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Abstract 

Our previous work focuses on combining translation memory (TM) and statistical machine translation 

(SMT) when the TM database and the SMT training set are the same. However, the TM database will 

deviate from the SMT training set in the real task when time goes by. In this work, we concentrate on 

the task when the TM database and the SMT training set are different and even from different domains. 

Firstly, we dynamically merge the matched TM phrase-pairs into the SMT phrase table to meet the real 

application. Secondly, we propose an improved integrated model to distinguish the original and the new-

ly-added phrase-pairs. Thirdly, a simple but effective TM adaptation method is adopted to favor the 

consistent translations in cross-domain test. Our experiments have shown that merging the TM phrase-

pairs achieves significant improvements. Furthermore, the proposed approaches are significantly better 

than the TM, the SMT and previous integration works for both in-domain and cross-domain tests. 

1 Introduction 

Since the translation memory (TM) system and the statistical machine translation (SMT) system com-

plement each other in those matched sub-segments and unmatched sub-segments (Wang et al., 2013), 

combining them can improve the output quality significantly, especially when high-similarity fuzzy 

matches are available. Therefore, combining TM and SMT is drawing more and more attention in re-

cent years (He et al., 2010a; 2010b; 2011; Koehn and Senellart, 2010; Zhechev and van Genabith, 

2010; Ma et al., 2011; Dara et al., 2013; Wang et al., 2013). 

Those previous works on combining TM and SMT can be classified into four categories: (1) select-

ing the better translation sentence from TM and SMT (He et al., 2010a; 2010b; Dara et al., 2013); (2) 

incorporating TM matched sub-segments into SMT in a pipelined manner (Koehn and Senellart, 2010; 

He et al., 2011; Ma et al., 2011); (3) only enhancing the SMT phrase table with new TM phrase-pairs 

(Biçici and Dymetman, 2008; Simard and Isabelle, 2009); and (4) incorporating the associated TM 

information with each source phrase to guide the SMT decoding (Wang et al., 2013). 

However, all previous works mentioned above only focus on the case in which the TM database and 

the SMT training set share the same data-set. Nonetheless, in real applications, the TM database will 

deviate from the SMT training set when time goes by, because the TM database will be dynamically 

enlarged when more translations are generated by the human translator. Therefore, this paper will con-

centrate on a more realistic case, in which the TM database and the SMT training set are different and 

even from different domains. 

When the TM database and the SMT training set share the same data-set, the integrated model 

(Wang et al., 2013) can avoid the drawbacks of the pipeline approaches and outperforms the other ap-

proaches significantly. However, this integrated model only refers to the TM information but not 

adopts the matched TM phrase-pairs as candidates during decoding. Therefore, many TM phrase-pairs 

cannot be covered by the SMT phrase table when the TM database and the SMT training set are dif-
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ferent. It is thus impossible to generate those unseen TM target phrases. This problem would even get 

worse when the TM database and the SMT training set are from different domains. 

To make the integrated model meet the real application, we dynamically merge the matched TM 

phrase-pairs into the SMT phrase table. In addition, an improved integrated model is proposed to dis-

tinguish the original SMT phrase-pairs and the newly-added ones extracted from TM. Furthermore, a 

simple but effective TM adaptation method is adopted to favor the consistent translation in cross-

domain test. To our best knowledge, this is the first unified framework for integrating TM into SMT 

during decoding when the TM database and the SMT training set are different (even from different 

domains). 

On the TM database which consists of Chinese–English computer technical documents, our experi-

ments have shown that merging the matched TM phrase-pairs achieves significant improvement when 

the fuzzy match score is above 0.5. Besides, the proposed approaches are significantly better than ei-

ther the SMT or the TM systems for both the in-domain and the cross-domain tests when the fuzzy 

match score is above 0.4. Furthermore, the proposed approaches also outperform previous integration 

works significantly in all test conditions. 

