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Abstract

This paper investigates the problem of automated text aesthetics prediction. The avail-
ability of user generated content and ratings, e.g. Flickr, has induced research in aesthet-
ics prediction for non-text domains, particularly for photographic images. This problem,
however, has yet not been explored for the text domain. Due to the very subjective
nature of text aesthetics, it is difficult to compile human annotated data by methods
such as crowd sourcing with a fair degree of inter-annotator agreement. The availability
of the Kindle “popular highlights” data has motivated us to compile a dataset com-
prised of human annotated aesthetically pleasing and interesting text passages. We then
undertake a supervised classification approach to predict text aesthetics by constructing
real-valued feature vectors from each text passage. In particular, the features that we use
for this classification task are word length, repetitions, polarity, part-of-speech, semantic
distances; and topic generality and diversity. A traditional binary classification approach
is not effective in this case because non-highlighted passages surrounding the highlighted
ones do not necessarily represent the other extreme of unpleasant quality text. Due to the
absence of real negative class samples, we employ the MC algorithm, in which training
can be initiated with instances only from the positive class. On each successive iteration
the algorithm selects new strong negative samples from the unlabeled class and retrains
itself. The results show that the mapping convergence (MC) algorithm with a Gaussian
and a linear kernel used for the mapping and convergence phases, respectively, yields the
best results, achieving satisfactory accuracy, precision and recall values of about 74%,
42% and 54% respectively.

1 Introduction

Since their inception, Amazon Kindle device1 and Apps for other general purpose hand-held
devices, have led to a massive increase in the trend of reading e-books over paper printed ones.
The Amazon Kindle and the Kindle Apps provide a very simple mechanism for highlighting a
piece of text and sharing it on social media. The most popular highlighted pieces of text are
shown in the Kindle device with an intention to help readers focus on passages that are pleasing or
interesting to the greatest number of people. Every month, Kindle customers highlight millions
of book passages that are meaningful to them2. The general trend among Kindle readers, while
reading the classic English literary works, is to highlight text passages that are associated with
a high aesthetic quality. An example highlighted passage is shown in Figure 1.

With the availability of such highlighted text, which may be considered as text passages which
most readers find pleasing to read, an interesting research problem is to attempt automatic
prediction of highlighted pieces of text. In other words, given a text passage, the objective is to

This work is licensed under Creative Commons Attribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1https://kindle.amazon.com/
2https://kindle.amazon.com/most_popular
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It was the best of times, it was the worst of times, it was the age of wisdom, it was
the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was
the season of Light, it was the season of Darkness, it was the spring of hope, it was the
winter of despair.

Figure 1: Passage from A tale of two cities (Charles Dickens), highlighted by 6843 Kindle
readers.

determine the likelihood of it being aesthetically pleasing and interesting. Such an automated
approach of identifying aesthetically pleasing text passages may potentially be used to endorse
a newly released book on e-commerce websites with an aim to increase its sales. Moreover, such
an approach may also, in principle, be used as a tool by an author to determine how likely it is
for readers to appreciate a newly written text passage.

The key challenge in solving this problem is to determine the characteristic attributes of a
popular highlighted text passage. An intuitive assumption is that the popularity of a high-
lighted passage depends on its aesthetic quality. Generally speaking, passages inclined towards
expressing an author’s view on a subject, which may often be philosophical in nature, with
considerable application of atypical figures of speech, e.g. anaphora, alliteration, antithesis,
metaphor, simile, personification etc., are more likely to be highlighted than a straight-forward
story narrative passage. For example, the highlighted passage in Figure 1 is rich in anaphora
(repetition of the same word or group of words in a paragraph, e.g. “times”, “age”, “epoch”
etc.) and antithesis (juxtaposition of opposing or contrasting ideas, e.g. “best of times”, “worst
of times”; “wisdom”, “foolishness” etc). An automated approach of aesthetic quality prediction
thus has to take into account these different features of a text passage. The idea of using these
features for text aesthetics prediction, in fact, forms a core part of our work.

