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Abstract

In this study we compare two machine translation devices on twelve machine translation medical-
domain specific tasks, and two transliteration tasks, altogether involving twelve language pairs,
including English-Chinese and English-Russian, which do not share the same scripts. We imple-
mented an analogical device and compared its performance to the state-of-the-art phrase-based
machine translation engine Moses. On most translation tasks, the analogical device outperforms
the phrase-based one, and several combinations of both systems significantly outperform each
system individually. For the sake of reproducibility, we share the datasets used in this study.

1 Introduction

A proportional analogy is a relation between 4 objets, x, y, z and t, noted [x : y :: z : t], which reads
X isto y as z is to t. A formal proportional analogy, hereafter analogy, is a proportional analogy which
involves a relationship at the graphemic level, such as [atomkraftwerken : atomkriegen :: kraftwerks :
kriegs] in German. Analogical learning is a holistic learning paradigm (sketched in Section 2) which
relies on proportional analogies for generalizing a training set.

Lepage and Denoual (2005b) pioneered the application of analogical learning to Machine Transla-
tion (MT). Different variants of their system have been tested within the IWSLT evaluation campaigns
(Lepage and Denoual, 2005a; Lepage and Lardilleux, 2008; Lepage et al., 2008; Lepage et al., 2009).
Since then, a number of studies have been investigating analogical learning for performing more specific
machine translation tasks. Langlais et al. (2009) applied it to translating medical terms, and Langlais
and Patry (2007) investigated the more specific task of translating unknown words, a problem simultane-
ously investigated in (Denoual, 2007). Recently, Langlais (2013) applied formal analogies to transliterate
English proper names into Chinese.

Those works suggest, at least on the tasks investigated, that analogical translation typically shows bet-
ter precision than phrase-based Statistical MT (SMT), but at a much lower recall. Still, the analogical
devices tested in these works vary from task to task, making it difficult to draw a clear picture of the
strengths and weaknesses of analogy-based translation. In this study, we perform a systematic compari-
son of an analogical and a phrase-based MT engine for the translation of fourteen different testbeds. We
also improve the state-of-the-art of analogical learning by revisiting the aggregation step of the process.
In particular, we observe that ranking analogical candidates according to random forests improves the
performance of the analogical device, over training a classifier, as proposed for instance in (Langlais,
2013). On each task we tackle, we report improvements to the state-of-the-art in analogical learning.

In the remainder of this paper, we describe the principle of analogical learning and sketch our analogi-
cal device in Section 2. We describe our experimental protocol in Section 3. We analyze the performance
of several variants of our analogical device in Section 4 and compare it to a state-of-the-art phrase-base
SMT engine. We conclude this work and discuss future avenues in Section 5.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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2 ANALOGICAL LEARNING

2.1 Principle

We note [x : y :: z : ?] an analogical equation. It can have 0 or several solutions, depending on the
definition of analogy being considered. We are given a training set (or memory) of pairs of input and
output forms that are in (translation) relation: L = {(x1,y1),..., (x;, )}, and we note 7(x) the set of
output forms to which the input form x corresponds in the training set: 7(x) = {y : (x,y) € L}.

Given an input form u unseen at training time, analogical learning generates its associated output form
(in our case its translation), by accomplishing 3 steps. First, analogies in the input space [x : y :: z : u]
are searched for. Second, output equations [x : y’ :: z’ : ?] are solved for all x’, y’, and z’ in
7(x), 7(y), and 7(z) respectively. By applying those two steps (that we call the generator), a number
of candidate solutions are typically produced. They need to be aggregated. This is the purpose of the
third step, or selector. Note that for the mapping to happen between input and output strings, there is no
attempt to align subsequences of forms in both spaces, as it is typically done in statistical MT. There is
actually no alignment whatsoever: analogies are treated in each space separately, and the mapping is the
result of the inductive bias which promotes that an analogy in the input space corresponds to an analogy
in the output space.