2 Integrated Model 

Wang et al. (2013) incorporated the TM information into the phrase-based SMT, and re-defined the 

translation problem as: 

 ̂          ( |                         )  

Where   denotes the given source sentence,   is a corresponding target translation, and  ̂ is the final 

result; [                       ]  is the associated information of the best TM sentence-pairs; 

     and      are the corresponding TM source and target sentences, respectively;      denotes its 

corresponding fuzzy match score (from 0 to 1);     is the monolingual alignment information between 

  and     ; and      denotes the bilingual word alignment information between      and     . 
With the TM information, this problem can be simplified to: 

  ̂        { (  ̅
 | ̅ ( )

 ( )
)  ∏        ̅ ( )  (  |    ) 

 
   }  (1) 

Where  ̅ ( ) and   ̅ denote the k-th associated source and target phrases, respectively;     ̅ ( ) and 

     ̅( ) are the corresponding TM source and target phrases associated with the given source phrase 

 ̅ ( ) (total K phrases without insertion).    is the corresponding TM target phrase matching status for 

the current target candidate   ̅, which reflects the quality of the given candidate;    is the linking sta-

tus vector of  ̅ ( ) (the aligned source phrase, within  ̅ ( )
 ( )  of   ̅), which indicates the matching and 

linking status in the source side (and is closely related to the matching status of the target side).      

is uniformly divided into ten fuzzy match intervals and the index   specifies the corresponding interval. 

In Equation (1), the first factor is just the typical phrase-based SMT model, and the second factor 

 (  |    ) is the information derived from the TM sentence pair. Afterwards, the factor  (  |    ) 
was further derived with TM matching status as follows: 

  (  |    )  {

 (    |                          )

  (    |                     )

  (    |                )
} (2) 

Where the first factor reflects the TM content matching status, the second factor is the relationship 

between various TM target phrases, and the third factor is the reordering information implied by TM. 

Equation (2) is adopted to guide the SMT decoding, and is denoted as the integrated Model-III in 

(Wang et al., 2013) (also called Model-III in this paper thereafter). 

For space limitation, only those features which are also adopted in our additional introduced proba-

bility factor (to be specified later) will be briefly introduced here: 

Target Phrase Content Matching Status (TCM): It indicates the content matching status between   ̅ 

and      ̅( ) , and reflects the quality of   ̅ . It is a member of {Same, High, Low, NA (Not-

Applicable)}. 
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Source Phrase Content Matching Status (SCM): It indicates the content matching status between 

 ̅ ( )  and     ̅ ( ) , and affects the matching status of   ̅  and      ̅( )  greatly. It is a member of 

{Same, High, Low, NA}. 

Number of Linking Neighbors (NLN): Usually, the context of a source phrase would affect its target 

translation. The more similar the context is, the more likely that the translation is the same. NLN is 

adopted to measure the context similarity. 

3 Proposed Approaches 

3.1 Merging the TM Phrase-Pairs 

Since all TM phrase-pairs are only referred while re-scoring the SMT candidates in Model-III, they are 

not regarded as candidates during decoding. When the TM database and the SMT training set are the 

same, this restriction is reasonable because the SMT phrase table can cover all the continuous TM 

phrase pairs within the phrase length limit. However, this would not be true when the TM database 

and the SMT training set are different. Therefore, the SMT phrase table should be further enhanced 

with those matched new TM phrase pairs in this case.  

According to their relations with the SMT phrase table, TM phrase pairs can be classified into three 

different categories: (1) the whole TM phrase-pair can be found in the original SMT phrase table; (2) 

only TM source phrase exists in the original SMT phrase table, but its corresponding target phrase 

does not; (3) even TM source phrase cannot be found in the original SMT phrase table. Since the first 

category has been covered by the original SMT phrase table, only the phrase-pairs from the second 

and the third categories should be added into the SMT phrase table dynamically for each input sen-

tence. To distinguish those newly added phrase-pairs from the original SMT phrase-pairs, we use eight 

additional feature weights    for the translation probability (lexical and phrase transfer in both direc-

tions) and two more feature weights for the phrase penalty (details will be specified later in Section 4). 

The above approach is inspired by the work of (Biçici and Dymetman, 2008). However, there are 

three differences between our approach and theirs. Firstly, we add all those matched TM phrase-pairs 

(include all associated sub-phrase pairs), while Biçici and Dymetman (2008) only added the longest 

matched one; Secondly, we add all the possible TM target phrase-pairs for a given TM source phrase 

while they extracted only one TM target phrase regardless of the existence of multiple TM target can-

didates; Lastly, we use different feature weights to distinguish those newly added TM phrase-pairs 

from the original SMT phrase-pairs, while they treated them equally. 