It is particularly interesting to see that this problem of automatically predicting text aes-
thetics is largely different from the standard well researched problem of document text classi-
fication (Sebastiani, 2002). The reason is as follows. The problem of text categorization can
effectively be solved by the application of discrete categorical features, such as character n-gram
frequencies and word frequencies. In other words, the presence of characteristic words from a
particular domain is a good indicator of the class of a document, e.g. the presence of the words
“soccer”, “goal” etc. in a document is a good indicator that the document is of the sports
genre, whereas the presence of words such as “money”, “bank” etc. would indicate that the
genre is finance. Consequently, the generative framework of a multinomial Naive Bayes (NB)
model with character n-gram and word n-grams based features works effectively for this class of
problems (McCallum and Nigam, 1998).

In the case of aesthetic quality prediction, however, the mere presence of a particular word or
character n-gram can hardly be a good indicator of the inherent literary quality of the text. The
output classes of this classification problem, namely aesthetic or not aesthetic, do not comprise
a small vocabulary of domain-specific representative terms such as in the case of the sports or
finance domains. The vocabularies of the respective classes in this classification problem are
largely unrestricted and mutually indistinguishable.

The rest of the paper is organized as follows. Section 2 presents related research. In Section 3,
we present our proposed approach to solve the text aesthetics problem. Section 4 describes our
experimental settings, following which Section 5 presents the results. In Section 6, we investigate
the contribution from individual features and then the relative importance of the features when
used in combination. Finally, Section 7 concludes the paper.

2 Related Work

A computational viewpoint of aesthetic quality, in general, takes into account the subjectivity of
an observer and postulates that among several observations, the aesthetically most pleasing one
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is the one with the shortest description, given the observer’s previous knowledge (Schmidhuber,
2010). An agent driven reinforcement based learning algorithm can then be used in principle to
produce creative (novel and interesting) outputs (Schmidhuber, 2010). Our work in this paper
is largely different from the general reinforcement learning paradigm, because we focus on the
particular problem of text aesthetics viewing the problem as a supervised classification task.
Moreover, the proposition of minimum description length as an attribute of aesthetic quality
(Schmidhuber, 2010) is counter-intuitive for literary works.

There has been considerable research interest in automatically predicting visual aesthetic
quality of images (Dhar et al., 2011) and layout of web pages (Reinecke et al., 2013). Most
empirically successful approaches to image aesthetics prediction first transform an image into a
feature vector of characteristic attributes that play a pivotal role in differentiating an interesting
image from a non-interesting one. Generally speaking, some of these attributes which determine
whether an image is aesthetically pleasing are the presence of salient objects (indicated by a low
depth of field), compositional attributes (e.g. the rule of thirds), the effect of light in natural
landscapes, etc. The next step is to apply a supervised learning algorithm, e.g. support vector
machine (SVM), to learn a two-class prediction model. Useful features, extracted from images
for this classification task include: i) colourfulness, contrast, symmetry, vanishing point and
facial features (Jiang et al., 2010); ii) face poses, between-face distances, and the consistency
of expressions on multiple faces (Li et al., 2010); iii) high level describable attributes, such as
compositional attributes (e.g. rule of thirds image layout), content attributes related to the
presence of people, animals, sky illumination attributes etc. (Dhar et al., 2011).

Our proposed method of text aesthetics prediction is similarly based on extracting character-
istic features from the text passages. However, in the case of literature, it is worth mentioning
that in contrast to image aesthetics it is more difficult to describe the subtle attributes which
differentiate an aesthetically pleasing text from its counterpart.

Although the authors are not aware of any reported research on text aesthetics, there has
been a considerable amount of research in the somewhat closely related problem of detect-
ing metaphors in text. Automated approaches to metaphor detection involve both supervised
and unsupervised approaches, some of which include: i) supervised classification on extracted
verbal target feature vectors of sentences (Gedigian et al., 2006); ii) expectation maximization
(EM) based unsupervised approach to non-literal word sense detection (Birke and Sarkar, 2006);
iii) unsupervised approach using hierarchical graph factorization clustering (Shutova and Sun,
2013).

