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Abstract

In this paper we present a novel method for unsupervised coreference resolution. We introduce a
precision-oriented inference method that scores a candidate entity of a mention based on the most
informative mention pair relation between the given mention entity pair. We introduce an infor-
mativeness score for determining the most precise relation of a mention entity pair regarding the
coreference decisions. The informativeness score is learned robustly during few iterations of the
expectation maximization algorithm. The proposed unsupervised system outperforms existing
unsupervised methods on all benchmark data sets.

1 Introduction

Due to the advent of the internet, the world wide web, social media, the electronic distribution of infor-
mation and new means of communication, the amount of text available in many different languages is
rising. Natural language processing (NLP) is in charge of automatic processing this growing data. NLP
research has mainly focused on English and very few other languages. Therefore there is a rich set of
annotated corpora for linguistic analysis tasks for these languages. However, there are no such corpora
for thousands of other languages. Since unsupervised methods do not require annotated data for learning
a model, employing unsupervised methods has become a popular and important area of research in NLP.

In this paper, we propose a new precision oriented method for unsupervised coreference resolution.
Our method evaluates the candidate entities of mentions based on the most precise relation of each
mention and its candidate entity. Though we develop and evaluate our method for the English language,
we intend to apply it to low resource languages in the future.

Common coreference resolution approaches rely on a combination of different features for each de-
cision (for an overview over such approaches, see Ng (2010)). However, a few approaches break down
this combination having precision in mind (Baldwin, 1997; Zhou and Su, 2004; Haghighi and Klein,
2009; Lee et al., 2013). The idea of starting with high precision knowledge is used in various NLP tasks
including parsing (Borghesi and Favareto, 1982), word alignment (Brown et al., 1993), and named en-
tity classification (Collins and Singer, 1999) with different names like “islands of reliability”, “stepping
stones”, and “cautiousness”. Lee et al. (2013) is a successful recent work that implements this idea as
“sieve architecture”. Lee et al. (2013) first decide on the basis of more precise features, and then they
extend these decisions by using less precise features in later sieves. In this system less precise knowledge
is used for extending the decisions made by high precision knowledge.

Our proposed inference method goes in the same direction but in a different way. The probability of
each coreference decision is computed based on a single relation of a mention-entity. This single relation
is the most precise relation that exist between the mention-entity. In contrast to Lee et al. (2013), our
inference method will never take into account less precise relations if more precise ones are present. The
relative precision of relations can be determined based on our linguistic intuition. If we would rely on
linguistic intuition, our system would look much like Lee et al.’s (2013)’s system, except that it processes
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all mentions in a single sieve, instead of iterating over all mentions for each input relation. However, it
is not a trivial task to determine the relative importance of relations for each new relation, new domain,
or new language. In this regard, we propose an informativeness score for automatically determining the
relative precision of relations.

The informativeness score is computed based on the distinguishing power of relations among corefer-
ring and non-coreferring mentions. We learn the informativeness score in an unsupervised way via few
iterations of the Expectation Maximization (EM) algorithm. Overall, our inference method first finds the
most precise relation that a mention has with its candidate entity based on the computed informativeness
scores. It then computes the probability of joining the mention to the entity based on this best relation
and its distribution among all candidate entities.

We empirically validate our approach on the OntoNotes and ACE data sets, showing that despite being
entirely unsupervised, our system performs well on all benchmark data sets.

2 Related Work

Early coreference resolution systems were mainly rule-based systems (Lappin and Leass, 1994; Bald-
win, 1997). The success of statistical approaches in different NLP tasks together with the availability
of coreference annotated corpora (like MUC-6 (Chinchor and Sundheim, 2003) and MUC-7 (Chinchor,
2001)) facilitated a shift from deploying rule-based methods to machine learning approaches in corefer-
ence research in the 1990s.