Figure 1 depicts the overall process for the translation of the English term proton pump inhibitors into
Spanish, given a memory of pairs such as (blood coagulation factors, factores de coagulacion sanguinea)
and (proton pumps, bombas de protones). 6 input analogies are being identified (2 are reported), there-
fore 6 (output) equations are being solved, yielding a total of 5268 different forms that are sorted in
decreasing order of frequency with which they have been generated. This is the output of the generator.
The reference translation (in bold) ranks 11" according to frequency. The aggregator finally selects two
candidates from this list. The best ranked one according to the aggregator is the correct translation.

’ u = proton pump inhibitors
I
[blood_coagulation_factors : proton_pumps :: blood_coagulation_factor_inhibitors : u)]
< [factores_de_coagulacion_sanguinea : bombas_de_protones ::
inhibidores_de_factor_de_coagulacion_sanguinea : ?]
15 solutions: inhibidores_de__dbomba_protones (32) inhibidores_de__d_bombaprotones (0 ...
[protein_c : proton_pumps :: protein_c_inhibitor : u]
—[proteina_c : bombas_de_protones :: inhibidor_de_proteina_c : ?]
2541 solutions: proton_pumps_inhibitor (3s2) proton_pum_inhibitorps (s9) ...

inhibidor_de_bombas_de_protones (119) inhibidores_de_bombas_de_protone (70)

inhibidores_de_la_bombas_de_protone (70) inhbidores_de_ibombas_de_protone (5
nhibidores_de_ibombas_de_protone (5) inhibdores_de_ibombas_de_protone ) . . .
4

inhibidores_de_la_bomba_de_protones (1s026) inhibidor_de_bombas_de_protones (9702)

Figure 1: Excerpt of the translation session of the English term proton pump inhibitors into Spanish. The
reference translation is in bold. Spaces are underlined for readability.

2.2 Implementation

Implementing such a learning procedure requires the definition of a formal analogy, the implementation
of an analogical solver, as well as a way to handle computational issues: the identification of input
analogies is an operation a priori cubic in the size of the input space. We describe each component of
our implementation below. In practice, and for the tasks we consider in this work, our implementation
allows the translation of an input form within a few seconds on average.
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We would like to point out that analogical learning often suffers from a silence issue, that is, there are
(input) forms for which no solution is provided. This may happen because no input analogy is identified,
or because none yields an output equation with solutions. In contrast, there are many forms for which
several candidate translations will be provided, thus the need for a good aggregator (see next section).
This happens because an equation typically allows many solutions, and because many input analogies
might be identified for solving a given input form.

Formal Analogy We used the definition of formal analogy proposed by Yvon et al. (2004), where
an analogy is defined in terms of d-factorizations. A d-factorization of a string x over an alphabet
%, noted fx, is a sequence of d factors fx = (fx,..., f%), where f& € X* for all 4, and such that
fx © f2 ® f¢ = x; where © denotes the concatenation operator.

Definition 1. Vx,y,z and t € ¥* [x : y == z : t] iff there exists a 4-uple of d-factorizations

(Fx. fy 2. £0) of %, y. zand t respectively, such that Vi € [1,d}, (fy. f3) € {(Fic £). (Ji. 1) }. The
smallest d for which this holds is called the degree of the analogy.

For instance, [protein_c : proton_pumps :: protein_c_inhibitor : proton_pump_inhibitors] because
of the 4-uple of 3-factorizations shown in Fig. 2, whose factors are aligned column-wise for clarity,
and where spaces (underlined) are treated as regular characters. There is no 4-uple of d-factorizations,
with d smaller than 3. Therefore, the degree of this analogy is 3. Note that there are many 4-uple of
d-factorizations for d greater than 3.