In general, it is intuitive to assume that metaphorical or figurative parts of text are aestheti-
cally pleasing and interesting, which makes the problem of text aesthetics prediction somewhat
similar to that of metaphor detection. Unfortunately, this assumption is not often true, and
this is particularly the case for literary works due to the availability of a large number of figures
of speech at an author’s disposal (metaphor just being one of them). For example, the sample
Kindle highlighted passage shown in Section 1 has an obvious aesthetic appeal to a large number
of readers, in spite of it being not metaphorical.

3 Our Approach to the Text Aesthetics Prediction Problem

In this section, we describe the details of our approach to text aesthetics prediction. We hy-
pothesize that a NB classifier with word or character n-gram based features is not suitable for
this particular problem due to the mutual overlap and lack of domain specific restriction in the
vocabulary of the output classes (i.e. aesthetic and non-aesthetic). One thus needs to extract a
set of characteristic features from the text passages which may be useful to solve the classifica-
tion problem. We describe the features used in our approach in Section 3.1. In Section 3.2, we
propose to use the mapping convergence (MC) algorithm for the text aesthetics problem, where
the intention is to learn a classifier only from positive samples.
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The truth is rarely pure and never simple. Modern life would be very tedious if it were
either, and modern literature a complete impossibility!

Figure 2: Passage from The Importance of Being Earnest (Oscar Wilde).

3.1 Feature Vector Encoding of Text Passages

In this section, we introduce the various features used for the text aesthetics classification task.
Each feature is a function which maps a passage of text P = {w1 . . . wN} comprising N words
into a real number.

3.1.1 Word-based Features
In Section 1, we illustrated that that an anaphora is a rheoteric device used by authors to
emphasize a text passage, which in turn indicates that such a passage is likely to attract the
attention of readers and hence are likely to be highlighted by them. Moreover, the closer the
repetitions are, the stronger is the emphasis.

On the basis of this reasoning, we employ an average positional difference weighted count of
word repetitions in a passage. To be more precise, for each word in a passage we compute the
number of times a word wi is repeated, divide this count by the difference between the repeating
position (say at position j), and average the sum of counts for all repeating words over the
passage length, as shown in Equation 1. In Equation 1, 1(wi = wj) is the indicator function
which is 1 if and only if wi = wj and 0 otherwise.

The second word level feature which we use, is the average length of words in a passage.
The reasoning behind using this feature is that authors tend to use relatively longer words (e.g.
superlatives) to emphasize a passage. Equation 2 shows how this is computed.

W1(P ) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

1(wi = wj)
j − i (1)

W2(P ) =
1
N

N∑
i=1

len(wi) (2)

3.1.2 Topic-based Features
An attribute which can be considered responsible for the aesthetic quality of a text passage is
the diversity of topics it expresses. It is reasonable to assume that a text passage expressing a
broad idea or opinion of an author, often philosophical in nature, is likely to be appealing to
readers. Such general themed text passages typically cover a broad range of topics, as a result
of which the constituent words of such text passages involve collocation of seemingly unrelated
terms. For example, in the text passage shown in Figure 2, the word pairs (truth, tedious), and
(literature, impossibility) would typically appear in different topic classes, where by a topic we
mean a set of words with high co-ocurrence likelihood estimated from a collection of documents
by standard topic modelling techniques such as the Latent Dirichlet allocation (LDA) (Blei et
al., 2003). To encode this diversity of topics as a real valued feature function, we use Equation 3.

T1(P ) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

1[z(wi) 6= z(wj)]
(j − i) (3)

In Equation 3, z(w) denotes the topic class of the word w obtained with the help of LDA. A
mismatch in the topic class is divided by the distance between the mismatches to assign more
weight to the close mismatches. As an example, the mismatch between (literature, impossibility)
bears more importance than the mismatch between (modern, impossibility).

