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Abstract

In online social media, social action prediction and social tie discovery are two fundamental tasks
for social network analysis. Traditionally, they were considered as separate tasks and solved inde-
pendently. In this paper, we investigate the high correlation and mutual influence between social
actions (i.e. user-behavior interactions) and social ties (i.e. user-user connections). We propose a
unified coherent framework, namely mutual latent random graphs (MLRGs), to flexibly encode
evidences from both social actions and social ties. We introduce latent, or hidden factors and
coupled models with users, users’ behaviors and users’ relations to exploit mutual influence and
mutual benefits between social actions and social ties. We propose a gradient based optimization
algorithm to efficiently learn the model parameters. Experimental results show the validity and
competitiveness of our model, compared to several state-of-the-art alternative models.

1 Introduction

With the dramatically rapid growth and great success of many large-scale online social networking ser-
vices, social media bridge our daily physical life and the virtual Web space. Popular social media sites
(e.g., Facebook and Twitter) and mobile social networks (e.g., Foursquare) have gathered billions of act-
ing users and are still attracting millions of newbies everyday. Modeling social actions and social ties
are two fundamental tasks in online social media. Social actions are the users’ activities or behaviors
in socially connected networks. For example, a social action can be “posting a tweet” on Twitter or the
“check-in” behavior on Foursquare. A social tie or social relation is referred to any relationship between
two or more individual users in a social network, such as the friend and colleague relationships. By
understanding a user’s behaviors and accordingly exploiting potentially interesting services to her/him,
one can improve the user’s experience and boost the revenue of social media sites. Also, precise social
tie prediction will help people tap into the wisdom of crowds, to aid in making more informed decisions.

Since individual users are socially connected, social influence occurs through information diffusion
in social networks. Social influence happens when one’s opinions or behaviors are affected by others.
It is well known that different types of social ties have essentially different influence on social actions.
Intuitively, a user’s trusted friends on the web affect that user’s online behavior. Ma et al. (2009) and Ma
et al. (2011) claimed that one user’s final behavior decision is the balance between his/her own taste and
her/his trusted friends’ favors. On the other hand, social actions also have important influence on social
ties. Obviously, users with similar preferences or behaviors are more likely to be friends than others in
social media. Users with momentous activities will attract many other users to be connected with. On
the contrary, no body will be interested in users with trivial or insignificant behaviors.

Consequently, we face some very interesting questions: Is there any dynamics or mutual influence
between social actions and social ties? To what extent do they influence each other? A fundamental
mechanism that drives the dynamics of networks is the underlying social phenomenon of homophily
(McPherson et al., 2001): people tend to follow the behaviors of their friends, and people tend to create
relationships with other people who are already similar to them. This suggests that both actions and ties
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are bi-directionally correlated and mutually influenced in social media, they could be mutually reinforced
if modeled jointly.

Inspired by this mechanism, we propose a single unified framework based on exponential-family ran-
dom graph models ( (Frank and Strauss, 1986), (Wasserman and Pattison, 1996)) to exploit homophily
for simultaneous social action prediction and social tie discovery. This mutual latent random graph
(MLRG) framework incorporates shared latent factors with users, users’ behaviors and users’ relations,
and defines coupled models to encode both social action and social tie information, to capture dynamics
and mutual influence between them. We propose a gradient based algorithm for learning and optimiza-
tion. During the learning procedure, social actions (i.e. user-behavior interactions), social ties (i.e.
user-user connections), and deep dependencies and interactions between them could be efficiently ex-
plored. Experimental results demonstrate that social actions and social ties are highly correlated and
mutually helpful. By coupling actions with ties jointly in a single coherent framework, MLRG achieves
significantly better performance on both social action prediction and social tie inference, compared to
state-of-the-art systems modeling them independently.

2 Related Work

Social network analysis has attracted much interest in both academia and industry recently. Consider-
able research and engineering has been conducted for social media modeling, analytics and optimization,
including social community detection (Fortunato, 2010), user behavior modeling and prediction ( (Ben-
evenuto et al., 2009), (Kwak et al., 2010), (Ma et al., 2009), (Ma et al., 2011)), social tie analysis
( (Tang et al., 2011), (Tang et al., 2012)), social sentiment analysis ( (Wasserman et al., 1994), (Pang
and Lee, 2008)), etc.