The increasing importance of multilingual processing, brought the deployment of semi-supervised
and unsupervised methods into attention for automatic processing of limited resource languages. There
are several works which treat coreference resolution as an unsupervised problem (Cardie and Wagstaff,
1999; Angheluta et al., 2004; Haghighi and Klein, 2007; Ng, 2008; Poon and Domingos, 2008; Haghighi
and Klein, 2009; Haghighi and Klein, 2010; Kobdani et al., 2011). We compare our results with the
unsupervised systems of Haghighi and Klein (2007), Poon and Domingos (2008), Haghighi and Klein
(2009), and Kobdani et al. (2011). The Haghighi and Klein (2010) approach is an almost unsupervised
approach, and we do not include this system in our comparisons.

We use the expectation maximization algorithm for unsupervised learning. EM has been previously
used for coreference resolution (Cherry and Bergsma, 2005; Ng, 2008; Charniak and Elsner, 2009).
Cherry and Bergsma (2005) and Charniak and Elsner (2009) use EM for pronoun resolution, and Ng
(2008) models coreference resolution as EM clustering. The model parameters of Ng (2008) are of the
form P(f1,..., fx|Cij), where f; is a feature, and C;; corresponds to the coreference decision of two
mentions m; and m;. These parameters along with the entity set, are two sets of unknown variables in Ng
(2008). He computes the posterior probabilities of entities in the E-step, and determines the parameters
from the N-best clustering (i.e. estimated entities) in the M-step. Ng (2008) starts from an initial guess
about the entities and determines the parameters based on this initial guess (M-step). In order to compute
the N-best clustering, Ng (2008) uses the Bell tree approach of Luo et al. (2004).

The informativeness scores of mention pair relations (Section 3.2.1) are our unknown parameters.
Our inference method only requires the ranking of the informativeness scores (and not their exact val-
ues). Therefore, it is much easier to estimate the ranking of these parameters than parameters like
P(f1,..., fx|Cij), and our search space for finding an optimized ranking of the informativeness scores
is very small. Since it is easier to have an initial guess about the ranking of informativeness scores (rather
than guessing an initial entity set), we start from an E-step with a random ranking.

In our experiments, EM converges very fast regardless of the initial state. Indeed, in the M-step, we
use our new inference method for computing an estimation of entities. The use of the EM algorithm in
our approach is discussed in more detail in Section 3.3.

3 Method Description

Our coreference resolution method is a mention-entity approach which works at mention-mention granu-
larity for processing candidate entities. It estimates entities incrementally while processing the mentions.
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For resolving each mention, our inference method scores all candidate entities. For scoring each candi-
date entity, it first finds the most informative mention-mention relation that exists between the mention
and the candidate entity. It then computes the probability of joining the mention to the entity (i.e. the
score of the candidate entity) based on the distribution of this relation among all candidate entities of the
mention.

In order to find the best mention-mention relation of a mention and an entity, we introduce an informa-
tiveness score that scores mention pair relations based on their association with coreference links. This
measure is a global measure, and it is computed based on the association analysis of the mention pair
relations and coreference links on a whole entity set of all input documents.

We learn the informativeness score in an unsupervised way by using the EM algorithm. Inference is
performed at each E-step of the EM iterations. At each E-step, the whole set of entities is constructed
from scratch. The informativeness score of the input relations is computed in the M-step based on the
estimated entities of the E-step.

3.1 Notations

Assume that M is a mention set of the input document, and each document consists of a set of entities £
in which each entity contains one or more mentions of M. R = {ry,...,rx} is a set of input relations
with the following property:

Vre R: r(m,n) € {0,1} (1)

where m and n are two mentions and r can be any arbitrary relation between two mentions like having a
specific feature-value (in which the feature can be a combinational feature), or a linguistic rule.

In order to capture the natural left-to-right ordering of mentions, (m, n) is zero when n is positioned
after m in the input document.

3.2 Inference Method

The inference method processes mentions in the text from the beginning of a document to its end. Ini-
tially, each mention is in its own entity. For each mention m € M, all partial entities that have been
estimated so far (i.e. entities constructed while processing mentions which are positioned before m) are
considered as candidate entities of m (i.e. ).