3.2 Distinguishing the TM Phrase-Pairs 

As mentioned in Section 3.1, we need to merge those TM matched phrase pairs into the SMT phrase 

table when the TM database and the SMT training set are different. However, the original integrated 

Model-III does not distinguish the newly added TM phrase-pairs from those original SMT phrase-

pairs in  (  |    ). Therefore, we introduce two new features Source Phrase Origin (SPO) and 

Target Phrase Origin (TPO), which are a member of {Original, Newly-Added}, to the original Mod-

el-III in (Wang et al., 2013) to favor the newly added TM phrase-pairs, and re-derive  (  |    ) as 

follows (assume that TPO is only dependent on SPO, NLN and  ): 

 

 (  |    ) 

  ([               ] |[                       ]   ) 

 

{
 

 
 (    |                          )

  (    |                     )

  (    |                )

  (    |           ) }
 

 
 

(2) 

The additional factor  (    |           ) in the above equation is added to handle those newly 

added TM phrase-pairs. This would be the proposed Distinguishing Model. For the phrases from the 

original SMT phrase table, both the SPO and TPO features would be “Original”; for the phrases from 

the second category mentioned in Section 3.1, the SPO would be “Original” but the TPO would be 

“Newly-Added”; for the phrases from the third category, both the SPO and TPO features would be 

“Newly-Added”. 
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3.3 TM Adaptation 

In real applications, the TM database is usually not big enough to train an SMT system when it is ap-

plied to a special technical domain other than the news domain. Besides, many professional translators 

do not want to expose the whole TM database to the SMT system providers (Cancedda, 2012). In this 

situation, we will be forced to first train an SMT model on an out domain (usually the news domain) 

which possesses a lot of training data, and then fix the obtained phrase-based SMT model. Afterwards, 

we incorporate it on line with an additional TM database which is from another in domain. 

To simulate the above scenario, we will thus train our integrated model on the out domain. However, 

we have a domain-mismatch problem for this cross-domain test. Generally, in the technical domain, 

which is suitable for TM application, the translations (especially for technical terms) are much more 

consistent than that in the news domain. That is, the same source phrase in various places tends to 

have exactly the same translation in technical domains. Therefore, when we use Distinguishing Model 

to perform forced decoding, the obtained results would possess different statistics among the in-

domain development set and the out-domain training set. For example, at interval [0.9, 1.0), when 

SCM is “Same”, 94.6% of TCM are “Same” in the development set (in), while this ratio is only 65.1%  

in the training set (out). Therefore, the factor  (    |                          ) from the 

test set will possess a different probability distribution in comparison with that from the training set. 

However, the development set is not big enough (only a few hundreds sentence-pairs at each interval) 

to re-train all TM factors of the proposed model. Therefore, we simply add the following h1 feature to 

reflect the tendency of having high translation consistency in the development set: 

  ( ̅  ̅  ) {
                              

                                                         
 

Where  ̅ and  ̅ denote the source phrase, the target candidate, respectively. 

Furthermore, various source synonyms might generate the same translation (Zhu et al., 2013). 

Therefore, even SCM≠Same, we still favor the SMT phrase-pair candidate which exactly matches TM 

target phrase. For example, if source words are synonyms such as “需要” (want) and “要” (want), “如

果” (if) and “若” (if), “立即” (at once) and “马上” (at once), the target translations would be the same. 

Therefore, the issue of having high translation consistency in the technical domain is also applied. We 

thus further add the following h2 feature to reflect the tendency of having high translation consistency 

in this case (“High” and “Low” are grouped into “Other” for the SCM): 

  ( ̅  ̅  ) {
                               

                                                          
 

Afterwards, the associated feature weights are tuned on the development set. 

4 Experiments 

4.1 Experimental Setup 

We use the same TM data-set adopted by Wang et al. (2013), which is a Chinese–English TM data-

base consisting of computer technical documents. It includes about 267k sentence pairs. All the exper-

iments are conducted around this TM data-set. To compare the performances under different condi-

tions, the same development set and the test set will be shared by both in-domain and cross-domain 

tests. Since the associated SMT training-set and TM database will vary under different experimental 

configurations, they will be specified later in each sub-section. 

In this work, the translation memory system (denoted as TM) and the phrase-based machine transla-

tion system (denoted as SMT) are adopted as our two baseline systems. Following (Wang et al., 2013), 

for TM, the word-based fuzzy match score is adopted as the similarity measure; also, for the phrase-

based SMT system, the same Moses toolkit (Koehn et al., 2007) and the same set of following features 

are adopted: the phrase translation model, the language model, the distance-based reordering model, 

the lexicalized reordering model and the word penalty. The system configurations are as follows: GI-

ZA++ (Och and Ney, 2003) is used to obtain the bidirectional word alignments. Afterwards, “intersec-

tion” refinement (Koehn et al., 2003) is adopted to extract phrase-pairs. We use SRI Language Model 
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toolkit (Stolcke, 2002) to train a 5-gram model with modified Kneser-Ney smoothing (Kneser and Ney, 

1995; Chen and Goodman, 1998) on the target-side (English) training corpus. All the feature weights 

and the weight for each probability factor are tuned on the development set with minimum-error-rate 

training (MERT) (Och, 2003). The maximum phrase length is set to 7 in our experiments. 