Social action prediction and social tie discovery are two fundamental tasks for social media and social
network analysis. Traditionally, they were considered as separate tasks and solved independently without
considering the bidirectional interactions and interdependencies between them. Social action investiga-
tion is essentially important in online social media. Users behaviors could be affected by various kinds of
complex factors, such as users’ attributes, users’s historical behaviors, social influence and social network
structures. Based on this motivation, Tan et al. (2010) proposed a noise tolerant time-varying model to
track social actions. Aiming at modeling user actions more accurately and realistically, Ma et al. (2009)
and Ma et al. (2011) considered connections among users and proposed social trust ensemble to fuse
the users’ tastes and their trusted friends’ favors together. Gao ef al. (2013) investigated users’ social
behaviors from a spatio-temporal-social aspect in location-based mobile social networks. In particular,
Gao et al. (2013) focused on temporal effects in terms of temporal preferences and temporal correlations,
and modeled temporal cyclic patterns to capture a user’s mobile behavior to investigate correlations to
the spatial context and social context in location-based social networks.

Social tie is the most basic unit to form the network structure. Tang et al. (2011) proposed a semi-
supervised framework, the partially labeled factor graph model to infer the type of social relationships.
The task was formulated as a relationship mining problem to detect the relationship semantics in real-
world networks. Tang et al. (2012) further incorporated social theories and leveraged features based
on those social theories to infer social ties across heterogeneous networks via a transfer learning frame-
work. As can be seen, predicting social actions and inferring social ties were modeled as separate and
independent tasks in the above-mentioned approaches, deep interactions and mutual influence between
them were not taken into consideration. In social media users interact with one another to share the con-
tent they both create and consume. According to the homophily phenomenon, exploring bi-directional
information and mutual influence between them is intuitively appealing.

We are also aware of several research work attempting to explore joint models to capture mutual
benefits and deep dependencies between different tasks in NLP, data mining and information extraction
research communities ( (Ko ef al., 2007), (Yu and Lam, 2008), (Yu et al., 2009), (Liu et al., 2009),
(Yu and Lam, 2010b), (Yu and Lam, 2010a), (Yu et al., 2011), (Yu and Lam, 2012), (Zeng et al.,
2013)). In general, joint models aim to handle multiple hypotheses and uncertainty information and to
predict many variables simultaneously such that subtasks can aid each other to boost the performance.
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Ko et al. (2007) proposed a joint answer ranking framework based on probabilistic graphical models
for question answering. Yu and Lam (2008) proposed an integrated probabilistic and logic approach
based on Markov Logic Networks (MLNs) (Richardson and Domingos, 2006) to encyclopedia relation
extraction. However, this modeling only captures single relation extraction task. Liu et al. (2009)
developed a Bayesian hierarchical approach, the topic-link LDA, to perform topic modeling and author
community discovery for large-scale linked documents in one unified framework. Yu et al. (2009)
integrated two sub-models in a unified framework via Markov chain Monte Carlo (MCMC) sampling
based inference algorithms. This is a loosely coupled model since parameter estimation is performed
separately for the two sub-models. Yu and Lam (2012) further proposed a joint model incorporating
probabilistic graphical models and first-order logic for information extraction. This joint model exploits
structured variational approximation for tractable parameter learning. Zeng et al. (2013) presented a
semi-supervised graph-based approach to joint Chinese word segmentation and POS tagging. However,
none of these models has been investigated or applied to social media and social network analysis. We
believe that one major reason could be the problem of high computational complexity, such as Yu et al.
(2009) and Yu and Lam (2012). Since many social network sites contain millions of users, exploiting
such models could be very challenging. Currently, research on building joint approaches is still in the
infancy stage. To the best of our knowledge, there is few systematically study on building joint models
to explore mutual influence for social actions and social ties.

3 Model

In this section we consider both social action prediction and social tie inference in the context of social
media, where evidences for both actions and ties are available. We begin by necessary description of
preliminaries and notations, we then present the mutual latent random graphs (MLRGs) model, upon
which both sources of evidence could be exploited simultaneously to capture their mutual influence. We
also discuss the major difference and superiority of this model against several alternative models.