For each candidate entity u, the inference method first determines the best relation among all existing
mention pair relations between m and u that can indicate a coreference link based on the informativeness
score. We call this relation r,,:

ry = argmax (I.5(r) x maxr(m,n)) (2)
reER neu
where 1.5(r) is the informativeness score of the  relation.
Apparently, when 1.5(r) X max,e, 7(m,n) is equal to zero, u will be removed from E,,,.
After finding the most informative relation that exists between m and u (i.e. 7,), we compute the
probability of joining m to u based on r,, as follows:

2 new "ul(m; 1)

ZveEm Z:EEU Tu (m7 .73)

Equation 3 computes the local distribution of r, among all entities belonging to F,,. After computing
the probability of Equation 3 for all candidate entities, m will be joined to the @ that has the highest
probability:

3)

Prim — u] =

@ = argmax Pr[m — u] 4)
UEFm,
In case of a tie condition (Vy veg,, Prim — u] = Pr[m — v]), @ will be the entity whose most

informative relation is more precise than the most informative relation of the other candidates:

@ = argmax [max(/S(r) x maxr(n,m))] (5)
weE reR neu
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After finding the best candidate entity of m, the method proceeds to find the best entity of the next
mention, based on the new updated E.

A mention m will be left in its own entity in two cases: 1) when E,, is empty, and 2) when the value of
Prim — 4] is below a predefined threshold. We consider this threshold equal to 0.5 in our experiments.
This threshold indicates situations in which less than half of the occurrences of r; exist between m and
1, and the others are spread among other entities. This entity can be extended while processing later
mentions or it may remain as a singleton.

Please note that the inference method does not care about the exact values of {I5(r)}, and it only
needs to have a ranking of the informativeness scores for the given relations in order to select the most
informative one.

3.2.1 Informativeness Score

We want to score a set of given relations based on their discriminative power in making coreference
decisions. From a statistical point of view, this can be expressed as to determine whether the existence of
a relation indicates a coreference link or is due to chance. In this regard, we can examine the following
two hypotheses:

Hypothesis 0: P(C = 1|r =1)=p = P(C =1|r =0) (6)
Hypothesis 1: P(C = 1|r =1) = p; # pa = P(C = 1jr =0) (7)

where C' € {0, 1} is a random variable for coreference decisions.

Hypothesis 0 (null hypothesis) formalizes independence (the coreference decisions are independent
of relation ). Hypothesis 1 formalizes dependence, which in case p; > ps indicates a strong positive
association between r and C. This is the pattern that we are interested in.

We use the G2 log-likelihood ratio statistics for testing these hypotheses. The statistics was introduced
to the NLP community by Dunning (1993), and is defined as follows:

L(H1)

—2logA =2-log L(H0)

®)

where L(H) is the likelihood of a hypothesis based on observed data assuming a binomial probability
distribution for the existence of r between coreferring mentions. Asymptotically, —2log \ is x? dis-
tributed with one degree of freedom.

Assuming that we have the whole set of entities of input documents, we can use the maximum likeli-
hood estimator to compute p1, p2, and p as follows:

ZuGE Zméu Z neu T(mv n)
n#m

LD SR Yvey (2, y)
Suer Zmew X g (L= r(m.n))
SERD DRRYS SPEH (X))
2 uer Zmeu 2o S 1
SRS VIS SPeE ®

The log-likelihood ratio statistics can be used both for filtering out non-informative relations and for
scoring the remaining relations. The filtering is done by comparing the value of —2log A to the desired
threshold value obtained from the x? table (15.0 in our experiments) and removing the relations that are
not significant at the desired level.

Similar to Dunning (1993), the test statistics can be used as a measure for scoring. In our formulation,
the test statistics scores given mention pair relations based on their association with coreference links
in a way that more precise relations (relations that indicate a coreference link more strongly) will get a
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higher score, and less precise relations (relations that are randomly spread among coreferring and non-
coreferring mentions) will get a lower score.