Figure 2: A 4-uple of 3-factorizations demonstrating that [protein.c : proton_pumps
protein_c_inhibitor : proton_pump_inhibitors].

fx = ( protein_c € € )

fy = ( proton_pump € s )

f; = ( protein_c _inhibitor € )

ft = ( protonpump _inhibitor s )

Analogical Solver With the aforementioned definition, it has been showed by Yvon et al. (2004) that
the set of solutions to an analogical equation is a rational language, therefore we can build a finite-state
machine for encoding those solutions. In practice however, the automaton is non-deterministic, and in
the worst case, enumerating the solutions can be exponential in the length of the forms involved in the
equation. We adopted the solution proposed in (Langlais et al., 2009) which consists in sampling this
automaton without building it. The more we sample this automaton, the more solutions we produce. It
is sufficient to note that typically, a solver produces several solutions to an equation, many being simply
spurious, which means that, while they obey the definition of formal analogy, they are not valid forms.

Figure 3: Three most frequent solutions to the equation [protein.c : proton_pumps
protein_c_inhibitor : ?] along with their frequency, as a function of the number of samples considered
10™. nb stands for the total number of solutions produced.

n nb solutions

1 43 p-inhibitorroton_pumps )  proton_p_inhiubitomrps )  prot_ion_pnhibitumorps ()

2 320 proton_pumps_inhibitor 8)  proton_pum_inhibitposr 4y  prot_inhibion_pumtorps )

3 2597 proton_pumps_inhibitor 121y roton_pumpps_inhibitor (19) proton_pump_inhsibitor (19)
4 16006 proton_pumps_inhibitor 64y proton_pump_inhibsitor (103) proton_pump_isnhibitor ©5)
5 72610 proton_pumps_inhibitor 3706y proton_pump_sinhibitor so1) proton_pump_inhibitosr s1)

To illustrate this, Figure 3 reports the solutions produced to the equation [protein_c : proton_pumps ::
protein_c_inhibitor : ?] by our implementation of the solver, as a function of the number of samplings
done in the automaton. Clearly, many solutions are not valid forms in English, although they define
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proper solutions according to the aforementioned definition. Note that with enough sampling, the solu-
tion proton_pumps_inhibitor (involving a degree-2 analogy) is the most frequently generated one, while
the solution proton_pump_inhibitors involved in the analogy illustrated in Figure 2 is generated less often
(typically at the 10™ position).

Searching input analogies Identifying input analogies for an input term u is an operation a priori
cubic in the size of the input space. Langlais and Yvon (2008) developed an algorithm for speeding
up the search procedure that we adopted in this work. The main idea is to exploit a property of formal
analogies (Lepage and Shin-ichi, 1996):

x:yziul = |xle + [ule = |yl + |zl Vee A (1)

where A is the (input) alphabet, and |x|. stands for the number of occurrences of symbol ¢ in x.

The strategy consists in first selecting a form x in the input space. This enforces a set of necessary
constraints on the counts of symbols that any two forms y and z must satisfy for [x : y :: z : u] to hold.
By considering all forms x in turn, we collect a set of candidate triplets for u. We then have to find out
which of these triplets form an analogy with u. Formally, we search for:

{<X?.Y?Z>: Xez—?

(x,y):y €Zand |x|.+ |u|]. = |y|c + |z]c Vce€ A, (2)
[x:y=z:ul}
where Z = {x1,...,x;}. This strategy relies on the fact that one can efficiently identify the pairs (y, z)

that satisfy a set of constraints on symbol counts. See (Langlais et al., 2009) for the tree-count solution
we implemented in this work.

3 Experimental Protocol

3.1 Tasks

We use two families of tasks in this study. The first one concerns the translation of medical terms, the
second one is about transliterating proper names. The main characteristics of the datasets we consider are
reported in Table 1. If both tasks are of importance in practice, we admit that they are rather specific. The
reason for this is that analogical learning is quite computationally intensive. Therefore, tackling broader
tasks, such as those typically considered in MT evaluation campaigns is currently too challenging.

