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Abstract

For languages such as English, several constituent-to-dependency conversion schemes are pro-
posed to construct corpora for dependency parsing. It is hard to determine which scheme is
better because they reflect different views of dependency analysis. We usually obtain dependen-
cy parsers of different schemes by training with the specific corpus separately. It neglects the
correlations between these schemes, which can potentially benefit the parsers. In this paper, we
study how these correlations influence final dependency parsing performances, by proposing a
joint model which can make full use of the correlations between heterogeneous dependencies,
and finally we can answer the following question: parsing heterogeneous dependencies jointly
or separately, which is better? We conduct experiments with two different schemes on the Penn
Treebank and the Chinese Penn Treebank respectively, arriving at the same conclusion that joint-
ly parsing heterogeneous dependencies can give improved performances for both schemes over
the individual models.

1 Introduction

Dependency parsing has been intensively studied in recent years (McDonald et al., 2005; Nivre, 2008;
Zhang and Clark, 2008; Huang et al., 2009; Koo and Collins, 2010; Zhang and Nivre, 2011; Sartorio et
al., 2013; Choi and McCallum, 2013; Martins et al., 2013). Widely-used corpus for training a dependen-
cy parser is usually constructed according to a specific constituent-to-dependency conversion scheme.
Several conversion schemes for certain languages have been available. For example, the English lan-
guage has at least four schemes based on the Penn Treebank (PTB), including the Yamada scheme (Ya-
mada and Matsumoto, 2003), the CoNLL 2007 scheme (Nilsson et al., 2007), the Stanford scheme
(de Marneffe and Manning, 2008) and the LTH scheme (Johansson and Nugues, 2007). There are dif-
ferent conversion schemes for the Chinese Penn Treebank (CTB) as well, including the Zhang scheme
(Zhang and Clark, 2008) and the Stanford scheme (de Marneffe and Manning, 2008). It is hard to
judge which scheme is more superior, because each scheme reflects a specific view of dependency analy-
sis, and also there is another fact that different natural language processing (NLP) applications can prefer
different conversion schemes (Elming et al., 2013).

Traditionally, we get dependency parsers of different schemes by training with the specific corpus
separately. The method neglects the correlations between these schemes, which can potentially help
different dependency parsers. On the one hand, there are many consistent dependencies across heteroge-
neous dependency trees. Some dependency structures remain constant in different conversion schemes.
Taking the Yamada and the Stanford schemes as an example, overall 70.27% of the dependencies are
identical (ignoring the dependency labels), according to our experimental analysis. We show a concrete
example for the two heterogeneous dependency trees in Figure 1, where six of the twelve dependencies
are consistent in the two dependency trees (shown by the solid arcs).

On the other hand, differences between heterogeneous dependencies can possibly boost the ev-
idences of the consistent dependencies. For example in Figure 1, the dependencies “do

VCxthink”
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Figure 1: An example to show the differences and similarities of two dependency schemes. The above
dependency tree is based on the Yamada scheme, while the below dependency tree is based on the
Stanford scheme. The solid arcs show the consistent dependencies between the two dependency
trees, while the dashed arcs show the differences between the two trees.

and “We
nsubjx think” from the two trees can both be potential evidences to support the dependency

“thinkyat”. Another example, the label “PMOD” from the Yamada scheme and the label “pobj” from
the Stanford scheme on a same dependency “atypoint” can make it more reliable than one alone.

In this paper, we investigate the influences of the correlations between different dependency schemes
on parsing performances. We propose a joint model to parse heterogeneous dependencies from two
schemes simultaneously, so that the correlations can be fully used by their interactions in a single model.
Joint models have been widely studied to enhance multiple tasks in NLP community, including joint
word segmentation and POS-tagging (Jiang et al., 2008; Kruengkrai et al., 2009; Zhang and Clark,
2010), joint POS-tagging and dependency parsing (Li et al., 2011; Hatori et al., 2011), and the joint word
segmentation, POS-tagging and dependency parsing (Hatori et al., 2012). These models are proposed
over pipelined tasks. We apply the joint model into parallel tasks, and parse heterogeneous dependencies
together. To our knowledge, we are the first work to investigate joint models on parallel tasks.

We exploit a transition-based framework with global learning and beam-search decoding to imple-
ment the joint model (Zhang and Clark, 2011). The joint model is extended from a state-of-the-art
transition-based dependency parsing model. We conduct experiments on PTB with the Yamada and the
Stanford schemes, and also on CTB 5.1 with the Zhang and the Stanford schemes. The results
show that our joint model gives improved performances over the individual baseline models for both
schemes on both English and Chinese languages, demonstrating positive effects of the correlations be-
tween the two schemes. We make the source code freely available at http://sourceforge.net/
projects/zpar/,version0.7.