The formulation of the log-likelihood ratio in Dunning (1993) is a two-tailed statistical test that if p;
and po significantly diverge from each other, the —2 log A would get a high value. However, as mentioned
above, we are just interested in the cases that p; is much higher than py, because, otherwise, coreference
links among the mentions which have the relation 7 in common are less frequent than expected.

Therefore, we use the one-sidedness condition as discussed by Kiss and Strunk (2006) for the log-
likelihood test. In this case, a relation r is selected as an informative relation for coreference resolution
when the —2 log A is larger than the desired threshold, and also p; > po:

IS(T):{_2IOg)\ if p1 > po (10)

0 otherwise

We compute the values of {IS(r)} based on entities of the whole set of input documents in order to
have a global estimation of the associations in the input data. In order to have a domain- or genre-
specific model, one should learn different {1.5(r)} for each different domain/genre. The domain/genre
adaptation is discussed in more detail in the discussion part.

3.3 Learning Method

From what we have discussed so far, {15 (r)} values and document entities (F) are two unknown sets of
variables that we want to find. When {IS5(r)} is known, we can estimate entities by using the inference
method described in Section 3.2. When the entities are known, we can compute the {I5(r)} as described
in Section 3.2.1. We can see that these two steps (i.e. determining entities and the informativeness scores),
correspond to the E- and M-steps of the expectation maximization algorithm, respectively.

Expectation maximization is an iterative procedure for computing the maximum likelihood estimator
of a parameter set when only a subset of data is available. The EM model involves some hidden variables
(Z), observed data (X) and a set of unknown parameters (¢). In our modeling, the informativeness scores
are the unknown parameters, the observed data is a set of relations corresponding to R, and entities are
hidden variables.

In the M-step, the model estimates {1S5(r)} by using the association analysis of mention pair relations
and coreference links over the entire entity set of the input documents. In the E-step, the algorithm per-
forms the inference method of Section 3.2 and reconstructs the whole set of entities based on the given
{IS5(r)} values. As mentioned before, the inference method only needs the ranking of the informative-
ness scores, and therefore different values of {/.5(r)} with similar ordering will lead to the same result.
Our model starts from an initial E-step, in which the values of {IS5(r)} are ranked randomly. The itera-
tion between the E- and M-steps continues until {S5(r)} converges to steady values. The convergence
and the initial state of the EM algorithm are discussed in more detail in the discussion part.

4 Experiments

4.1 Mention Pair Relations

Here is the list of pairwise relations that we use for common and proper nouns:
e String match: Two mentions have the same string after removing their post-modifiers.

e Compatible head match: Two mentions have the same head, and the pre-modifiers of the anaphor
are a subset of the pre-modifiers of the antecedent.

e Proper head match: Two proper names have the same head, and they do not contain numeric or
location pre-modifiers.

e Substring: All words of the anaphor appear in the antecedent (possibly in different order).

e Acronym: One mention is an acronym of the other.
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For the ACE data, we use additionally the following relations:
e Apposition: Two mentions are in an apposition structure.

e Demonym: One mention is a name for a resident of a place that derives from the name of the place,
and the other mention is the place name itself.

e Predicate nominative: The anaphor follows a linking verb and renames or describes the subject
mention.

e Role apposition: The antecedent (with a noun head) is a modifier of a noun phrase whose head is
the anaphor.

For the OntoNotes data sets, Same speaker (Lee et al., 2013) is the only feature for resolving pronouns.
For the ACE data Relative pronoun (i.e. the anaphor is a relative pronoun that modifies the head of the
antecedent) is also used. Pronouns, for which we do not have any feature, are linked to the nearest
antecedent (based on the Hobbs distance) that currently belongs to a partial entity which is compatible
with the pronoun. The compatibility is measured in terms of number, gender, person, animacy, and
named entity label. This approach corresponds to the pronoun resolution strategy of the Stanford system.