Medical term translation We use the datasets described in (Langlais et al., 2009). Part of the data
comes from the Medical Subject Headings (MESH) thesaurus. This thesaurus is used by the US National
Library of Medicine to index the biomedical scientific literature in the MEDLINE database. The MESH
material concerns five language pairs with three relatively close European languages (English-French,
English-Spanish and English-Swedish), a more distant one (English-Finnish) and one pair involving
different scripts (English-Russian). The material was split in three randomly selected parts (TRAIN, DEV
and TEST), so that the development and test material contain exactly 1000 terms each. Roughly a third
of the examples are pairs of single-word terms.

For the Spanish-English language pair, a set of medical terms from the Medical Drug Regulatory
Activities thesaurus (MEDDRA) is also available. This dataset contains roughly three times more terms
than the Spanish-English material from the MESH dataset. Forms in the dataset are typically longer and
the percentage of examples that are pairs of single-word terms is only 5.6%. This set is used for studying
how the silence rate of analogical learning evolves with the size of the training set.

We are pleased to share those datasets. They can be downloaded at http://rali.iro.
umontreal.ca/rali/?g=en/l2-medical-translation-tasks.

Proper name transliteration This task is part of the NEWS evaluation campaign conducted in 2009
(Lietal., 2009). The organizers of this evaluation campaign kindly provided us with the Chinese-English
dataset. This task has been investigated recently by Langlais (2013). This allows a direct comparison of
our analogical system. We also consider the reverse transliteration direction, i.e., the transliteration of
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Chinese proper names into English. This was done by simply switching the source and target languages
in the NEWS dataset.

TRAIN TEST DEV
nb avg. nb oov% oov%
MESH examples:
FI 19787 1931000 650 63.8 orthodontic retainers
FR 17230 21.5|/1000 35.8 36.8 — Fl:tandregleringshjélpmedel, forankrade
RU 21407 38.5|1000 423 45.1
ES 19021 215({1000 374 349 aid to families with dependent children
SW 17090 1731000 69.3 70.0 — SW:bidrag till barnfamiljer
MEDDRA poor urinary stream
ES 65276 34.6 ‘ 1000 7.1 7.1 < ES: chorro de orina débil
NEWS Abberley — cN:FI{HF]
CN 31961 95|2896  —  — | Schemansky — CN:¥f ik

Table 1: Main characteristics of our datasets. nb indicates the number of pairs of terms in a bitext,
avg. indicates the average length (in symbols) of the foreign forms; oov% indicates the percentage of
out-of-vocabulary types (space-separated types of TEST or DEV unseen in TRAIN).

3.2 Evaluation Metrics

All the tasks we consider are characterized by a rather high out-of-vocabulary rate (see Table 1). Thus,
word-based translation is not an adequate solution. Therefore, we devised engines which translate se-
quences of symbols (characters), without taking into account the notion of word.! In particular, spaces
in forms were considered as any ordinary symbol. Measuring how close a candidate translation is to a
reference is of little interest here, since typically, a medical term only has one reference translation that
we seek to discover. Therefore, rewarding partially correct translations (like a metric such as BLEU (Pa-
pineni et al., 2002) does) is not especially useful. Therefore we report the accuracy of the first candidate
proposed by a translation device for each source term. Accuracy is measured as the percentage of test
forms for which the first candidate is the sanctioned one. So in the example of Figure 1, the aggregator
illustrated in the bottom frame would get one point since the first translation produced is the sanctioned
one, while an aggregator that would pick the most frequently generated candidate would receive no point.
Accuracy is the main metric of the NEWS evaluation campaign, and we used the NEWS 2009 official
evaluation script’ in order to compute it. Also of interest for the analogical devices, is the silence rate,
computed as the percentage of input forms for which no output is generated. As we will see, on some
tasks, this ratio can be rather high, a clear limitation of the analogical approach we discuss in Section 5.