2 Baseline

Traditionally, the dependency parsers of different schemes are trained with their corpus separately, using
a state-of-the-art dependency parsing algorithm (Zhang and Clark, 2008; Huang et al., 2009; Koo and
Collins, 2010; Zhang and McDonald, 2012; Choi and McCallum, 2013). In this work, we exploit a
transition-based arc-standard dependency parsing model combined with global learning and beam-search
decoding as the baseline. which is initially proposed by Huang et al. (2009). In the following, we give a
detailed description of the model.

In a typical transition-based system for dependency parsing, we define a transition state, which consists
of a stack to save partial-parsed trees and a queue to save unprocessed words. The parsing is performed
incrementally via a set of transition actions. The transition actions are used to change contents of the
stack and the queue in a transition state. Initially, a start state has an empty stack and all words of a
sentence in its queue. Then transition actions are applied to the start state, and change states step by step.
Finally, we arrive at an end state with only one parsed tree on the stack and no words in the queue. We
score each state by its features generated from the historical actions.
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(b) The joint model based on arc-standard dependency parsing for two dependency trees

Figure 2: Illustrations for the baseline dependency parsing model and our proposed joint model.

In the baseline arc-standard transition system, we define four kinds of actions, as shown in Figure 2(a).
They are shift (SH), arc-left with dependency label l (AL(l)), arc-right with dependency label l (AR(l))
and pop-root (PR), respectively. The shift action shifts the first element Q0 of the queue onto the stack;
the action arc-left with dependency label l builds a left arc between the top element S0 and the second
top element S1 on the stack, with the dependency label being specified by l; the action arc-right with
dependency label l builds a right arc between the top element S0 and the second top element S1 on the
stack, with the dependency label being specified by l; and the pop-root action defines the root node of a
dependency tree when there is only one element on the stack and no element in the queue.

During decoding, each state may have several actions. We employ a fixed beam to reduce the search
space. The low-score states are pruned from the beam when it is full. The feature templates in our
baseline are shown by Table 1, referring to baseline feature templates. We learn the feature weights by
the averaged percepron algorithm with early-update (Collins and Roark, 2004; Zhang and Clark, 2011).

3 The Proposed Joint Model

The aforementioned baseline model can only handle a single dependency tree. In order to parse multiple
dependency trees for a sentence, we usually use individual dependency parsers. This method is not
able to exploit the correlations across different dependency schemes. The joint model to parse multiple
dependency trees with a single model is an elegant way to exploit these correlations fully. Inspired by
this, we make a novel extension to the baseline arc-standard transition system, arriving at a joint model
to parse two heterogeneous dependency trees for a sentence simultaneously.

In the new transition system, we double the original transition state of one stack and one queue into
two stacks and two queues, as shown by Figure 2(b). We use stacks Sa and Sb and queues Qa and Qb

to save partial-parsed dependency trees and unprocessed words for two schemes a and b, respectively.
Similarly, the transition actions are doubled as well. We have eight transition actions, where four of them
are aimed for scheme a, and the other four are aimed for scheme b. The concrete action definitions are
similar to the original actions, except an additional constraint that actions should be operated over the
corresponding stack and queue of scheme a or b.

We assume that the actions to build a specific tree of scheme a are Aa
1A

a
2 · · ·Aa

n, and the actions to
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Baseline feature templates
Unigram features
S0w S0t S0wt S1w S1t S1wt N0w N0t N0wt N1w N1t N1wt

Bigram features
S0w·S1w S0w·S1t S0t·S1w S0t·S1t S0w·N0w S0w·N0t S0t·N0w S0t·N0t

Second-order features
S0lw S0rw S0lt S0rt S0ll S0rl S1lw S1rw S1lt S1rt S1ll S1rl
S0l2w S0r2w S0l2t S0r2t S0l2l2 S0r2l2 S1l2w S1r2w S1l2t S1r2t S1l2l2 S1r2l2
Third-order features
S0t·S0lt·S0l2t S0t·S0rt·S0r2t S1t·S1lt·S1l2t S1t·S1rt·S1r2t
S0t·S1t·S0lt S0t·S1t·S0l2t S0t·S1t·S0rt S0t·S1t·S0r2t
S0t·S1t·S1lt S0t·S1t·S1l2t S0t·S1t·S1rt S0t·S1t·S1r2t