The second topic-based feature which we use pertains to predicting the abstractness of the
content of a passage. It has been reported that words highly representative of topics are generally
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not metaphorical. We apply a similar reasoning to hypothesize that since an interesting piece of
text is more likely to be philosophical or abstract in nature in comparison to a story narrative,
the constituent words are less likely to be the representatives of their topic classes. Formally
speaking in terms of LDA, these words are expected to have smaller values of maxk φk(w). Recall
that a topic representative word in LDA exhibits a skewed distribution with a peak for one topic
class (with a high value of maxk φk(w)), whereas a less representative word exhibits a more
uniform distribution of φk(w) values over the topic classes (thus a low value of maxk φk(w)). We
use Equation 4 to compute the average topic concreteness of a text passage.

T2(P ) =
1
N

N∑
i=1

max
k

φk(wi) (4)

3.1.3 Part of Speech Feature
We hypothesize that another attribute of an aesthetic passage is that it is likely to contain a
rich usage of adjectives (mostly of superlative type for the sake of emphasis) and adverbs. We
therefore employ the part of speech tag (POS) information of the constituent words of a text
passage as one of our features. To be more specific, we use the average number of adjectives
and adverbs of a text passage as the feature value. This is shown in Equation 5.

POS(P ) =
1
N

N∑
i=1

(#adjectives+ #adverbs) (5)

3.1.4 Sentiment Feature
We pointed out in Section 1 that authors often use the antithesis figure of speech to express con-
trasting concepts. Thus, another feature which we can use is the aggregated absolute difference
values between the sentiment polarities of words in a text paragraph. This again is weighted
by the difference in position between a positive sentiment word and its negative counterpart to
assign more importance to closely occurring opposite sentiment concepts.

To obtain the sentiment values of the constituent words, we used the SentiWordNet3. To
illustrate with an example, consider the closely occurring opposite sentiment word pairs (best
(0.75), worst (-0.75)), (wisdom (0.375), foolishness (-0.375)) etc. of Figure 1 and the word pairs
(complete (0.625), impossibility (-0.25)) of Figure 2, where the numbers in the parentheses show
the positive or the negative sentiment value (a normalized number between 0 and 1). Equation 6
shows the real-valued function derived from the sentiment information of word pairs, where the
function s(w) denotes the sentiment value associated with the word w.

SENT (P ) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

|s(wi)− s(wj)|
(j − i) (6)

3.1.5 Inter-word Semantic Distance Feature
An alternative way to represent the topic diversity is to capture the likelihood of the event
of occurrence of two words in close vicinity. The higher this likelihood is, the better is the
semantic relation or coherence between the words. We make use of the DISCO4 tool to compute
the semantic relation between two words in a word pair. In DISCO, these semantic relations
between the words are precomputed on the basis of co-occurrence likelihoods from a large corpus,
e.g. the Wikipedia (Kolb, 2008). DISCO provides two similarity measurements (named the first
order and the second order similarities) between two input words. While the first order similarity
between two input words is computed based on their collocation sets, the second order similarity
is computed based on their sets of distributionally similar words (Kolb, 2008). We denote the

3http://sentiwordnet.isti.cnr.it/
4http://www.linguatools.de/disco/disco_en.html
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first order and the second order similarities between words wi and wj respectively as ds1(wi, wj)
and ds2(wi, wj) respectively.

In relation to text aesthetics, we expect a small value of average first order and second order
similarity values between word pairs in a highlighted piece of text in comparison to a non-
highlighted one. Similar to our earlier features, we divide these similarity values by the positional
difference between the words in order to put more emphasis on semantic diversity between closely
occurring words. Equation 7 shows the two features extracted making use of these similarity
values.

SDk(P ) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

|dsk(wi)− dsk(wj)|
(j − i) , k = {1, 2} (7)

3.2 Learning from Positive Examples: The MC Algorithm

Binary classifiers, such as SVMs, work particularly well with a sufficient number of both positive
and negative class instances for training. In the case of text aesthetics prediction problem, the
passages highlighted by Kindle readers serve as the positive class samples. Although it might
be intuitive to use the non-highlighted passages as instances of the negative type, there can be
problems associated with this approach.

Firstly, the non-highlighted passages are not essentially instances of the negative class because
the non-highlighted passages are not necessarily aesthetically unpleasing. Secondly, there is an
element of cognitive bias associated with the highlighting process because a reader, who can
already see popular highlights while reading a page, may be biased to highlight the same passage
himself, and may not in fact highlight some other passage which he himself found interesting.