3.1 Preliminaries and Notations
Let G = (V,E) be a social network graph, where V. = {vq,v9,...,vn} is the set of |V|] = N

users and E = {ejj,e1a,...,epr} € V x Vs the set of [E| = M connections between users.
Let y = {y1,y2,...,yn}(yi € DY) be the set of actions associated with N users, and s =
{s11,512,...,5m}(si; € S) be the set of corresponding social tie labels associated with M connec-

tions. The connection e;;(1 < ¢,j < N,i # j) between v; and v; might be directed or undirected. To
be consistent, both s;; # s;; and s;; = sj; are valid settings. Given the observed social network data D
constructing the graph G, our goal is to simultaneously detect the most likely types of actions y* and ties
s* such that both of them are optimized.

The exponential-family random graph models (ERGMs) ( (Frank and Strauss, 1986), (Wasserman and

Pattison, 1996)) take the form of an exponential family as P, g = Hyiey o(yi) = exp{%,, ey € W)} for

kn
the social action y; in the social network graph G, where ¢(+) is a factor, 7 is a vector of parameters, &(+)
is a p-vector of sufficient statistics, which captures network features of interest, its postulated dependence
structure, or both. Lastly, «, is a normalization function to make all probabilities sum to one. The class

of ERGMs is a popular framework for social network modeling to capture global network characteristics.

3.2 Modeling Social Actions

To characterize the user action y;, we assume that for the user v; there exist observable attributes or
properties m;, such as the user’s registered information and historical actions. Without loss of generality,
we further assume that there exist some hidden, or latent properties X;; for v;. These properties are
implicit and cannot be observed directly, such as the influence from social ties. Consequently, we denote
the observable factor ¢(y;, v;, m;) for observable properties and latent factor ¢y, (y;, si;,X;;) for hidden
properties, respectively. Given the graph G, the probability distribution of y; depends on both observable
and latent factors as:

Pyi\g ~ ¢(y17 Uivmi)a Pyi\g ~ ¢h(yi> Sijaxij)a Pyi\g ~ ¢(yla Ui7mi)¢h(yia sij¢Xij)‘ (1
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Figure 1: (a) A social network containing 6 users and 5 social ties. The social action can be active or idle,
and the social tie can be friend, colleague, or family. (b) The three-dimensional graphical representation
of the corresponding MLRG model. We use different lines to represent functions f(-), g(-), and h(-).

The Mutual Latent Random Graph (MLRG) model
Vyi €Y Pyig ~ ¢(yi, vi, mi)dn (i, Sis Xij)
Vsij €S Py, \in6) ~ W' (814, Vi, 05, Wi )On(Yis Sij» Xi)
Vyi € Y, V51 €S Py siig ~ OYis vi i) O (Yis Sij, Xig) @ (84, Vi, vj, Wij)

This modeling integrates two types of factors for both observable and latent properties. It captures not
only the user-behavior dependencies, but also the influence from social ties, for exploring social actions.

3.3 Modeling Social Ties

To characterize the social tie s;; between user pair (v;,v;), we also assume that there exist observable
properties w;;, such as the posterior probability of the social tie s;; assigned to (v;,v;). We denote the
observable factor ¢’ (sij, V4, Vj, wij) for w;;. Similarly, we further assume that there exist some latent
properties to incorporate the social action influence on social ties. To be consistent, we still use the
vector X;; to represent the latent properties and the latent factor ¢y (y;, sij,X;;) to capture the social
action influence on social ties. Note that both x;; and ¢, (v, S5, X;) now play double duties in encoding
social action dependency and social tie connection simultaneously. On the one hand, ¢p, (v, Sij, Xij)
exploits influence from social ties for modeling social actions. On the other hand, this factor exploits
influence from social actions for modeling social ties. By doing so, the latent factor ¢, (v, Sij, X;5) is bi-
directionally coupled, encoding both sources of evidence and exploring mutual influence and dynamics
between social actions and social ties. Such mutual influence and dynamics are crucial and modeling
them often leads to improved performance. Given the user action y; and the graph G, we devise the
following model for the probability distribution of s;; depending on both observable and latent factors
as:

Pyjiwin0) ~ @ (815, 0is 03, W), Pojiwi,6) ~ On(Yiy $ijs Xiz)s  Poyjlwa,o) ~ ¢ (8ij, 03y 05, Wi )on (i, $ij Xig). - (2)