3.3 Systems
3.3.1 Reference System

We compare a number of analogical devices to the state-of-the-art statistical translation engine Moses
(Koehn et al., 2007). In a nutshell, SMT seeks to find the optimal translation é of a sentence f using
to a log-linear combination of models (h;), including a language model p(e) which scores how likely a
hypothesis is in the target language, and a translation model p(f|e) which predicts the likelihood that
two sentences are translations:

é = argmax p(fle)p(e) ~ argmax exp (Z Aihi(e, f)) 3)

"We tried it, but the results are very low.
http://translit.i2r.a-star.edu.sg/news2009/

448



We trained such a system at the character level,® very similarly to the approach described in (Finch
and Sumita, 2010). Such a system has been massively used as a key component by the participants
of the NEWS 2009 evaluation campaign. We used the default configuration of Moses for training and
testing the SMT engine. We trained a 5-gram character-based language model on the target part of the
TRAIN material.* We used the DEV corpus for tuning the coefficients ()\;) given to each model. The
resulting system have high BLEU scores (e.g., 55.7 for the CN—EN NEWS task). A random extract of the
phrase-table learnt by Moses for the English-Swedish system is shown in Figure 4.

Figure 4: Phrases stored in the SW—EN phrase-table, along with 4 estimations of their likelihood

eckos | || echos ||| 0303 0.006 0303 0.002
,_kvinn ||| ,_fema | | | 0101 83e-09 0303 2.5¢-11
eckrina | | | eccrine | || 0151 0009 0303 0.001
edel | | | ator ||| 0.002 4.6e-06 0.002 1.9¢-06

3.3.2 Analogical Systems

We ran our analogical generator for translating the DEV set, using the TRAIN set as a memory. The
candidate translations generated were used for training our aggregators in a supervised way. Then, we
generated the translation of the TEST terms with our analogical device, making use of the TRAIN and the
DEV set as a memory. Adding the DEV corpus to the memory used by the generator is acceptable since it
does not involve training. We only consider the (at most) 100 most frequently generated forms for each
input term. This certainly decreases the recall of the analogical device, but simplifies the overall process.
These candidates are passed on to the aggregator, and one candidate is finally selected.

Aggregators A number of aggregators have been proposed in the literature. Lepage and Denoual
(2005b; Stroppa and Yvon (2005) keep the candidate that has been generated the most frequently. We
call this aggregator FREQ henceforth. Langlais et al. (2009) trained a binary classifier to recognize good
examples from bad ones. A training instance in their case was constituted by an input analogy, and the
corresponding output equation along with one solution produced. Therefore, for the translation of the
input form u, any pair ([x : y =z z : ul, [x’ : y = 2" : c]), with x’, y’, and z” in 7(x”), 7(y’), and
7(z”) respectively, and c a candidate translation would be considered for classification. The authors had
to face a particularly unbalanced classification task. Indeed, when translating a test form, a large number
of input analogies can be considered (hundreds) and therefore a large number of output equations, each
generating potentially numerous solutions (recall the translation session in Figure 1). They reported
for instance that on the English-to-Finnish translation direction, they had over 2.7 million instances to
classify among which slightly less than 4200 were positive ones. Not only is this task very unbalanced,
it is also challenging to train a classifier on that many instances.

In this work, we reframe the classification task as one of identifying the correct candidate among the
100 most frequently generated ones. An instance in this setting is simply a candidate form, and not a
pair of analogies as in (Langlais et al., 2009). This is still an unbalanced task, since typically at most one
candidate will be correct, but the ratio 1:100 is more manageable, and the classification task is easier to
deploy. A total of 81 features are computed for each candidate form:

ANA is a set of 59 features (mostly analogical ones, therefore the name). Some features are characteriz-
ing the candidate solution thanks to a character-based language model (the same 5-gram language
model used by Moses). Others are characterizing the process with which a given candidate is gener-
ated, such as the number of input analogies involved, the number of target equations that generated
the candidate, the average degree of the analogies involved, etc. The remaining features are cohort-
based ones, such as the rank of the candidate according to frequency, to the language model, etc.