To compare our proposed models with those state-of-the-art methods, we re-implement two XML-

Markup approaches (Koehn and Senellart, 2010; and the upper bound version of (Ma et al, 2011)) and 

the Model-III (Wang et al., 2013) as three baseline systems, and denote them as Koehn-10, Ma-11-U 

and Model-III, respectively. Similar to (Wang et al., 2013), we only re-implement the XML-Markup 

method used in (Ma et al, 2011), but not their discriminative learning method. 

Following (Wang et al., 2013), we also train the TCM, LTC and CPM factors in the SMT training 

set with cross-fold translation. Since the TPO factor (conditioning on NLN and Distinguishing Model) 

is based on Model-III, we first use Model-III to generate the desired results on the development set via 

forced decoding, and then generate the training samples of TPO factor for Distinguishing Model.  

In this work, the translation performance is measured with case-insensitive BLEU-4 score (Papineni 

et al., 2002) and TER score (Snover et al., 2006). Statistical significance tests are conducted with re-

sampling (1,000 times) approach (Koehn, 2004) in 95% confidence level. 

4.2 In-Domain Translation Results 

In the in-domain test, the original TM dataset is first randomly divided into two parts. The first part is 

then adopted as the new TM database, while the second part is adopted as the SMT training set. The 

detailed corpus statistics is shown in Table 1. Since the TM database is different from that adopted in 

(Wang et al., 2013), the statistics shown in Table 2 at each interval is also different from theirs.  

All matched TM phrase-pairs are extracted according to the word alignment generated from the 

phrase-based SMT system. Since there are not enough samples to estimate the translation probabilities 

for those newly added TM phrase-pairs, we use the following method to assign the translation proba-

bilities. For those TM phrase-pairs that only their source phrases exist in the original SMT phrase table 

(the second category mentioned in Section 3.1), as their source phrases have already existed in the 

SMT phrase table, there is at least one associated target phrase in the original SMT phrase table. For 

each new TM phrase-pair, we thus directly assign the maximum probability among its associated orig-

inal target phrases to it. For those TM phrase-pairs that even their source phrase cannot be found in the 

original SMT phrase table (the third category), as there is no corresponding phrase-pair in the original 

SMT phrase table, we will simply assign probability “1.0” (this value is not important as its associated 

weight will be tuned later) as their four translation probabilities. To distinguish those newly added 

phrase-pairs from the original SMT phrase-pairs, we use eight additional feature weights for the trans-

lation probability and two more feature weights for the phrase penalty. 

To evaluate the effectiveness of adding TM phrase-pairs, we compare the cases of whether merging 

TM phrase-pairs or not for both SMT and Model-III. Table 3 and Table 4 give the translation results in 

BLEU and TER, respectively. “SMT” and “Model-III” denote that we do not merge the TM phrase-

pairs into the SMT phrase table during decoding. That is, they only use the original SMT phrase table. 

  #Sentences #Chn. Words #Chn. VOC. #Eng. Words #Eng. VOC. 

New TM Database 130,953 1,808,992 30,164 1,811,413 30,807 

SMT Training Set 130,953 1,814,524 29,792 1,815,615 30,516 

Table 1: Corpus Statistics for In-Domain Tests 

Intervals 
[0.9, 

1.0) 

[0.8, 

0.9) 

[0.7, 

0.8) 

[0.6, 

0.7) 

[0.5, 

0.6) 

[0.4, 

0.5) 

[0.3, 

0.4) 

(0.0, 

0.3) 
(0.0, 

1.0) 

#Sentences 147 255 244 355 488 514 419 154 2,576 

#Words 2,431 3,438 3,299 4,674 6,125 7,525 7,082 4,074 38,648 

W/S 16.5 13.5 13.5 13.2 12.6 14.6 16.9 26.5 15.0 

Table 2: Corpus Statistics for In-Domain Test-Set (W/S: the average #words per sentence) 
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“SMT
+
” and “Model-III

+
” mean that we merge the TM phrase-pairs into the SMT phrase table dynam-

ically. In these tables, “+” indicates that those newly added TM phrase-pairs significantly improve the 

translation results (“SMT” vs. “SMT
+
”, “Model-III” vs. “Model-III

+
”, and “Model-III” vs. “Distin-

guishing”). 