3.4 Modeling Mutual Influence

The mutual correlation between social actions and social ties advocates joint modeling of both sources
of evidence in a single unified framework. Based on the above descriptions, we define our mutual la-
tent random graph (MLRG) based on exponential-family random graph models (ERGMs) ( (Frank and
Strauss, 1986), (Wasserman and Pattison, 1996)), which have gained tremendous successes in social
network analysis and have even become the current state-of-the-art (Robins ef al., 2007). To design
a concrete model, one needs to specify distributions for the dependencies for MLRGs. According to
the celebrated Hammersley-Clifford theory, the joint conditional distribution Fy,, ;. .y\g is factorized as a
product of potential functions over all cliques in the graph G and we summarize the MLRG in the above
table. In summary, our model consists of three factors: the factor ¢(y;, v;, m;) measuring dependencies
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of the social action g; conditioned on G, the factor ¢’ (sij, Vi, Vj, wij) measuring the social tie s;; be-
tween two arbitrary users v; and v; in G, and the latent factor ¢y, (y;, si;, X;;) exploiting mutual influence
between the social action y; and social tie s;;.

The three factors ¢(+), ¢p(+), and ¢'(-) can be instantiated in different ways. In this paper, each factor
is defined as the exponential family of an inner product over sufficient statistics (feature functions) and
corresponding parameters. Each factor is a clique template whose parameters are tied. More specifically,
we define these factors as

1 1

A(yi,vi,m;) = ——exp{ » of(yi,vi,m;)}, &1 (yi, 545, Xi5) = —— exp{ Bg(yi, sij>Xij) },
7 7

@ Yi€Y p Yi€Y,s8i;€S

¢ (sij» Vi, vj, Wig) = ZL exp{ Y Y(sij, vi, vj, Wij)}, 3)
5, €S
where «, (3, and +y are real-valued weighting vectors and f(-), g(), and h(-) are corresponding vectors of
feature functions.
We denote © = {«, 3,7} as the set of model’s parameters, and concatenate all factor functions as
Oq(yi, sij) = of(yi,vi,m;) + B8(vi, Sij.Xij) + Yh(sij, v, v, Wi;), the joint probability distribution
shown in the above table can be rewritten as

1
Pygio= ] ©(yi, 5ij) = - exp{ > Oqyisi)} 4)

Yi€Y,5:;€S Yi€Y,si; €S

where Z = Z,Z3Z, is the partition function of our MLRG model.

Figure 1 shows an example social network (V = {v1,va,v3,v4,v5,06}, YV = {active,idle}, S =
{friend, colleague, family}) and the corresponding 3D graphical representation of the MLRG model.
The functions f(-) model dependencies of social actions in the bottom part, and the functions h(-) model
dependencies of social ties in the upper part. More importantly, the functions g(-) capture mutual in-
fluence and dependencies between social actions and social ties. As we will see, this modeling offers a
natural formalism for exploiting bi-directional dependencies and interactions between social actions and
social ties to capture their mutual influence, as well as a great flexibility to incorporate a large collection
of arbitrary, overlapping and nonindependent features.

3.5 Discussion

Noticeably, our proposed MLRG model is essentially different from the standard exponential-family
random graph models (ERGMs) and the prior models discussed in Section 2 mainly in two aspects.
Firstly, compared to the standard ERGMs, the MLRG model defines latent factors to assume mutual and
dynamical interaction between social ties and social actions. Secondly, compared to the prior models
such as (Ma et al., 2009) and (Tang et al., 2011), MLRG provides a single unified framework to address
both social action prediction and social tie inference simultaneously while enjoying the benefits of both
sources of evidence.

Importantly, we give an analytical explanation on the mutual nature of our model in terms of a random
walk (Lovasz, 1996) perspective. A random walk on the graph G is a reversible Markov chain on the
vertexes V. The social influence propagation procedure occurs through information diffusion in the
social graph G. More specifically, a user v; will propagate his/her influence to other related users, and
will propagate more to the user which has a stronger relation (e.g., friendship) with v;. The influence
propagation will stop when the social graph reaches an equilibrium state, in which both social actions
and social ties are mutually reinforced. Interestingly, this process is consistent with the homophily
phenomenon that a user in the social network tends to be similar to his/her connected neighbors.