Valancy features
S0wvl S0tvl S0wvr S0tvr S1wvl S1tvl S1wvr S1tvr

Label set features
S0wsr S0tsr S0wsl S0tsl S1wsl S1tsl

Proposed new feature templates for the joint model
Guided head features
S0w·hguide S0t·hguide S0wt·hguide S1w·hguide S1t·hguide hguide

Guided label features
S0w·S0lguide S0t·S0lguide S0wt·S0lguide S1w·S0lguide S1t·S0lguide S0lguide

S0w·S1lguide S0t·S1lguide S0wt·S1lguide S1w·S1lguide S1t·S1lguide S1lguide

Table 1: Feature templates for the baseline and joint models, where w denotes the word; t denotes the
POS tag; vl and vr denote the left and right valencies; l denotes the dependency label; sl and sr denotes
the label sets of the left and right children; the subscripts l and r denote the left-most and the right-most
children, respectively; the subscripts l2 and r2 denote the second left-most and the second right-most
children, respectively; hguide denotes the head direction of the top two elements on the processing stack
in the other tree; lguide denotes the label of the same word in the other tree.

build a specific tree of scheme b for the same sentence are Ab
1A

b
2 · · ·Ab

n. We use STa
0STa

1 · · · STa
n and

STb
0STb

1 · · · STb
n to denote the historical states for the two action sequences, respectively. A sequence of

actions should consist of Aa
1A

a
2 · · ·Aa

n and Ab
1A

b
2 · · ·Ab

n in a joint model. However, one question that
needs to be answered is that, for a joint state (STa

i , STb
j), which action should be chosen as the next step

to merge the two action sequences into one sequence, Aa
i+1 or Ab

j+1? To resolve the problem, we employ
a parameter t to limit the next action in the joint model. When t is above zero, an action for scheme b
can be applied only if the last action of scheme a is t steps in advance. For example, the action sequence
is Aa

1A
b
1A

a
2A

b
2 · · ·Aa

nAb
n when t = 1. t can be negative as well, denoting the reverse constraints.

In the joint model, we extract features separately for the two dependency schemes. When the next
action is aimed for scheme a, we will extract features from Sa and Qa, according to baseline feature
templates in Table 1. In order to make use of the correlations between the two dependency parsing trees,
we introduce several new feature templates, shown in Table 1 referring to proposed new feature templates
for the joint model. The new features are based on two kinds of atomic features: the guided head hguide

and the guided dependency label lguide. Assuming that the currently processing scheme is a, when the
top two elements (Sa

0 and Sa
1 ) have both found their heads in Guidedb (the partial-parsed trees of scheme

b), we can fire the atomic feature hguide, which denotes the arc direction between S0 and S1 in Guideb

(Sx
0 S1, Sy

0 S1 or other). When Sa
0 or Sa

1 has its dependency label in Guidedb, we can fire the atomic
feature lguide, which denotes the dependency label of Sa

0 or Sa
1 in Guidedb. Similarly we can extract the

hguide and lguide from Guidea when we are processing scheme b. When t is infinite, we always have
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the two atomic features, because the other tree is already parsed. Thus the proposed new features can be
the most effective when t = ∞ and t = −∞. In other conditions, the other tree may not be ready for
the new feature extracting. Similar to the baseline model, we use the beam-search decoding strategy to
reduce the search space, and use the averaged perceptron with early-update to learn the feature weights.

We are especially interested in two cases of the joint models when t is infinite (t =∞ and t = −∞),
where the tree of one specified scheme is always processed after the other tree is finished, because the
new features can be most effectively exploited according to the above analysis. We assume that the first
and second processing schemes are s1 and s2 respectively, to facilitate the below descriptions. We can see
that the joint model behaves similarly to a pipeline reranking model, in optimizing scheme s1’s parsing
performances. First we get K-best (K equals the beam size of the joint model) candidates for scheme s1,
and then employ additional evidences from scheme s2’s result, to rerank the K-best candidates, obtaining
a better result. The joint model also behaves similarly to a pipeline feature-based stacking model (Li et
al., 2012), in optimizing scheme s2’s parsing performances. After acquiring the best result of scheme
s1, we can use it to generate guided features to parse dependencies of scheme s2. Thus additional
information from scheme s1 can be imported into the parsing model of scheme s2. Different with the
pipeline reranking and the feature-based stacking models, we employ a single model to achieve the two
goals, making the interactions between the two schemes be better performed.