It can be seen that adding TM phrase-pairs significantly improve the translation results when the 

fuzzy match score is above 0.5 (comparing SMT with SMT
+
, and Model-III with Model-III

+
). For ex-

ample, at interval [0.9, 1.0), those added TM phrase-pairs significantly improve the SMT system from 

63.65 to 73.55, and Model-III from 80.69 to 86.40. However, if Model-III
+ 

is compared with Model-III, 

the improvements from merging the TM phrase-pairs get less when the fuzzy match score decreases, 

because the matched TM parts are fewer at low fuzzy match intervals. 

Also, with the same original SMT phrase table, Model-III exceeds the SMT system at each interval.  

For example, at interval [0.9, 1.0), the TM information significantly improve the translation result 

from 63.65 to 80.69. It thus shows that the TM information is very useful. However, it is still worse 

than the TM in TER (13.32 vs. 10.42). On the other hand, although Model-III has greatly exceeded the 

SMT at each interval, Model-III
+
 still significantly outperforms Model-III at most intervals. Therefore, 

the benefit of utilizing TM information and the benefit of adding TM phrase-pairs are not covered by 

each other and can be jointly enjoyed. Take the interval [0.9, 1.0) as an example, the TM information 

first improve the translation results from 63.65 (SMT) to 80.69 (Model-III), and then the added TM 

phrase-pairs further boosts it to 86.40 (Model-III
+
). 

Besides, Table 3 and Table 4 also present the translation results of our other two baselines (Koehn-

10 and Ma-11-U), and the proposed Distinguishing Model. Scores marked with  “*”  indicate  that  

they are significantly better (p < 0.05) than both the TM and the SMT+ baselines, and those marked 

with “#” are significantly better (p < 0.05) than Koehn-10. Scores marked with “$” are significantly 

better than Model-III
+
. The bold entries are the best result at each interval. 

Intervals TM SMT SMT
+
 Model-III Model-III

+
 Distinguishing Koehn-10 Ma-11-U 

[0.9, 1.0) 79.89 63.65  73.55 + 80.69  86.40 +*# 86.69 +*# 82.21 67.58 

[0.8, 0.9) 72.65 60.75  74.04 + 78.95 * 83.35 +*# 83.44 +*# 79.50 * 67.03 

[0.7, 0.8) 59.59 60.57  65.52 + 68.55 * 71.37 +*# 72.06 +*# 67.52 62.60 

[0.6, 0.7) 41.57 53.38  56.14 + 55.61 # 57.75 +*# 58.73 +*#$ 51.83 56.74 

[0.5, 0.6) 25.17 45.60  46.95 + 47.40 # 48.39 +*# 48.27 *# 39.08 47.94 

[0.4, 0.5) 14.62 41.81  42.03  42.60 # 42.30 # 43.04 *#$ 31.60 42.93 

[0.3, 0.4) 7.50 35.95  35.49  36.10 # 35.31 # 35.34 # 25.25 36.58 

(0.0, 0.3) 4.94 32.64  33.22  33.45 # 33.23 # 33.23 # 23.70 33.10 

(0.0, 1.0) 31.11 46.68  49.41 + 51.00 *# 52.26 +*# 52.56 +*#$ 44.28 48.91 

Table 3: In-Domain Translation Results (BLEU). Scores marked with “+” indicates that those newly 

added TM phrase-pairs significantly (p < 0.05) improve the translation results (“SMT” vs. “SMT
+
”, 

“Model-III” vs. “Model-III
+
”, and “Model-III” vs. “Distinguishing”). Scores marked with “*” are sig-

nificantly better (p < 0.05) than both TM and SMT
+
 systems, and those marked with “#” are signifi-

cantly better (p < 0.05) than Koehn-10. Scores marked with “$” are significantly better  (p < 0.05) than 

Model-III
+
 (“Model-III

+
” vs. “Distinguishing”) 