4 Learning and Inference

4.1 Mutual Optimization

The goal of learning MLRG model is to estimate a parameter configuration © = {«, 3,~} such that the
log-likelihood of observation is maximized. We define the log-likelihood objective function O(©) of the
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Algorithm 1: The Mutual Gradient Descent (MGD) algorithm

Input: The social graph G, number of iterations n, and the learning rate 7).
Output: Optimized parameters 0" = {a*, 5%, 7" }.
while equilibrium states or a threshold number of iterations are not reached do
repeat
Choose a random example (y;, s;;) € G as a sample;
Optimize social action parameters o and (:
Compute the approximated gradients %—i/ and %% according to Eq. (6), Eq. (7) and stochastic
approximation;

Update « and 3 with learning rate n: o «— o — 7 - %—(Z, B—pB—n- a@%’_

// Explore social tie influence
Optimize social tie parameters -~ and 3:

Compute the approximated gradients %—2/ and %% according to Eq. (8), Eq. (7) and stochastic
approximation;

Update - and 3 with learning rate 7: y «— v — 7 - ‘93—(:/, B—pB—n- 85%'.
// Explore social action influence

until converge;

end
return o, 3%, and v*

observation given the graph G as

O(0) =log Piys)jg —log Q(©) =loglexp{ Y Oq(yi,5:;)}] —log Z —log (O), ©)
Yi€Y,8; €S

where Q(©) is regularization to reduce over-fitting and a common choice is a spherical Gaussian prior
. . ) o o2 62 ,Y2
with mean 0 and covariance 6°1. (©) = >_ vy 575 + Zyiey,sijes 507 + ZsijES 503

We propose a mutual gradient descent (MGD) algorithm based on the stochastic gradient descent
(SGD) ( (Lecun et al., 1998), (Bottou, 2004)) framework, for estimating the parameters efficiently in
a mutual and collaborative manner. Once we have optimized the social action parameters « and (3, the
influence and hypotheses of social action can aid the learning of the social tie parameters ~ and (3, and
vice versa. As shown in Algorithm 1, 3 is coupled parameter vector for both actions and ties, and is
updated twice in each iteration of MGD. By doing so, MGD not only allows learning of social action
parameters to capture social tie influence, but it also optimizes social tie parameters to alleviate social
action influence. This training procedure runs iteratively until converge to boost both the optimization of
social actions and social ties.

Each iteration of the MGD algorithm consists of drawing an example at random and applying param-
eter updates by moving in the direction defined by the stochastically approximated gradient of the loss
function (e.g., %—2’). We update each parameter with a learning rate . Ideally, each parameter should
have its own learning rate. If shared parameter weights are used, the best learning rate of a weight should
be inversely proportional to the square root of the number of connection sharing that weight (Bottou,
2004). In our MGD implementation, for simplicity we use the same learning rate for all the parameters.
We select a small subset of training data and try various learning rates on the subset, then pick the one
that most reduces the loss and use it on the full dataset. We summarize the partial derivatives of the
log-likelihood function O with respect to the parameter vectors «, 3 and -y as follows:

00 a

e Z f(yi, vi,m;) — Z £(yi, vi,m;) X Py )16 — Z pol (6)
yi€y i€y Yi€Y

00 B

8 > gwosinxi)— Y. 8Wnsi %) X Pygig— Y gt @)
Yi€Y,si; €S Yi€Y,8i; €S yi€Y,si; €S

00 v

67 = Z h(Sija Ui,vj,Wij) - Z h(sijaviavijij) X P(y,s)|g — Z P (8)

v Sq;jES SijGS SijES

It is worth noting that the MGD algorithm computes approximations of the gradients, due to the
intractability of the normalizing constant Z in the log-likelihood of our MLRG model. Our proposed
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MGD algorithm is a generalized extension and it distinguishes from the standard SGD algorithm in two
aspects: (1) MGD optimizes three types of parameters simultaneously, thus MGD is much more general
than SGD, and it is more scalable and applicable to real-world problems. (2) MGD performs mutual
and collaborative optimization to enable mutual influence between social actions and social ties, whereas
SGD does not take such influence into account.

4.2 Complexity Analysis

Given several conditions including a suitable choice of the learning rate and a convex or pseudo-convex
objective function, the MGD algorithm converges almost surely to a global optimum, otherwise it con-
verges almost surely to a local optimum. In our experiments, this algorithm has good performance even
if it does not reach the global optimum. Let D be the number of samples in the social graph G, n be
the number of iterations, and p be the average number of non-zero attributes (features) per sample, the
computational complexity of our MGD algorithm takes O(nDp). As can be seen, this algorithm is com-
putationally efficient, and convergence is very fast when the training examples are redundant since only
a few examples are needed to sample. Furthermore, this algorithm is online and scale sub-linearly with
the amount of training data, making it very attractive for large-scale datasets.