Note that this observation in fact makes our problem more challenging to solve in comparison
to aesthetics prediction in other domains, such as images, where information such as Flickr5

photo ratings can be used as strong positive or negative indicators of an image interestingness
or aesthetic quality, leading to effective classification results using a standard binary classification
approach (Dhar et al., 2011).

Due to the presence of incompletely labeled examples, we apply the mapping convergence
(MC) algorithm (Yu et al., 2003) for this task. The objective of the MC algorithm is to predict
the positive samples from a test data, given a mixture of positive and unlabeled samples. These
unlabeled samples in the MC algorithm can be treated as instances of either the positive or the
negative class in order to obtain maximum classification effectiveness.

The two stages of the MC algorithm are summarized as follows.

1. The mapping stage identifies from the unlabeled samples the strong negative ones, i.e. the
points distinctly different from the positive samples.

2. The convergence stage is an iterative step to learn a binary classification model, e.g. SVM,
using the positive and the strong negative samples. Each iterative step of convergence
classifies the remaining unlabeled samples to collect more strong negative samples. The
convergence step is repeated until no more strong negative samples are found.

The objective of the convergence step of the MC algorithm is to maximize margin to make
progressively better approximation of the negative data. At the end of the iteration, the class
boundary eventually converges to the boundary around the positive data set in the feature
space (Yu et al., 2003).

In our approach to the text aesthetics prediction task, we implement the mapping stage of
the MC algorithm with the help of standard one-class classifiers, namely the one class SVM
(OSVM) (Schölkopf et al., 1999) and the support vector data descriptor (SVDD) (Tax and
Duin, 2004). The OSVM separates all the data points in the feature space from the origin, with
the help of a separating hyperplane with maximum distance from the origin. The OSVM is thus

5https://www.flickr.com/
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able to separate out regions in the input space with high probability densities (Schölkopf et al.,
1999). SVDD, on the other hand, instead of a planar, takes a spherical approach to the one
class problem. The algorithm obtains a spherical boundary in feature space around the data.
The volume of this hypersphere is minimized to minimize the effect of incorporating outliers in
the solution (Tax and Duin, 2004).

It is worth mentioning here that although the OSVM and the SVDD can be trained with
positive samples only, these models are prone to over-fitting or under-fitting due to a small
number of support vectors modeled from a small number of positive samples (Yu et al., 2003).
In contrast, a binary SVM can model data more robustly due to the presence of the additional
negative samples. Hence, OSVM and the SVDD are typically used as a weak classifier to obtain
a set of initial strong negative samples in order to initiate the convergence step of the MC
algorithm.

4 Experiment Settings

In this section, we describe the dataset and the tools used for our experiments.

4.1 Dataset Construction

The standard practice to evaluate the metaphor detection problem, which is somewhat similar
to the text aesthetics prediction, is to make extensive use of manually annotated data typically
obtained under controlled user-based studies, where the users or the participants are instructed
to perform some given objectives, such as manually label metaphors in a collection of documents,
e.g. (Hovy et al., 2013). The main difficulties with this approach are that: i) it takes a
considerable amount of time to collect data; ii) the quality of the data depends largely on
controlled experimental settings, e.g. the data quality may be susceptible to errors caused by
targeted, malicious work efforts, since there is often a financial incentive to complete tasks
quickly rather than effectively (Ipeirotis et al., 2010); and iii) it is very difficult to compare the
effectiveness of two methods on two different datasets obtained under different controlled user
study settings.

The availability of fairly large amounts of highlighted text on the Amazon website has ensured
a reliable and fast way to construct the dataset for carrying out the text aesthetics experiments.
The advantages are as follows. Firstly, it is not necessary to conduct crowd sourcing experiments
for data collection. Secondly, since the data is not generated by controlled crowd sourcing, the
quality of the data is more reliable because there is no financial incentive to complete tasks
quickly. Thirdly, since the data is publicly available, it is possible to achieve a fair comparison
between different problem solving approaches.