3This was done by separating each character in the training material by a space; true spaces being previously substituted by
a special character not belonging to the alphabet.
4 A Markov model of order 4. We tried higher order models, without gains.
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IBM is a set of 18 features that are capitalizing on statistical word alignment. The alignment models
being used are word-based generative models that are exploited by Moses in order to build the
phrase table, namely IBM models, therefore the name of the feature set. Different likelihood-based
features were computed, as well as rank features (the rank of the likelihood of the candidate in the
cohort of candidates, the ratio of its likelihood over the highest likelihood in the cohort, etc.). To
our knowledge, this is the first attempt to capitalize on such features in the analogical sphere.

MOS is a set of 4 features that are exploiting the n-best solutions we asked Moses to produce. The idea
being that if Moses ranks a given analogical candidate well (in rank or in score), this is a good
indicator of the salience of this candidate. The two main features are the rank of the candidate in
the n-best list and its score as given by Moses (or 0 if Moses does not produce the candidate).

We point out that an analogical device with an aggregator that uses the features ANA and IBM is
basically making use of the same models (language and IBM) as those used by Moses. It is therefore
interesting to compare this configuration to Moses. Also, the aggregators that are making use of the MOS
features are performing a kind of combination that has not been explored so far. Note also that we did
not engineer task-specific features. For instance, for the medical term translation task, terms and their
translation often share the same latin root, which could be exploited to boost performance.

We investigated two families of classifiers: voted-perceptrons (Freund and Schapire, 1999) and support
vector machines (Cortes and Vapnik, 1995). We investigated all the metaparameters that L1 bSVM (Chang
and Lin, 2011) offers (penalization, kernels, etc.), but did not manage to outperform the performance of
the former classifier (an in-house implementation) that we trained with 500 epochs. Therefore we only
report the results of the voted-perceptron classifier (VP). Classifying each candidate solution separately
is not optimal. This is why we also investigated reranking algorithms in this study. To our knowledge,
this is the first time reranking is applied in analogical learning. We tested the algorithms implemented in
RankLib’ and SVMRank® toolkits, and found random forests (Breiman, 2001) to be the most beneficial.
We note it RF in the sequel. We only considered bipartite ranking in this work (Argarwal, 2005).

4 Results
41 MEeSH

The accuracy of the translation devices we trained are summarized in Table 2 for the 10 translation
directions we tested. This table calls for several comments. First, it is noticeable that our implementation
of analogical learning with the FREQ aggregator (line LYZ) outperforms the equivalent configuration in
(Langlais et al., 2009) by roughly 10 absolute points in accuracy. We also observe a slight reduction of
the silence rate, which still remains high, since on average 54.6% of the test forms do not receive any
candidate solution. Second, we observe that Moses slightly outperforms the FREQ variant at a silence
rate of 0 (a decision is always returned by Moses). This suggests that FREQ is actually more precise than
Moses and calls for a simple combination where the analogical device is trusted whenever it produces a
candidate solution, and Moses otherwise. This is illustrated in line CASC(FREQ,MOSES). We observe a
clear improvement over each system: almost 10 absolute accuracy points on average are gained by this
combination (38.6%). Third, we observe that the aggregators that are relying on a classifier or a reranker
offer better performance than picking the most frequently generated form (as done by FREQ). The gains
are not especially high, but are consistent over all translation directions. Overall, it seems that the random
forest reranker we investigated (the best reranker we tried) offers the best performance on average. This
represents 92% of the reachable accuracy according to line ORACLE which involves a perfect classifier.
This validates the usefulness of the features we designed. As far as features are concerned, it seems that
using all of them leads to better performance overall, and that the configurations that are making use
of the ANA and IBM feature sets are comparable or higher than Moses. Cascading the best analogical
device with Moses (last line) finally gives a slight boost in accuracy. In the end, the best system we tested
correctly translated 41.9% of the test terms in the first position on average across translation directions.