4.3 Inference

The objective of inference is to find the most likely types of actions y* and corresponding social tie labels
s*, that is, to find (y*,s*) = arg maxy sy Flysig)- The inference procedure is straightforward. Based on
the learned parameters ©* = {a*, 5%, ~*}, we firstly predict the label of each social action y; by finding
a labeling assignment that maximizes P, |g as y; = arg max,, ¢y Py, g. We then infer the social tie label
syj such that s7; = argmax, cs Ps,|(y,,0)-

5 Experiments

5.1 Foursquare Data

We crawled one dataset from Foursquare', a popular location-based mobile social networking site for
mobile devices (e.g., smartphones) for our experimental evaluation. Foursquare allows a user to check
in at a physical location via his cellphone, and then let his online friends know where he is by publishing
such check-in action online. Users check-in at venues using a mobile website, text messaging or a device-
specific application by selecting from a list of venues the application locates nearby. Location is based
on GPS hardware in the mobile device or network location provided by the application, and the map is
based on data from the OpenStreetMap project. Each check-in awards the user points and sometimes
badges. Figure 2 illustrates a snapshot of the Foursquare application interface on smartphones.

To alleviate the data sparsity problem for better evaluation, we selected check-in venues which have
been visited by at least two distinct users, and users who have checked in at least 10 distinct venues.
The resulting dataset contains 12,368 distinct users, 186,745 venues, 1,425,664 check-in behaviors and
56,395 social connections from January 2012 to December 2012. Table 1 lists the more detailed statistical
information on our dataset, where the “Avg. Num. of Check-ins” is the average number of check-ins per
user, and “Max. Num. of Check-ins” is the maximal number of check-ins among users (similarly for
“Avg. Num. of Friendships” and “Max. Num. of Friendships™). The “Average Clustering Coefficient
(ACC)” is a measure of the degree to which users in the Foursquare network tend to cluster together,
and “Diameter” is the longest shortest path in the network. All user and venue information has been
anonymized. Each check-in has a unique id as well as the user id and the venue id, and each social
connection consists of two users represented by two unique ids.

5.2 Task

Mobile phones have become an important tool for communication and they are an ideal platform for
understanding social influence and social dynamics. Using our Foursquare dataset, we can investigate
the mutual influence between social actions and social ties. More specifically, we can investigate how

'https://foursquare.com/
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Figure 2: A snapshot of the Foursquare application interface on smartphones.

Duration Jan 2012 to Dec 2012 | Num. of Users 12,368
Num. of Check-ins 1,425,664 Num. of Friendships 56,395
Avg. Num. of Check-ins 115.27 Max. Num. of Check-ins | 657
Avg. Num. of Friendships 4.56 Max. Num. of Friendships | 265
Average Clustering Coefficient (ACC) | 0.42 Diameter 12

Table 1: Statistical information of our Foursquare dataset.

the friendship relations affect users’ check-in behaviors, and how users’ check-in behaviors affect their
friendships. Figure 3 gives an illustrative example of social action prediction and social tie discovery
tasks in our Foursquare dataset. Given an unseen Foursquare social network dataset, our objective is to
predict whether the users have check-in behaviors and whether there are friendship relations between
these users. In the right figure, we list the predicted check-in behaviors (in red color) and the inferred
friendship relations between users (in green color). The probabilities associated with the predictions
represent corresponding confidence scores.

5.3 Evaluation Methodology

We exploited a wide range of important features to define the factors ¢(-), and ¢'(-), including temporal
and social features such as the number of check-ins and number of new check-ins in a user’s history,
number of friends of a user, the check-in information from a user’s friends, etc. For the coupled latent
factor ¢y, (-), we incorporated social tie evidences and hypotheses as features to capture social actions,
and we also incorporated social action evidences and hypotheses as features to leverage social ties.