Intervals TM SMT SMT
+
 Model-III Model-III

+
 Distinguishing Koehn-10 Ma-11-U 

[0.9, 1.0) 10.42  27.14  17.64 + 13.32  8.76 +*# 8.22 +*# 12.95 23.94 

[0.8, 0.9) 16.07  28.73  17.66 + 14.69 * 10.46 +*# 10.49 +*# 14.72 * 23.83 

[0.7, 0.8) 28.68  29.47  24.99 + 22.01 * 20.15 +*# 19.33 +*# 23.96 27.43 

[0.6, 0.7) 48.59  33.76  31.53 + 31.57 # 29.77 
+
*# 28.95 +*#$ 36.89 30.98 

[0.5, 0.6) 63.13  40.57  39.00 + 38.79 # 38.00 *# 38.51 # 47.08 38.44 

[0.4, 0.5) 74.02  44.09  43.66  42.84 *# 43.43 # 42.88 *#$ 55.35 42.31 

[0.3, 0.4) 81.09  50.00  50.63  50.04 # 50.70 # 50.90 # 63.28 48.83 

(0.0, 0.3) 84.34  55.58  56.66  54.68 # 55.96 *# 55.96 *# 68.00 54.51 

(0.0, 1.0) 58.58  40.88  38.55 + 37.26 *# 36.47 +*# 36.28 +*# 45.63 38.73 

Table 4: In-Domain Translation Results (TER). The marks are the same as that in Table 3. 
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In comparison with the TM and the SMT
+
 systems, Model-III

+
 is significantly better than both of 

them in either BLEU or TER scores when the fuzzy match score is above 0.5; also, Distinguishing 

Model outperforms both the TM and the SMT
+
 systems in either BLEU or TER scores when the fuzzy 

match score is above 0.4. Furthermore, the improvements from both Model-III
+
 and Distinguishing 

Model get less when the fuzzy match score decreases, as the TM information is less reliable at low 

fuzzy match intervals. 

Across all intervals (the last row in the table), Distinguishing Model not only achieves the best 

BLEU score (52.56), but also gets the best TER score (36.28). At those intervals when the fuzzy 

match score is above 0.4, Model-III
+
 and Distinguishing Model are the best two in either BLEU or 

TER scores. Besides, Distinguishing Model slightly exceeds Model-III
+
 at most intervals. However, 

both Model-III
+
 and Distinguishing Model achieve significant improvements over the TM and the 

SMT
+
. 

Compared with previous works, it can be seen that both Model-III
+
 and Distinguishing Model sig-

nificantly outperform Koehn-10 in either BLEU or TER scores at all intervals, and are significantly 

better than Model-III when the fuzzy match score is above 0.6. Furthermore, the proposed approaches 

(both Model-III
+
 and Distinguishing Model) achieve a much better TER score than the TM system 

does at the interval [0.9, 1.0); while Model-III and Koehn-10 are worse than the TM system at this 

interval. Also, both Model-III
+
 and Distinguishing Model exceed Ma-11-U at most intervals. There-

fore, it can be concluded that the proposed models outperform previous approaches significantly in 

this scenario. 

To further verify the proposed approaches in this case, we swap the TM database and the SMT 

training set and re-run the experiments. Similar and significant improvements are still observed: both 

Model-III
+
 and the Distinguishing Model achieve significant improvements over the TM and the 

SMT
+
. All those results have shown that the proposed approaches are robust. 

In real environments, the SMT training set and the TM database could be the same before transla-

tion projects starts. However, the TM database will gradually deviate from the SMT training set while 

the translation task progresses.  Nonetheless, our experiments have shown that the proposed Distin-

guishing Model is effective even when the TM database and the SMT training set are totally different 

(which would be the extreme case for real applications). Therefore, it can be concluded that this pro-

posed approach is robust. 

4.3 Cross-Domain Translation Results 

To evaluate the cross domain performance, we adopt the news corpora about computer and science 

from CWMT09 (Liu and Zhao, 2009) as the SMT training set, and adopt the whole TM dataset as the 

TM database. The SMT training set includes about 404k bilingual sentence-pairs (which includes 

about 9M Chinese words and 8.7M English words). Corpus statistics is shown in Table 5. Since the 

TM database and the test set (also the development set) are the same as that in (Wang et al., 2013), the 

statistics at each interval is the same as theirs but different from Table 2. 

The training procedure is the same as that mentioned in the last sub-section. Table 6 and Table 7 

present the translation results of TM, SMT, SMT
+
, two baselines (Koehn-10 and Model-III), and three 

proposed approaches (Model-III
+
, Distinguishing and Adaptation). The Adaptation approach means 

that we add two consistent related features based on Distinguishing Model (Section 3.3). All the for-

mats are the same as that adopted in Table 3 and Table 4. Besides, scores marked by “&” are signifi-

cantly better than Distinguishing Model. 