The Amazon “Popular Highlights”6 web page presents a ranked list of the most highlighted
passages, sorted in descending order by the number of highlights. However, at the time of writing
this paper, Amazon has neither made the data publicly downloadable nor provided an API to
access it. For conducting our experiments with this data, we therefore had to automatically
crawl data from the Popular Highlights web page.

In addition to the highlighted passages (serving as the positive class samples in our dataset),
we also need the non-highlighted ones (meant to serve as the unlabeled samples). The text from
the non-highlighted passages, however, are not available in the Popular Highlights web page.
This data was thus extracted from those books, the passages of which are popularly highlighted.
In order to ensure free access to book content, we had to restrict our dataset to the 50 most
popular highlighted classic English fictions.

More precisely speaking, for every highlighted passage found while crawling the Amazon
Popular Highlights page, our crawler checks if the book is available on project Gutenberg7. If
not, then we examine the next highlighted passage, otherwise we craw the full text of the book,

6https://kindle.amazon.com/most_popular/highlights_all_time/
7http://www.gutenberg.org/
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in which the current highlighted passages belongs, from project Gutenberg website. The crawler
continued to run until we had collected highlighted passages from 50 different literature classics.

The dataset for the prediction task is then constructed as follows. First, we add the text of
all highlighted passages as instances of the positive class. Next, for each highlighted passage,
we add the paragraph preceding and succeeding it into the dataset as the unlabeled samples.
Note that selecting the unlabeled samples this way is better than random selection of non-
highlighted passages from full text, because this way of choosing negative samples ensures a
meaningful representation of reader judgments to highlight a particular passage of text from
within a surrounding context.

We then partition the dataset comprised of the positive and unlabeled samples into equal
sized training and test sets. In Table 1, we outline the characteristics of the dataset.

Dataset # Books Vocab. # Passages

Size Highlighted Unhighlighted Total

Train 25 9560 168 305 473
Test 25 7883 169 319 488

Total 50 13496 337 624 961

Table 1: Dataset characteristics

4.2 Implementation Details

For each passage in the dataset, we extract the features described in Section 3.1. To compute
the topic modeling based features we used Mallet8. The number of topics (K) in LDA was set
to 100. The POS tag feature was extracted with the help of the Stanford POS tagger9. For
extracting the sentiment feature, we made use of the Java API of the SentiWordNet10. For the
semantic word distance feature, we used the DISCO Java API11.

For the naive Bayes experiment, we used the Stanford classifier12. The SVM experiments
(binary SVM, one-class SVM, SVDD) were conducted with the libSVM software13.

4.3 Evaluation Metrics

For all the experiments reported in this paper, the classification effectiveness mainly focuses on
precision and recall with respect to the positive class. Consequently, precision, recall and the
F-score measures, shown in Tables 2 and 3, are measured with respect to the positive class only.

Ideally, for this problem one would want to obtain a high recall, i.e. identify as many high-
lighted passages correctly as possible. In this situation, recall is thus more important than
precision. Achieving a good precision is desirable, nonetheless, to minimize the false positives.
Although we report accuracy, we emphasize that accuracy alone is not a good measure of clas-
sification effectiveness in this case, because correct identification of negative instances is not
important for this problem.

5 Results

Before conducting experiments with the MC algorithm, we obtained baseline results by classify-
ing the dataset using NB and SVMs. In the case of NB, instead of using the real valued features
from the text passages (as proposed in Section 3.1), we simply used the character n-gram and
word n-gram features (maximum value of n was set to 5) from the text, automatically extracted

8http://mallet.cs.umass.edu/
9http://nlp.stanford.edu/software/tagger.shtml

10http://sentiwordnet.isti.cnr.it/code/SentiWordNetDemoCode.java
11http://www.linguatools.de/disco/disco_en.html
12http://nlp.stanford.edu/software/classifier.shtml
13http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Classifier Kernel Accuracy Precision Recall F-score

NB N/A 67.40 54.40 36.70 43.80

BSVM Linear 66.19 35.71 5.92 10.15
BSVM Gaussian 67.00 39.39 15.38 22.13

OSVM Linear 38.32 32.46 51.48 39.82
OSVM Gaussian 53.68 41.87 50.29 45.70

SVDD Linear 35.04 34.77 100.00 51.60
SVDD Gaussian 37.91 35.56 97.63 52.13

Table 2: Text aesthetics prediction results with Naive Bayes and SVM.