For quantitative performance evaluation, we used the standard measures of Precision (P), Recall (R),
and F-measure (the harmonic mean of P and R:%) for both social action prediction and social tie
inference. We performed four-fold cross-validation on this dataset, and took the average performance.
We compared our approach with the following alternative methods for predicting social actions and
inferring social ties:

—SVM: This model views social action prediction and social tie inference as two separate classification
problems, and solves them independently. We used the SVM-light> package for this model.

~ERGM: This is the traditional exponential-family random graph model without the latent factor ¢y, ()
incorporated for social action prediction and social tie inference. Similar to SVM, this model also
performs them separately.

—DCREF: This model is a dynamical and factorial CRF (Sutton et al., 2007) used to jointly solve the two
tasks. This model was originally proposed for labeling and segmenting sequence data, and we directly

*http://svmlight joachims.org/
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Figure 3: An illustrative example of social action prediction and social tie discovery tasks in our
Foursquare dataset. The left is the input of our problem, and the right is the output of the two tasks.

’ Models H Precision ‘ Recall ‘ F-measure ‘ ’ Models H Precision ‘ Recall ‘ F-measure
SVM 73.75 64.54 68.84 SVM 70.75 61.57 65.84
ERGM 80.69 79.70 80.19 ERGM 78.85 77.39 78.11
DCRF 89.45 82.32 85.74 DCRF 82.45 76.56 79.40
MLRG 89.03 87.89 88.46 MLRG 84.33 83.89 84.11

Table 2: Comparative performance of different Table 3: Comparative performance of different

models for social action prediction. The best models for social tie inference. The best results

results are printed in boldface. are printed in boldface.

applied it for our tasks in social network analysis.

All these models exploited standard parameter learning and inference algorithms in our experiments.
To avoid over-fitting, penalization techniques on likelihood were also performed. All experiments were
performed on the Linux workstation, with 24 2.5GHz Intel Xeon E5-2640 CPUs and 16 GB of memory.

5.4 Performance

Table 2 shows the performance on social action prediction and Table 3 shows the performance on social
tie inference of different models, respectively. The best Precision, Recall and F1-measure of these results
are highlighted. Our method consistently outperforms other comparative methods on the F-measure. The
improvement is statistically and significantly better according to McNemar’s paired tests. These results
not only imply that there exists high correlation and mutual influence between social actions and social
ties, but also demonstrate the feasibility and effectiveness of our model for exploring them.

The SVM model solves social action prediction and social tie inference independently without consid-
ering mutual influence and benefits between them, thus leading to the worst performance. The ERGM
outperforms SVM by capturing social network structures. However, the performance of this model is
still limited and there is a large room for improving. The DCRF model easily outperforms both SVM
and ERGM by modeling social actions and social ties jointly in a single framework. However, com-
pared to our MLRG model, there are still some shortcomings of DCRF. DCRF was proposed to label
and segment sequence data, such as POS tagging and NP chunking (Sutton et al., 2007). The graphical
structure of DCREF is not well suited for social networks to capture mutual influence. The merits of our
proposed MLRG model over other models principally come from (1) appropriate graphical structure for
social network modeling, especially the coupled latent factor to exploit mutual influence simultaneously,
and (2) the mutual and collaborative learning algorithm MGD to reinforce the optimization of both social
actions and social ties.

5.5 Effect of Mutual Influence and Analysis

We also examined the nature and effectiveness of the associated latent factors on the mutual influence,
and Figure 4 demonstrates their feasibility in our modeling. Note that if we do not incorporate the
latent factors, our MLRG model becomes the traditional ERGM baseline approach. It shows that the
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latent factors consistently enhance Precision, Recall, and F-measure for both social action prediction and
social tie inference tasks. For example, the latent factors significantly improve the F-measure by 8.27%
(from 80.19 to 88.46) for social action prediction, and improve the F-measure by 6.0% (from 78.11 to
84.11) for social tie discovery, respectively. These results not only illustrate that social actions and social
ties influence each other to a large extent, but also demonstrate the feasibility and effectiveness of our
latent factors for exploring them.