4 Experiments

4.1 Experimental Settings

In order to evaluate the baseline and joint models, we conduct experiments on English and Chinese da-
ta. For English, we obtain heterogeneous dependencies by the Yamada and the Stanford schemes,
respectively. We transform the bracket constituent trees of English sentences into the Yamada dependen-
cies with the Penn2Malt tool,1 and into the Stanford dependencies with the Stanford parser version
3.3.1.2 Following the standard splitting of PTB, we use sections 2-21 as the training data set, section 22 as
the development data set, and section 23 as the final test data set. For Chinese, we obtain heterogeneous
dependencies by the Zhang and the Stanford schemes, respectively. The Zhang dependencies are
obtained by the Penn2Malt tool using the head rules from Zhang and Clark (2008), while the Stanford
dependencies are obtained by the Stanford parser version 3.3.1 similar to English.

We use predicted POS tags in all the experiments. We utilize a linear-CRF POS tagger to obtain
automatic POS tags for English and Chinese datasets.3 We use a beam size of 64 to train dependency
parsing models. We train the joint models with the Yamada or Zhang dependencies being handled
on stack Sa and queue Qa, and the Stanford dependencies being handled on stack Sb and queue Qb,
referring to Section 3. We follow the standard measures of dependency parsing to evaluate the baseline
and joint models, including unlabeled attachment score (UAS), labeled attachment score (LAS) and
complete match (CM). We ignore the punctuation words for all these measures.

4.2 Development Results

4.2.1 Baseline

Table 2 at the subtable “Baseline” shows the baseline results on the development data set. The perfor-
mances of the Yamada scheme are better than those of the Stanford scheme. The UAS and LAS of
the Yamada scheme are 92.83 and 91.73 respectively, while they are 92.85 and 90.49 for the Stanford
scheme respectively. The results demonstrate that parsing the Stanford dependencies is more difficult
than parsing the Yamada dependencies because of the lower performances of the Stanford scheme.

1http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html.
2The tool is available on http://nlp.stanford.edu/software/lex-parser.shtml. We use three options to

perform the conversion: “-basic” and “-keepPunct”, respectively.
3The tagging accuracies are 97.30% on the English test dataset and 93.68% on the Chinese test dataset. We thank Hao

Zhang for sharing the data used in Martins et al. (2013) and Zhang et al. (2013a).
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Model
Yamada Stanford

UAS LAS CM UAS LAS CM
Baseline 92.83 91.73 47.35 92.85 90.49 50.06
The joint models,
where the Yamada dependencies are processed with priority
t = 1 92.65 91.55 46.35 93.11 90.75 50.24
t = 2 92.65 91.57 46.71 93.15 90.77 50.59
t = 3 92.82 91.74 47.12 93.19 90.82 50.76
t = 4 92.89 91.78 47.35 93.27 90.93 51.29
t =∞ 93.04 92.01 48.65 93.52 91.15 52.59
The joint models,
where the Stanford dependencies are processed with priority
t = −1 92.62 91.54 46.71 93.10 90.70 50.76
t = −2 92.50 91.41 46.18 93.06 90.74 51.12
t = −3 92.57 91.42 47.00 93.10 90.68 51.35
t = −4 92.74 91.60 47.41 93.15 90.72 51.29
t = −∞ 93.04 91.95 47.88 93.19 90.91 50.71

Table 2: The main results on the development data set of the baseline and proposed joint models.

4.2.2 Parameter Tuning

The proposed joint model has one parameter t to adjust. The parameter t is used to control the decoding in
a joint model, determining which kind of dependencies should be processed at the next step. In our joint
model, if t is larger than zero, scheme a (the Yamada scheme) should be handled t steps in advance,
while when t is smaller than zero, scheme b (the Stanford scheme) should be handled in advance.
When the value of t is infinite, the dependency tree of one scheme is handled until the dependency tree
of the other scheme is finished for a sentence.

As shown by Table 2, we have two major findings. First, the joint models are slightly better when t is
above zero, by decoding with the Yamada scheme in advance. The phenomenon demonstrates that the
decoding sequence is important in the joint parsing models. Second, no matter when t is above or below
zero, the performances arrive at the peak when t is infinite. One benefit of the joint models is that we
can use the correlations between different dependency trees, through the new features proposed by us.
The new features can be the most effective when t is infinite according to the analysis Section 3. Thus
this finding indicates that the new features are crucial in the joint models, since the ineffective utilization
would decrease the model performances a lot. Actually, when the absolute value of t is small, the features
can sometimes be fired and in some other times are not able to be fired, making the training insufficient
and also inconsistent for certain word-pair dependencies when their distances can differ (when t = 1 for
example, the joint model can fire the new features only if the dependency distance equals 1). This would
make the final model deficient, and can even hurt performances of the Yamada scheme.