Classifier Kernel Accuracy Precision Recall F-score

Mapping Convergence Mapping Convergence

OSVM BSVM Linear Linear 66.18 35.71 5.92 10.15
OSVM BSVM Linear Gaussian 64.96 40.26 36.69 38.39
OSVM BSVM Gaussian Linear 66.80 44.44 11.83 18.69
OSVM BSVM Gaussian Gaussian 64.34 36.87 39.05 37.93

SVDD BSVM Linear Linear 40.98 35.76 92.90 51.64
SVDD BSVM Linear Gaussian 43.44 36.17 90.53 51.69
SVDD BSVM Gaussian Linear 56.76 42.90 74.64 54.42
SVDD BSVM Gaussian Gaussian 47.34 38.60 88.17 53.69

Table 3: Text aesthetics prediction results by the MC algorithm with different settings.

by the Stanford classifier. The result of this experiment (see Table 2) shows that the recall value
is very low, which in turn indicates that word vocabulary based features, typically used for text
categorization, are not effective for this task.

The next classification method that we employ is standard binary class SVM (denoted as
BSVM). The training phase of the BSVM used the non-highlighted passages as negative class
instances. We experimented with both linear and Gaussian kernels. For all reported results
which use the Gaussian kernel, the parameter γ was set to the default value of 1/(#features)
as per the libSVM implementation. Although the accuracy achieved is comparable to NB, the
recall achieved is worse, which shows that treating non-highlighted passages as negative class
instances is not reasonable for this problem (see Section 6.2 for an illustration).

The recall value is significantly increased with the help of one-class SVM (OSVM). SVDD
performs even better in terms of recall. However, SVDD significantly underfits the data because
it classifies almost every test data point as an instance of the positive class, thus achieving low
accuracy and precision due to the presence of too many false positives.

Our next set of experiments involves the MC algorithm for classification. Since, the mapping
phase makes use of only the positive data, we employed both the one-class classifiers used in the
experiments of Table 2, i.e. OSVM and SVDD, for this purpose. Mapping with OSVM results
in an improvement in the accuracy at the cost of sacrificing recall, which is not desirable for
this problem. However, note that the negative samples obtained with the OSVM mapping (with
Gaussian kernel) improves the classification effectiveness of the BSVM (compare the fourth row
of Table 3 with the second row of Table 2), which indicates that the MC algorithm does improve
the classification effectiveness, confirming our hypothesis that it is reasonable not to consider
every non-highlighted passage as negative samples.

The problem of SVDD underfitting (as evident from the SVDD results of Table 2) is alleviated
by the MC approach. The most effective MC approach uses Gaussian/linear kernels for map-
ping/convergence (see the seventh row of Table 3). Accuracy is increased to around 56% with
a satisfactory recall of around 74%. The use of Gaussian kernel during both the mapping and
convergence steps yields a higher recall but at the cost of more false positives (lower accuracy,
precision and F-score).
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Feature combination vector Evaluation Metrics

Word Topics POS/Polarity Semantic Accuracy Precision Recall F-score

1 0 0 0 36.06 34.88 97.63 51.40
0 1 0 0 37.91 35.74 99.40 52.58
0 0 1 0 36.05 35.01 98.81 51.70
0 0 0 1 42.41 37.03 94.67 53.24

1 1 1 1 56.76 42.90 74.64 54.42

Table 4: Individual feature contributions for identifying text aesthetics.

Feature igain

Topic diversity (T1) 0.3684
Sentiment (SENT ) 0.2685
Word repetition (W1) 0.2509
First-order semantic distance (SD1) 0.1543
Part-of-speech (POS) 0.1448
Second-order semantic distance (SD2) 0.1141
Word length (W2) 0.0732
Topic abstractness (T2) 0.0526

Table 5: Ranking features by their igain values.