We performed an in-depth error analysis to provide gains of our MLRG model and some insights on the
influence between users’ check-in behaviors and users’ friendship relations. By carefully investigating
our Foursquare dataset, we found that approximately 75% users tend to cluster together to create tightly
knit groups characterized by a relatively high density of friendship relations or ties, and the remaining
25% users loosely or seldom connect with each other through the friendship relations. In other words,
75% users form high density of relationship ties and the average clustering coefficient (ACC) is high
(0.61). However, the tie density of the remaining 25% users is much lower, since the ACC of these
users is only 0.18. Compared to the baseline methods (especially the SVM and ERGM methods), the
performance improvement of our MLRG model mainly comes from 75% users with high density of
friendship ties. In particular, about 20% prediction errors (including social action and social tie prediction
errors) of such users made by the SVM model can be corrected by our MLRG model. This finding shows
that, the mutual influence between users’ check-in behaviors and users’ friendship relations increases
with the density growth of the friendship relations of these users. This finding is intuitively correct and is
consistent with the homophily theory. More interestingly, this finding also implies the gains and merits of
our MLRG model for exploiting mutual influence, especially when the users in the Foursquare network
cluster together tightly with high density of ties.

5.6 Efficiency

A number of learning algorithms can be applied for parameter optimization of our MLRG model. Table
4 summarizes the efficiency of several alternative optimization algorithms for learning our model’s pa-
rameters. We compared the learning time (hr.) and inference time (sec.) of the MGD algorithm to loopy
belief propagation (LBP), Markov chain Monte CarloMCMC) Gibbs sampling (Geman and Geman,
1984), and variational mean-field (VMF) approximation algorithms (Wainwright and Jordan, 2008).
Both Sutton et al. (2007) and Tang ef al. (2011) used LBP for parameter estimation. LBP is inherently
unstable and may cause convergence problems. When the graph has large tree-width as in our case, the
LBP algorithm is inefficient, and is slow to converge. In Gibbs sampling, the candidate sample is always
accepted with the probability of 1, lacking the capability of measuring quality of samples and elimi-
nating low grade samples. The VMF approach aims to minimize the Kullback-Leibler (KL) divergence
between an approximated distribution () and the target distribution P by finding the best distribution @
from some family of distributions for which an inference is feasible. The MGD algorithm we proposed
is very efficient. It is particularly notable that our MGD algorithm takes much less time than other three
algorithms for learning. In particular, our proposed algorithm is over orders of magnitude faster than the
LBP for running.

6 Conclusions and Future Work

Finally, we answer the questions in Section 1 to draw the conclusions of this paper as follows:

Is there any dynamics or mutual influence between social actions and social ties? Doubtlessly, so-
cial actions and social ties are highly correlated and mutually reinforced. We propose a single unified
framework, mutual latent random graph (MLRG), to exploit homophily for simultaneous social action
prediction and social tie discovery. The MLRG model incorporates coupled latent factors to capture
dynamics and mutual influence between social actions and social ties. Moreover, we propose the mu-
tual gradient descent (MGD) algorithm to perform mutual and collaborative optimization to reinforce
both social actions and social ties. By coupling actions with ties jointly in a single coherent framework,
MLRG achieves significantly better performance on both social action prediction and social tie inference
on our collected Foursquare dataset, compared to several state-of-the-art existing models.
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To what extent do they influence each other? We perform an in-depth analysis to show the gains and
merits of our MLRG model, as well as some insights on the influence between users’ check-in behaviors
and users’ friendship relations. The finding on our real-world Foursquare data demonstrates that social
actions (users’ check-in behaviors) and social ties (users’ friendship relations) influence each other to a
considerable degree when the users connect each other tightly with high density of ties in the network.
Experimental results also illustrate the feasibility and effectiveness of our latent factors for exploring
the mutual influence. In particular, the latent factors in our model significantly improve the F-measure
by 8.27% (from 80.19 to 88.46) for social action prediction, and improve the F-measure by 6.0% (from
78.11 to 84.11) for social tie discovery, respectively.

Two directions of future work appear attractive: Inferring fine-grained and multiple relationships be-
tween users (such as friendship, family, colleague, and advisor-adviser, etc.) on complex social networks
and extending our established optimization algorithms for parallel and distributed learning based on the
Hadoop MapReduce framework to handle large scale social networks involving billions of users.

= o et factors = o et factors ] Algorithms H Learning | Inference
S T LBP 8.67 g
MCMC 3.45 124
VMF 2.39 7
MGD 0.45 6

Table 4: Efficiency comparison of differ-

ent optimization algorithms on learning
Figure 4: Contribution of latent factors on social action predic- e (hr.) and inference time (sec.).

tion (left) and social tie inference (right).
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