Comparing the TM with the SMT, the performance of in-domain TM significantly exceeds that of 

out-domain SMT. Since the fuzzy match intervals are divided according to the TM database, the trans-

lation result of the SMT system at interval [0.8, 0.9) even slightly outperforms that at interval [0.9, 

1.0). Besides, adding TM phrase-pairs significantly improves the translation results when the fuzzy 

match score is above 0.5 (SMT vs. SMT
+
, and Model-III vs. Model-III

+
). Furthermore, the benefit of 

utilizing TM information and the benefit of adding TM phrase-pairs are not covered by each other, and 

can be jointly enjoyed. Furthermore, compared with TM, SMT, SMT
+
 and Model-III, both Model-III

+
 

and Distinguishing Model achieve better translation results when the fuzzy match score is above 0.4. 

All observed trends are similar to that in the last sub-section. 
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  #Sentences #Chn. Words #Chn. VOC. #Eng. Words #Eng. VOC. 

TM Database 261,906 3,623,516 43,112 3,627,028 44,221 

SMT Training Set 404,172 9,007,614 102,073 8,737,801 107,883 

Table 5: Corpus Statistics for Cross-Domain Tests 

Intervals TM SMT SMT
+
 Model-III Model-III

+
 Distinguishing Adaptation Koehn-10 

[0.9, 1.0) 81.31 30.87 64.74 + 64.79 82.28 + 83.19 +*$ 84.89 *#$& 81.52 

[0.8, 0.9) 73.25 31.94 60.13 + 61.91 74.21 + 74.72 +* 79.78 *#$& 76.47 * 

[0.7, 0.8) 63.62 30.63 51.64 + 51.44 62.94 + 63.32 + 67.74 *$& 67.12 *$& 

[0.6, 0.7) 43.64 28.95 39.94 + 38.28 46.28 +* 46.46 +* 49.49 *$& 48.47 * 

[0.5, 0.6) 27.37 27.61 32.49 + 28.85 34.50 +* 34.87 +* 37.12 *#$& 35.25 * 

[0.4, 0.5) 15.43 27.16 27.35 27.30 # 27.47 # 27.82 # 28.80 *#$& 25.10 

[0.3, 0.4) 8.24 23.85 22.66 23.81 # 22.41 # 22.41 # 22.95 # 20.72 

(0.0, 0.3) 4.13 24.64 24.25 24.24 # 23.65 # 24.12 # 24.31 # 18.79 

(0.0, 1.0) 40.17 28.30 40.59 + 40.47 47.37 +* 47.70 +*#$ 49.79 *#$& 47.09 * 

Table 6: Cross-Domain Translation Results (BLEU). The marks are the same as that in Table 3. Be-

sides, scores marked by “$” are significantly better  (p < 0.05) than Model-III
+
, and those marked by 

“&” are significantly better than “Distinguishing” (“Adaptation” vs. “Distinguishing”). 

Intervals TM SMT SMT
+
 Model-III Model-III

+
 Distinguishing Adaptation Koehn-10 

[0.9, 1.0) 9.79 54.54 27.07 + 27.09 11.81 + 11.01 + 9.58 #$& 13.51 

[0.8, 0.9) 16.21 52.86 29.33 + 28.04 17.13 + 17.47 + 13.80 *#$& 17.29 

[0.7, 0.8) 27.79 52.42 36.48 + 35.56 27.07 + 26.40 +$ 23.04 *$& 24.31 *$& 

[0.6, 0.7) 46.40 54.74 47.39 + 48.06 41.13 +* 40.36 +*$ 37.45 *#$& 40.16 * 

[0.5, 0.6) 62.59 57.18 53.08 + 56.78 51.77 +* 51.60 +* 48.08 *#$& 51.57 

[0.4, 0.5) 73.93 57.19 56.57 57.19 # 56.82 # 56.53 # 54.42 *#$& 61.32 

[0.3, 0.4) 79.86 60.62 61.16 61.35 # 61.31 # 61.31 # 60.33 #$& 68.82 

(0.0, 0.3) 85.31 63.62 62.81 62.22 # 63.04 # 62.07 # 61.87 # 74.85 

(0.0, 1.0) 50.51 56.42 46.89 + 47.38 # 41.63 +*# 41.27 +*#$ 38.87 *#$& 43.95 * 

Table 7: Cross-Domain Translation Results (TER). The marks are the same as that in Table 6. 

However, both Model-III
+
 and Distinguishing Model are worse than Koehn-10 at some high fuzzy 

match intervals. The reason is that the TM factors are trained on the news domain but the test set is 

from computer technical domain. Therefore, it is not strange that the Adaptation approach achieves the 

best translation results at all intervals in either BLEU or TER when the fuzzy match score is above 0.4. 