Shttp://people.cs.umass.edu/~vdang/ranklib.html
*http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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— EN EN —

FR RU FI ES SW FR RU FI ES SW | avg.

LYZ 18.1 20.8 164 203 182 | 146 187 149 195 154 | 17.7
(61.5)  (57.9)  (552)  (574)  (554) | (588)  (53.8)  (52.9  (53.0) (57.2) | (56.3)

FREQ 273 29.1 285 305 283 |21.8 29.0 247 298 263 | 275
(59.3)  (56.7)  (537) (55.6) (54.3) | (56.0)  (52.5)  (50.9)  (51.6)  (552) | (54.6)

MOSES 223 334 270 29.0 38.8120.0 305 264 286 37.0| 293
VP(ANA) 2844 298 298 319 297|232 310 272 323 279 | 29.1
VP(ANA+IBM) 28.8 31.8 31.6 324 312|245 323 284 342 292 | 304

VP(ANA+IBM+MOS) ¥ | 29.2 323 31.6 328 319|250 326 28.8 340 30.1| 30.8

RF(ANA) 283 29.8 30.7 320 295|230 312 274 316 283|292
RF(ANA+IBM) 29.1 31.6 31.8 328 31.0|244 324 287 335 30.1| 305
RF(ANA+IBM+MOS) 294 31.8 322 329 324|249 325 299 340 31.1]| 31.1

ORACLE 313 340 349 352 349|282 357 332 373 333|338

(68.7) (66.0) (65.1) (64.8) (65.1) (71.8) (64.3) (66.8) (62.7) (66.7) (66.2)

casc(FREQ,MOSES) 369 424 377 41.6 438 |29.6 389 343 40.7 399 | 38.6
casc(,MOSES) 388 45.6 40.8 439 474|328 425 384 449 437 | 419

Table 2: Accuracy on the MESH tasks. Figures in parenthesis are silence rates. LYZ stands for the system
described in (Langlais et al., 2009), reproduced according to Table 4, p. 492. avg. indicates the average
over the 10 translation directions.

4.2 MEDDRA

The results presented so far show that the analogical device is more accurate than the statistical one,
but that it suffers from a high silence rate. We tested whether increasing the size of the training set
would lower the silence rate. We used the datasets of MEDDRA for this. The results are reported in the
left column of Table 3. We observe that the silence rate decreases drastically, since less than a fourth
of the test forms do not receive a candidate translation. We also observe that the analogical devices,
even the simplest FREQ, are far more accurate than Moses (over 30 absolute points on average). The
poor performance of the SMT engine might be explained by the fact that the forms in the MEDDRA
datasets are longer in terms of characters, therefore reducing the chance of getting the full translation
right. Again, combining both approaches does improve accuracy, but the improvement is small since
Moses is much less accurate on this task. Also, we observe that using a classifier is preferable to picking
the most frequently generated form, and again, the random forest reranker delivers the best performance
on average. It is noticeable however, that the performance is far less than the oracle’s, therefore, there is
still room for improvement.

4.3 NEWwS

The right column of Table 3 summarizes the performance of the transliteration devices we trained on the
NEWS tasks. The silence rate is rather low (less than 4%). Here again, we observe that aggregating by
classifying or reranking is preferable to picking the most frequent solution. There is no clear difference
between random forest and voted perceptron here. On the English-to-Chinese transliteration tasks, Moses
outperforms the analogical devices, but the opposite is observed for the reverse transliteration direction.
Our best configuration slightly outperforms the best analogical device reported in (Langlais, 2013), but
the gain is likely not significant.
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MEDDRA NEwWS