According to the results on the development data set, we use the t = ∞ for the final joint model,
which first finishes the Yamada tree and then the Stanford tree for each sentence. Our final model
achieves increases of 0.21 on UAS and 0.28 on LAS for the Yamada scheme, and increases 0.67 on
UAS and 0.66 on LAS for the Stanford scheme.

4.2.3 Feature Ablation

In order to test the effectiveness of the proposed new features, we conduct a feature ablation experiment.
Table 3 shows the results, where the mark “/wo” denotes the model without the new features proposed
by us. For the Yamada scheme, losses of 0.15 on UAS and 0.21 on LAS are shown without the new
features. While for Stanford scheme, larger decreases are shown by 0.57 on UAS and 0.58 on LAS,
respectively. The results demonstrate the new features are effective in the joint model.
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Model
Yamada Stanford

UAS LAS CM UAS LAS CM
Our joint model 93.04 92.01 48.65 93.52 91.15 52.59

Our joint model/wo 92.89 91.80 48.25 92.95 90.57 50.62
∆ -0.15 -0.21 -0.40 -0.57 -0.58 -1.97

Table 3: Feature ablation results.

Model
Yamada Stanford

UAS LAS CM UAS LAS CM
Baseline 92.71 91.67 47.48 92.72 90.61 47.76
Our joint model 92.89 91.86 48.39 93.30‡ 91.19‡ 50.37
Zhang and Nivre (2011) 92.9 91.8 48.0 – – –
Rush and Petrov (2012) – – – 92.7∗ – –
Martins et al. (2013) 93.07 – – 92.82∗ – –
Zhang et al. (2013a) 93.50 92.41 – 93.64∗ 91.28∗ –
Zhang and McDonald (2014) 93.57 92.48 – 93.71∗/93.01∗∗ 91.37∗/90.64∗∗ –
Kong and Smith (2014) – – – 92.20∗∗ 89.67∗∗ –

Table 4: The final results on the test data set, where the results with mark ‡ demonstrates that the p-value
is below 10−3 using t-test. Our Stanford dependencies are slightly different with previous works, where
the results with mark ∗ show the numbers for the Stanford dependencies from Stanford parser version
2.0.5 and the results with mark ∗∗ show the numbers for the Stanford dependencies from Stanford parser
version 3.3.0.

4.3 Final Results
Table 4 shows our final results on the English test dataset. The final joint model achieves better per-
formances than the baseline models for both the Yamada and the Stanford schemes, by increases
of 0.18 on UAS and 0.19 on LAS for the Yamada scheme, and increases of 0.58 on UAS and 0.58
on LAS for the Stanford scheme. The results demonstrate that the interactions between the two de-
pendency schemes are useful, and the joint model is superior to separately trained models in handling
heterogeneous dependencies.

We compare our results with some representative previous work of dependency parsing as well. Zhang
and Nivre (2011) is a feature-rich transition-based dependency parser using the arc-eager transition sys-
tem. Rush and Petrov (2012), Zhang et al. (2013a) and Zhang and McDonald (2014) are state-of-the-art
graph-based dependency parsers. Martins et al. (2013) and Kong and Smith (2014) report their results
with the full TurboParser. TurboParser is also a graph-based dependency parser but its decoding algo-
rithm has major differences with the general MST-style decoding.

4.4 Analysis
To better understand the joint model, we conduct analysis work on the Chinese development dataset.
First, we make a comparison to see whether the consistent dependencies give larger increases by the
joint model. As mentioned before, the consistent dependencies can be supported by different evidences
from heterogeneous dependencies. We compute the proportion of the consistent dependencies (ignoring
the dependency labels) between the Yamada and the Stanford dependencies, finding that 70.27% of
the overall dependencies are consistent. Table 5 shows the comparison results. The joint model shows
improvements for the consistent dependencies. However, it does not always show positive effectiveness
for the inconsistent dependencies. The results support our initial motivation that consistent dependencies
can benefit much in joint models .