The differences between the relations of the OntoNotes and ACE corpora is due to the fact that these
two corpora have different annotation schemes. Some of the relations mentioned (e.g. Apposition) are
considered as coreference relations only in the ACE data.

4.2 Data

We evaluate our method on the following data sets:

e OntoNotes-Dev: Development set of the OntoNotes data provided by the CoNLL2012 shared task
(Pradhan et al., 2012). This data set consists of 303 documents.

e OntoNotes-Test: Test set of the OntoNotes data provided by the CoNLL2012 shared task (Pradhan
et al., 2012). This data set consists of 322 documents.

e ACE2004-nwire: Newswire subset of the ACE 2004 data set consisting of 128 documents. This
split of ACE2004 has been utilized in previous work (Poon and Domingos, 2008; Finkel and Man-
ning, 2008; Haghighi and Klein, 2009; Lee et al., 2013).

o ACE2004-Culotta-Test: One of the test splits of the ACE 2004 data set that has been used in
previous work (Culotta et al., 2007; Bengtson and Roth, 2008; Haghighi and Klein, 2009; Lee et
al., 2013). This data set consists of 107 documents.

o ACE2003-BNEWS: BNEWS subset of the ACE 2003 data set utilized in Ng (2008) and Kobdani
et al. (2011) consisting of 51 documents.

o ACE2003-NWIRE: NWIRE subset of the ACE 2003 data set utilized in Ng (2008) and Kobdani et
al. (2011) consisting of 29 documents.

4.3 Preprocessing

The mention detection of the Stanford coreference system (Lee et al., 2013) is used for the OntoNotes
data sets. We use the predicted information in the OntoNotes data sets for named entity labels, and
syntactic roles. For experiments on the ACE data sets, gold mentions are used, so that comparison with
previous work is possible. For preprocessing, the Stanford parser (Klein and Manning, 2003) and named
entity recognizer (Finkel et al., 2005) are deployed.

We also use the singleton detection of the Stanford system (Recasens et al., 2013) for the OntoNotes
data sets. When both mentions are detected as a singleton by the singleton detection module, the value
of all their corresponding relations will be set to zero. In other words, (m,n) is set to zero when both
n and m have been detected as a singleton. For examining the effect of the singleton detection module
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MUC B3 CEAF. Avg.
System [R P FI [R P FI [R P FI [ FI

OntoNotes-Test
Berkeley 6748 7297 70.12 | 544 6194 5792 | 53.84 55.48 54.65 | 60.90
IMS 6523 70.10 76.58 | 49.41 60.69 5447 | 51.34 49.14 5021 | 57.42
Rule-based Stanford 6395 6543 64.68 | 48.65 56.66 5235 | 51.04 46.77 48.81 | 55.28
Unsupervised | This Work 65 6427 64.64 | 4996 5535 5252 | 51.82 46.66 49.11 | 5542

Supervised

OntoNotes-Dev
This Work 65.05 65.69 6537 | 51.78 5831 5485 | 5426 4872 51.34 | 57.19
Unsupervised | — Singleton | 65.44 63.83 64.62 | 5226 5629 542 54.63 4645 50.21 | 56.34
& Genre 65.09 65.7 6539 | 51.84 5831 54.80 | 5426 4875 5136 | 57.21

Table 1: Experimental results on OntoNotes data sets.

in our inference method, we evaluate our system without this module. The result is shown in Table 1
(specified as “— Singleton”). The results of the Stanford system are also reported using the singleton
detection module of Recasens et al. (2013).