At most intervals, the Adaptation approach significantly outperforms Koehn-10 in either BLEU or 

TER, especially for the high fuzzy match intervals such as [0.9, 1.0) and [0.8, 0.9). Furthermore, the 

Adaptation approach achieves better TER than the TM system and Koehn-10 at intervals [0.9, 1.0) and 

[0.8, 0.9). All obtained results have shown that the Adaptation approach is effective and robust for 

cross-domain test. Moreover, it can be seen that the h1 feature (mentioned in Section 3.3) is more ef-

fective than the h2 feature. 

5 Related Work 

According to the way of combination, those previous works can be classified into four categories (as 

specified in Section 1). The first category uses a classifier (or a re-ranker) to judge whether TM or 

SMT gives a better translation sentence, and then delivers the better one to the post-editor (He et al., 

2010a; He et al., 2010b; Dara et al., 2013). Since the outputs of SMT and TM are not merged but only 

re-ranked, the possible improvement resulted from those approaches is quite limited. 

The second category incorporates TM matched parts into the SMT input sentence in a pipelined 

manner (Koehn and Senellart, 2010; Zhechev and van Genabith, 2010; He et al., 2011; Ma et al., 

2011). These approaches usually translate the sentence in two stages: (1) first determine whether the 

405



extracted TM sentence pair should be adopted or not, and then merge the relevant translations of 

matched parts into the input sentence; (2) then force the SMT system to only translate those un-

matched parts at decoding. There are three drawbacks for this kind of pipeline approaches (Wang et al., 

2013). Firstly, whether those matched parts should be adopted or not is determined at the sentence lev-

el. Secondly, they select only one TM target phrase before decoding. Thirdly, they do not utilize the 

SMT probabilistic information for the matched parts. 

The third category mainly adds the longest matched TM phrase pairs into the SMT phrase table 

(Biçici and Dymetman, 2008; Simard and Isabelle, 2009), and associates them with a fixed large prob-

ability value to favor the TM target phrase. However, they only add one aligned target phrase for each 

matched source phrase and did not distinguish the original and the newly-added phrase-pairs. 

The last category incorporates the associated TM information of each source phrase into the SMT 

during decoding (Wang et al., 2013). This category can avoid the drawbacks of the pipeline approach-

es, and thus achieves superior results when the TM database and the SMT training set are the same. 

However, they only refer to the TM information and do not regard the TM phrase-pairs as candidates 

during decoding. Therefore, the superiority of this approach disappears when the TM database and the 

SMT training set are different, because many TM phrase-pairs cannot be found in the original SMT 

phrase table in this case. 

Our approach combines the strength of both the third and the last categories. During decoding, the 

associated TM information is referred to re-score the SMT candidates. At the same time, all matched 

TM phrase-pairs are dynamically merged into the phrase table. Moreover, this is the first unified 

framework for integrating TM into SMT at decoding when the TM database and the SMT training set 

are different. Although some previous works of the second and third categories can be also applied 

when the TM database and the SMT training set are different, they did not explicitly focus on and test 

this case.  

Last, since the example-based machine translation (EBMT, [Nagao, 1984]) is similar to that of us-

ing TM, some approaches (Watanabe and Sumita, 2003; Smith and Clark, 2009; Dandapat et al., 2011; 

2012; Phillips, 2011) also combined EBMT with SMT. It would be interesting to compare our ap-

proaches with theirs in the future. 

6 Conclusion 

Combining TM and SMT can greatly improve the translation performance and reduce human post-

editing effort. In comparison with those previous approaches, our work makes the following contribu-

tions: 

(1) Dynamically merge the matched TM phrase-pairs into the SMT phrase table to meet the real ap-

plication;  

(2) Propose an improved integrated model to distinguish the original SMT phrase-pairs from the 

newly-added ones extracted from TM;  

(3) Adopt a simple but effective TM adaptation method to favor the consistent translation in cross-

domain test. 

This is the first work adopting a unified framework to integrate the TM information into the SMT 

model during decoding when the TM database and the SMT training set are different. On the TM da-

tabase which consists of Chinese–English computer technical documents, our experiments have shown 

that merging the TM phrase-pairs achieves significant improvements when the fuzzy match score is 

above 0.5. Furthermore, the proposed approaches are significantly better than either the SMT or the 

TM systems for both the in-domain and the cross-domain tests. Last, the proposed approaches outper-

form previous works significantly in all test conditions. 
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