We also make a comparison between the baseline and joint models with respect to dependency dis-
tance. We use the F-measure value to evaluate the performances. The dependency distances are normal-
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Yamada Stanford
Consistent Inconsistent Consistent Inconsistent

UAS LAS UAS LAS UAS LAS UAS LAS
Baseline 93.43 92.39 91.44 90.17 93.74 91.35 90.75 88.47

Our joint model 93.81 92.85 91.21 90.02 94.58 92.15 91.01 88.78
∆ +0.38 +0.46 -0.23 -0.15 +0.84 +0.80 +0.36 +0.31

Table 5: Performances of the baseline and joint models by whether the dependencies are consistent
across the Yamada and the Stanford schemes, where the bold numbers denote the larger increases by
comparisons of consistent and inconsistent dependencies for each scheme.
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Figure 3: F-measures of the two heterogeneous dependencies with respect to dependency distance.

ized to a max value of 7. Figure 3 shows the comparison results. We find that the joint model can achieve
consistent better performances for the dependencies of different dependency distance, demonstrating the
robustness of the joint model in improving parsing performances. The joint model performs slightly
better for long-distance dependencies, which is more obvious for the Stanford scheme.

4.5 Parsing Heterogeneous Chinese Dependencies
Table 6 shows our final results on the Chinese test data set. For Chinese, the joint model achieves better
performances with Stanford dependencies being parsed first. The final joint model achieves better
performances than the baseline models for both the Zhang and the Stanford schemes, by increases
of 1.13 on UAS and 0.99 on LAS for the Zhang scheme, and increases of 0.30 on UAS and 0.36 on
LAS for the Stanford scheme. The results also demonstrate similar conclusions with the experiments
on English dataset.

5 Related Work

Our work is mainly inspired by the work of joint models. There are a number of successful studies
on joint modeling pipelined tasks where one task is a prerequisite step of another task, for example,
the joint model of word segmentation and POS-tagging (Jiang et al., 2008; Kruengkrai et al., 2009;
Zhang and Clark, 2010), the joint model of POS-tagging and parsing (Li et al., 2011; Hatori et al., 2011;
Bohnet and Nivre, 2012), the joint model of word segmentation, POS-tagging and parsing (Hatori et

Model
Zhang Stanford

UAS LAS CM UAS LAS CM
Baseline 79.07 76.08 27.96 80.33 75.29 31.14
Our joint model 80.20‡ 77.07‡ 30.10 80.63 75.65 31.20

Table 6: The final results on the test data set, where the results with mark ‡ demonstrates that the p-value
is below 10−3 using t-test.
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al., 2012; Zhang et al., 2013b; Zhang et al., 2014), and the joint model of morphological and syntactic
analysis tasks (Bohnet et al., 2013). In our work, we propose a joint model on parallel tasks, to parse two
heterogeneous dependency trees simultaneously.

There has been a line of work on exploiting multiple treebanks with heterogeneous dependencies to
enhance dependency parsing. Li et al. (2012) proposed a feature-based stacking model to enhance a
specific target dependency parser with the help of another treebank. Zhou and Zhao (2013) presented
a joint inference framework to combine the parsing results based on two different treebanks. All these
work are case studies of annotation adaptation from different sources, which have been done for Chinese
word segmentation and POS-tagging as well (Jiang et al., 2009; Sun and Wan, 2012). In contrast to their
work, we study the heterogeneous annotations derived from the same source. We use a unified model to
parsing heterogeneous dependencies together.

Our joint parsing model exploits a transition-based framework with global learning and beam-search
decoding (Zhang and Clark, 2011), extended from a arc-standard transition-based parsing model (Huang
et al., 2009). The transition-based framework is easily adapted to a number of joint models, including
joint word segmentation and POS-tagging (Zhang and Clark, 2010), the joint POS-tagging and parsing
(Hatori et al., 2012; Bohnet and Nivre, 2012), and also joint word segmentation, POS-tagging and parsing
(Hatori et al., 2012; Zhang et al., 2013b; Zhang et al., 2014).

6 Conclusions

We studied the effectiveness of the correlations between different constituent-to-dependency schemes
for dependency parsing, by exploiting these information with a joint model to parse two heterogeneous
dependency trees simultaneously. We make a novel extension to a transition-based arc-standard depen-
dency parsing algorithm for the joint model. We evaluate our baseline and joint models on both English
and Chinese datasets, based on the Yamada/Zhang and the Stanford dependency schemes. Final
results demonstrate that the joint model which handles two heterogeneous dependencies can give im-
proved performances for dependencies of both schemes. The source code for the joint model is publicly
available at http://sourceforge.net/projects/zpar/,version0.7.
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