MUC B3
System [ R P F1 [R P F1
ACE2003-NWIRE
This Work 7292  86.13 7898 | 74.68 90.05 81.65
Haghighi07 447 555 495 | - - -
Ng08 47.0 68.3 55.7 - - -
Kobdanill (UNSEL) | 68.6 64.8 66.6 73.6 61.5 67.0

ACE2003-BNEWS

This Work 6736 84.72 75.05 | 7035 8956 78.80
Haghighi07 568 683 620 |- - -
Ng08 561 714 628 |- - -

Kobdanill (UNSEL) | 65.0  69.5 67.1 65.9 70.2 68.0

ACE2004-nwire

This Work 7477 8453 79.35 | 74.21 87.50 80.31

Haghighi07 62.3 66.7 64.2 - - -

Poon08 71.3 70.5 70.9 - - -

Haghighi09 75.09 77.0 76.5 74.5 79.4 76.9
ACE2004-Culotta-Test

This Work 68.88 8242 75.04 | 73.62 88.87 80.53

Haghighi09 77.7 74.8 79.6 78.5 79.6 79.0

Table 2: Comparison with other unsupervised systems on ACE data sets.

4.4 Results

We evaluate our proposed model with the most commonly used metrics for coreference resolution: for
the OntoNotes data sets MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), CEAF (Luo, 2005)
and their average F1 as used in the CoNLL 2011 and 2012 shared tasks; for the ACE data sets MUC
and B3. The experimental results for the OntoNotes and ACE data sets are presented in Tables 1 and 2,
respectively.

On the OntoNotes test set, we compare our method with the three best publicly available coreference
systems including the Berkeley system (Durrett and Klein, 2013), the IMS system (Bjorkelund and
Farkas, 2012), and the Stanford system (Lee et al., 2013; Recasens et al., 2013). The Berkeley and IMS
systems are both supervised approaches with a rich set of lexical features. At the other hand, the Stanford
system is a deterministic system with a set of entity-level features that needs to go through all mentions
for incorporating each of the input features. The Stanford system is the winner of the CoNLL2011 shared

650



[ OntoNotes-Dev ]

Same speaker > Compatible head match > Substring > String match > Proper head match > Acronym

[ ACE2004-nwire ]

Compatible head match > Substring > Proper head match > String match > Demonym >
Apposition > Same speaker > Role apposition > Relative pronoun > Acronym > Predicate nominative

Table 3: The resulting ranking of informativeness scores on different data sets.

task. The IMS system is the 3rd best system on the CoONLL2012 shared task. The Berkeley system is
a state-of-the-art supervised coreference system that outperforms both the Stanford and IMS systems.
Despite being totally unsupervised and using pairwise features, the results of our system are on par with
those of the Stanford system (according to the approximate randomization test, there is no significant
difference). The comparison with this state-of-the-art rule based system (Lee et al., 2013), indicates the
effectiveness of our coreference resolution approach, as it uses the same preprocessing modules and a
simpler and smaller set of features. All results in the Table 1 are reported using the scorer-v7! of the
CoNLL-2012 shared task (Pradhan et al., 2014).

On the ACE data sets, we compare our performance to those of the unsupervised systems mentioned
in Section 2. As Table 2 shows, our method considerably outperforms other unsupervised systems on all
data sets (except only for the MUC measure on the ACE2004-Culotta-Test data set).

5 Discussion

5.1 Informativeness Score

As discussed in Section 3.2.1, we determine the discriminative power of mention pair relations in corefer-
ence decisions based on the informativeness score (Equation 10), in which the statistical test is computed
on the unsupervised estimated set of entities. The resulting ranking of the informativeness score for our
input relations is presented in Table 3 on both OntoNotes and ACE data sets.

Another point that needs to be mentioned here is that we are currently using a set of simple and
precise input relations. While using these input relations, the informativeness score cannot be efficiently
used. The effectiveness of our informativeness score can be usefully assessed with complex relations
(i.e. combinatorial features). However, learning of the informativeness scores for complex relations is
not possible in a totally unsupervised configuration and one should at least use an informative initial state
to guide the learning. We address this issue in our future work.

