of semantic inference is needed, simple classification does not work so well. Here is an example:

Angela Merkel is married to Joachim Sauer, a professor of chemistry at Berlin’s Humboldt
University, since 1998. Divorced from Ulrich Merkel. No children.

For this example the fact is that the time expression 1998 happens after with regard to the spouse relation
between Angela Merkel and Ulrich Merkel.

Concise temporal representations Newspaper articles contain lots of temporal information in a con-
cise way. For example in the form (X-Y). This implicit interval range is not expressed in a lexical context
but rather with symbolic conventions. In several articles, the information encoded is almost tabular rather
than expressed in explicitly. For example:

Elected as german chancellor Nov. 22, 2005. Chairwoman, christian democratic union,
2000-present. Chairwoman, christian democratic parliamentary group, 2002-2005.

Complex time-inference BEFORE and AFTER are especially tricky to deal with because they require
additional inference. Even if a passage contains the word after, the time expression linked to it would
probably contain the before relation.

He was called up by the Army in the spring of 1944, after marrying bea silverman in 1943,
and was sent to The Philippines.

For the above example, 1943 happens before the “person joined the Army” event.

We observe quite a number of these cases on the evaluation data. Furthermore, the lack of context on
some examples and evidence that is scattered around multiple sentences complicates the problem even
more. Because of semantic and implicit evidence, temporal evidence classification remains a challenging
task. In order to achieve a better absolute performance, collective classification/inference of evidence
seems an interesting option.

6 Conclusion

We have presented a distant-supervision approach to temporal evidence classification. The main feature
of our distant supervision approach is that we consider the prior distribution of classes in the target do-
main in order to better model the task. We show that our prior-informed distant supervision approach
manages to outperform a purely supervised approach. Our method also achieves state-of-the-art perfor-
mance on end-to-end temporal relation extraction with fewer and simpler features than previous work.

Our error analysis on the temporal evidence classification task revealed several issues that inform our
future work aimed at further improving the performance on the subtask of temporal evidence classifica-
tion, and the overall temporal relation extraction task. In particular, we intend to deal with the challenging
aspect of semantic inference over relations found in the evidence passage. Another interesting direction
that we aim to tackle is dealing with evidence that is scattered across multiple sentences.
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