6 Posthoc Analysis

In this section, we comment on the importance of the features used for classification, and also
illustrate how the MC algorithm helps in increasing the separability between the classes.

6.1 Feature Importance

First, we investigate the importance of the different features by a selective choice of only one
group of features at at time for the classification. The classifier we use for this experiment is
MC with a Gaussian SVDD kernel for mapping and a linear SVM kernel for convergence (as per
the best settings of Table 3). The results are shown in Table 4 from which it can be seen that
the best accuracy is obtained with the use of the semantic distance features.

It can be observed that the accuracy values obtained with a single category of features, such
as word-based (length and repetition), topic-based (generality and diversity) and so on, are
considerably lower than the accuracy value obtained with a combination of all the features (the
last row of Table 4. The precision values achieved with these individual feature groups are also
considerably lower than the precision of 42.90% of the overall combination.

Next, we find out the relative importance of each feature in their overall combination by
ranking the features with the help of a standard feature quality estimator, called information
gain (igain) (Quinlan, 1986). The results are presented in Table 5. It can be seen that the topic
diversity is the most discriminative feature having an igain value significantly higher than the
second most important one in the list. This observation verifies our hypothesis that aesthetically
appealing passages are those constituting terms from diverse topics.

The sentiment and the word repetition features, having close igain values, are second and
third respectively in the list. The usefulness of the sentiment feature suggests that contrasting
concepts packed in close vicinity of a sentence are likely to be aesthetically pleasing to read.
The word repetition feature, on the other hand, suggests that the anaphora figure of speech is
likely to be be associated with aesthetically pleasing text.

6.2 Illustration of the usefulness of the MC Algorithm

This section investigates the usefulness of the MC algorithm for the text aesthetics classification.
In particular, we show that for this one class classification problem, the MC algorithm can
selectively refine the set of unlabeled samples and retrain the model for better separability
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(a) Before MC.
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(b) After MC convergence (5 iterations).

Figure 3: Visualization of the training set in the two most discriminating dimensions, i.e. topic
diversity (Y-axis) and sentiment (X-axis).

between the positive and the unlabeled classes.
To illustrate our claim, we first plot the initial training set in two dimensional subspace

before the application of MC, i.e. when all the unlabelled instances are treated as negative class
samples; this is shown in Figure 3a. The two dimensions that we use for plotting this figure,
are the two features having the highest igain values, i.e. the topic diversity (T1) and sentiment
(SENT ) features. Figure 3a shows that the highlighted text passages (shown in blue) are not
well separated from the non-highlighted ones (shown in red).

Next, in Figure 3b, we plot the training set with a reduced number of samples from the negative
(non-aesthetic) class obtained after running the MC algorithm. Figure 3b clearly shows that
after convergence the MC algorithm has retained only the strong negative samples for training,
as is evident from a better visual separation between the classes. A binary classifier, trained on
the dataset of Figure 3b, is thus likely to be more effective than that trained with Figure 3a.

7 Conclusions

This paper investigated the problem of automated text aesthetics prediction. As distinguishing
features for text aesthetics identification, we applied different statistical features such as word
repetitions, topic diversity, part-of-speech, word polarity etc. We collected aesthetically pleasing
text passages from the Kindle “popular highlights” website for conducting our experiments. Due
to the presence of only positive class samples, i.e. the highlighted passages, in this dataset, we
apply the MC algorithm to iteratively train a binary classifier with the strongly negative samples.

The results of our experiments show that the MC algorithm with a Gaussian and a linear ker-
nel applied for the mapping and convergence phases respectively, yields the best results achieving
satisfactory recall, precision and F-score values of about 74%, 42% and 54% respectively. More-
over, the results also demonstrate that the topic diversity, word polarity and word repetition are
the three most distinguishing features for text aesthetics identification. Furthermore, our results
are comparable to those of a somewhat similar problem of figurative text detection where the
best reported F-score values achieved are about 54% (Birke and Sarkar, 2006) and 64% (Shutova
and Sun, 2013).
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