5.2 Domain/Genre Adaptation

The OntoNotes data set has seven genres regarding the type of text’s sources: newswire (NW), broadcast
news (BN), broadcast conversation (BC), magazine (MZ), telephone conversation (TC), web data (WB),
pivot text (PT). Domain or genre adaptation is one of the current obstacles in language processing. In
order to test the effect of genre adaptation in our approach, we try a variant of our approach in which the
informativeness scores of the input relations (i.e. {IS(r)}) are learned separately for each genre. The
results of this evaluation are presented in Table 1 by the name “& Genre”.

As can be seen in Table 1, the genre-specific variant of our system is performing as well as the base
version. This experiment indicates the robustness of our approach regarding the genre/domain adapta-
tion. It can learn an appropriate approximation of the informativeness scores from a small amount of
data (i.e. the data provided for a single genre instead of the data from all genres). The learned orderings
of the informativeness scores for all genres are presented in Table 4.

When evaluated on each genre separately, the system has the best performance on PT, and the worst
performance on the WB genre. The total ordering of genres based on the performance of our system is

"http://conll.cemantix.org/2012/software.html

651



[ Broadcast conversation, Web data ]

Same speaker > Compatible head match > Substring > String match > Proper head match > Acronym

[ Telephone conversation ]

Same speaker > Compatible head match > Substring > String match > Proper head match

[ Broadcast news, Newswire ]

Substring > Compatible head match > String match > Proper head match > Same speaker > Acronym

l Pivot text l

Same speaker > Compatible head match > String match > Substring > Proper head match

l Magazine |

Compatible head match > Substring > String match > Proper head match > Same speaker > Acronym

Table 4: The genre-specific ranking of informativeness scores.

as follow: PT, MZ, TC, BN, NW, BC, WB.

5.3 EM Initial State and Convergence

For the initial state of our EM algorithm, we need a ranking of the informativeness scores of the input
relations. We try different initial states for the EM algorithm, from an informative ranking based on
linguistic intuition about the precision of input relations to a misleading ranking (the informative order
reversed). However, in all cases, the EM algorithm leads to the same ranking (as listed in Table 3). This
indicates the robustness of our modeling.

It is more likely that a more precise relation will also get a higher value for its corresponding join
probability of Equation 3, because it is unlikely that a precise relation connects a mention to several
candidate entities. However, relations with low precision may connect a mention to several different
entities, because they are spread over more different entities than relations with higher precision.

In our experiments, for all tested initial states, the model converges in 4 iterations on the OntoNotes
data sets and 5 iterations on the ACE data sets.

5.4 Promising Alternative for the Stanford System

Our coreference resolution method is a self- contained approach, that does not need any external linguis-
tic knowledge regarding the coreference relations. However, we can also consider a simple variant of
this system in which a predefined ordering of features (based on linguistic intuition) is given, like the
Stanford system. In this case, the EM algorithm will be no longer needed, and therefore, the algorithm
resolves all mentions in a single iteration.

Therefore, this variant of our system can be considered as an efficient alternative to the Stanford
system, that uses a simpler (pairwise instead of entity-based) and smaller (5 instead of 7 string matches)
set of relations, and more importantly processes all mentions in a single iteration (instead of iterating
over all mentions for each relation), and it still performs as well as its entity-based multi-sieve variant.

6 Conclusions

In this paper, we presented a new unsupervised coreference resolution method. We deploy a new
precision-oriented inference method that decides about joining a mention to a candidate entity based
on only the most informative mention pair relation that exists between the given mention entity pair.
In order to determine the most informative relation of a mention and its candidate entity, we introduce
an informativeness score for scoring mention-mention relations based on their global association with
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coreference links. A relation whose existence strongly indicates a coreference link will get a high score,
and a relation which is randomly spread among coreferring and non-coreferring mentions will get a low
score. The informativeness score is robustly learned during a very few iterations of the EM algorithm.

Our proposed method performs well on all benchmark data sets. In the future we intend to apply this
robust and efficient approach to new genres, domains, and also new languages.
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