ES—EN EN-ES CN-EN EN-CN

FREQ 522 s 455 us7n | 172 s 433 (37
MOSES 10.2 11.0 154 66.6
VP(ANA) 55.1 46.8 20.0 57.3
VP(ANA+IBM) 56.2 46.9 20.9 59.5
VP(ANA+IBM+MOS) T 214 64.2
RF(ANA) 54.1 49.3 20.9 57.8
RF(ANA+IBM) 55.7 49.5 21.6 59.2
RF(ANA+IBM+MOS) 22.3 64.1

ORACLE 64.3 (449 61.8 (382 | 649 (29 815 (185
casc(FREQ,MOSES) 53.2 46.7 17.5 44.9
casc(f,MOSES) — — 68.9
(Langlais, 2013) 68.5

Table 3: Accuracy on the MEDDRA and NEWS tasks. The performance of (Langlais, 2013) is taken
from Table 1 p. 687.

4.4 Examples of translations

We conducted a random inspection of the outputs produced by Moses and by the analogical device which
uses a voted perceptron classifier trained on the ANA and the 1BM features.” We report in Figure 5 a few
examples that we found representative of the problems each translation device faces. The FI-EN example
shows a case where Moses fails to produce a valid sequence of words. The EN—ES example illustrates
the weakness of Moses at reordering words. The CN-EN example shows the incorrect transliterations
made by both systems, and the EN—CN one illustrates a failure of the analogical engine were ph and us
are transliterated separately.

MESH ey hammasytimen sairaudet NEWS(en-en) AN JE 181 77 %
Analog dental marrow diseases Analog Bennidickt
MOSES dental ne diseases MOSES BenniDickert
Reference dental pulp diseases Reference Benedict
MEDDRA@E~-—xs)  intrinsic asthma with status asthmaticus NEWS(~n-cv)  Adolphus
Analog asma intrinseca con estatus asmatico Analog FAl3E R B Hr
MOSES intrinseco asmdtico con estatus asmatico MOSES B[ & 5 H7
Reference asma intrinseca con estatus asmatico Reference Br] 3 o 3

Figure 5: Examples of analogical and phrase-based outputs

5 Discussion

We have applied analogical learning on a number of key tasks involving various language pairs. Over-
all, we confirm the findings of Langlais et al. (2009) and Langlais (2013) that analogical devices are
typically more accurate than statistical phrase-based SMT, but that they are too often silent. We also
verified that cascading the analogical device with Moses increases accuracy. We compared a num-
ber of classification algorithms and rerankers, and observed that overall, reranking by random forest

"This variant fares well compared to Moses in terms of information used (same language and IBM models).
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delivers the best performance. Our implementation outperforms previously reported ones. Our gen-
erator is more efficient than the one described in (Langlais et al., 2009). Reranking candidate solu-
tions is preferable to their classification, as proposed in (Langlais, 2013). In order to foster repro-
ducibility, the datasets related to the medical-translation tasks we investigated can be downloaded at
http://rali.iro.umontreal.ca/rali/?g=en/l2-medical-translation-tasks.

We believe this systematic comparison shows the high potential of analogical learning as a translation
engine. Still, this work raises a number of issues that we must address. First, we need to find ways
to remedy analogical learning’s high silence rate. Lepage and Denoual (2005b) describe a recursive
process where the input form is split into two parts whenever no solution is returned in the first place.
This process is at the very least costly and deserves further investigations. Lepage and Lardilleux (2008)
augments the training set with sub-sentential alignment (bootstrapping). Second, the solver we use is
producing many solutions that are currently ranked according to frequency. We are addressing the issue
of producing less, but more accurate solutions, by integrating structured learning in the solver. Last, we
investigated here the translation of sequences of characters on modestly sized tasks. We want to tackle
broader translation tasks, e.g., translating plain sentences, as done in (Lepage and Denoual, 2005b), to
see whether our analogical device is still beneficial.
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