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ABSTRACT
We propose a simple cross-language parser adaptation strategy for discriminative parsers and
apply it to easy-first transition-based dependency parsing (Goldberg and Elhadad, 2010). We
evaluate our parsers on the Indo-European corpora in the CoNLL-X and CoNLL 2007 shared
tasks. Using the remaining languages as source data we average under-fitted weights learned
from each source language and apply the resulting linear classifier to the target language.
Of course some source languages and some sentences in these languages are more relevant
than others for the target language in question. We therefore explore improvements of our
cross-language adaptation model involving source language and instance weighting, as well as
unsupervised model selection. Overall our cross-language adaptation strategies provide better
results than previous strategies for direct transfer, with near-linear time parsing and much
faster training times than other approaches.

KEYWORDS: cross-language dependency parsing, regularization, importance weighting, typo-
logical information.
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Figure 1: Bulgarian and German dependency structures, delexicalized

1 Introduction

High-quality syntactic parsing is important for advanced language technologies such as
question-answering, machine translation between distant languages, and sentiment analysis.
State-of-the-art parsers provide accurate syntactic analyses in languages for which annotated
resources known as treebanks exist, although significant and sometimes prohibitive perfor-
mance drops are observed when parsing text that differs in domain or genre from the avail-
able treebank(s). However, there are still many languages for which no treebanks exist, and
for which we therefore do not have parsers available.

Unsupervised parsing has seen considerable progress over the last ten years (Gelling et al.,
2012), but recently several authors have demonstrated that better results can be achieved
transferring linguistic knowledge from treebanks from other languages rather than induc-
ing this knowledge from unannotated text (Zeman and Resnik, 2008; Smith and Eisner,
2009; Spreyer and Kuhn, 2009; Søgaard, 2011; Cohen et al., 2011; McDonald et al., 2011;
Täckström et al., 2012; Naseem et al., 2012). Some of these authors have projected syntac-
tic structures across word aligned parallel text (Smith and Eisner, 2009; Spreyer and Kuhn,
2009; McDonald et al., 2011), while others have used a much simpler technique sometimes re-
ferred to as delexicalized transfer (Zeman and Resnik, 2008; Søgaard, 2011; Cohen et al., 2011;
McDonald et al., 2011; Täckström et al., 2012; Naseem et al., 2012). This work presents a new
approach to delexicalized transfer and explores possible improvements.

Sect. 2 covers related work on delexicalized transfer for cross-language parser adaptation. We
explore delexicalized transfer in the context of easy-first transition-based dependency pars-
ing (Goldberg and Elhadad, 2010), which is introduced in Sect. 3. Sect. 4 introduces our
implementation of delexicalized transfer which differs from other approaches by doing model
averaging of under-fitted models rather than concatenating data when learning from multiple
source languages. Sect. 4 also introduces the possible improvements of this model we explore
in our experiments. Sect. 5 and 6 present the experiments and results.

2 Cross-language adaptation with delexicalized transfer

Delexicalized transfer refers to a simple idea first introduced in Zeman and Resnik (2008).
In unsupervised parsing, you hope to learn that nouns tend to attach to verbs, determiners
tend to attach to nouns, adverbs to verbs, etc. Many of these tendencies are cross-linguistic
tendencies, a fact also exploited in unsupervised parsing by Naseem et al. (2010) and Søgaard
(2012). Since this knowledge is reflected in most treebanks, can’t we extract this knowledge
from a treebank in one language and apply the resulting model to another language for which
we do not have a treebank? There are certainly differences between distant languages in, for
example, how likely adjectives are to modify adverbs rather than nouns, but as mentioned in
McDonald et al. (2011) using multiple source languages may reduce such biases on average.

Zeman and Resnik (2008), in their seminal paper, considered a pair of closely related lan-
guages, namely Danish and Swedish. They removed the words from the source treebank and
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learned a parsing model from the distribution of parts of speech (POS) only. In order to parse
the target language they devised a mapping of the different POS tag sets into a common feature
representation.

Consider the two delexicalized dependency structures in Figure 1 to see how this makes sense.
The left structure is from the Bulgarian treebank, and the right one from the German. However,
the left structure contains many edges that also occur in the right structure, e.g. from root to
verb, from verb to noun, and from adposition to noun. A dependency parser can learn such
dependencies are likely in Bulgarian, but apply this knowledge when parsing German.

Independently of each other, three papers revisited the idea of delexicalized transfer in 2011.
Søgaard (2011) used the tag set mappings in Zeman and Resnik (2008), but also used instance
weighting to do a form of outlier detection. In a way similar to Jiang and Zhai (2007) he did
not make use of the actual weights, but simply used all labeled instances with weights greater
than some fixed threshold. McDonald et al. (2011) used the more recent tag set mappings by
Petrov et al. (2011), explored combinations of delexicalized transfer and structure projection
(Smith and Eisner, 2009; Spreyer and Kuhn, 2009) and were able to improve delexicalized
transfer averaging across several languages. They also were the first to explicitly introduce
the idea of using multiple source languages as a kind of regularization. Finally, Cohen et al.
(2011) used the delexicalized transfer models to initialize unsupervised parameter estimation
on unlabeled target data.

Naseem et al. (2012) subsequently explored a more complex transfer model where only hier-
archical information is transferred directly to reflect that languages have very different word
orders.

Täckström et al. (2012) augment delexicalized transfer with bilingual clusters, while
Durrett et al. (2012) use a bilingual dictionary to project lexical features. Täckström (2012)
used self-training to supply the bilingual word clusters with monolingual clusters, but evalu-
ated the idea on named entity recognition rather than cross-language parser adaptation.

3 Easy-first transition-based parsing with averaged perceptron

The parser we apply in this study is a non-directional easy-first transition-based dependency
parser (Goldberg and Elhadad, 2010). The parser consecutively applies one of two actions,
ATTACHLEFT(i) and ATTACHRIGHT(i), to a list of partial structures initialized as the words in the
sentence. Each action connects the heads of two neighboring structures, making one the head
of the other. The dependent partial structure is removed from the list. The parsing algorithm
is obviously projective.

The next action is chosen by a score function score(ACTION)(i) that assigns a weight to all pairs
of actions and locations. The scoring function ideally ranks possible actions from easy to hard.
The scoring function is learned from data using a variant of the averaged perceptron learning
algorithm (Freund and Schapire, 1999; Collins, 2002) similar to the one used in Shen et al.
(2007). While the ordering from easy to hard is not known in advance, the ordering is im-
plicitly learned by decreasing weights associated with invalid actions and increasing weights
associated with the currently highest scoring valid action.

The major advantage of using easy-first parsing is the efficient O (n log n) parsing algorithm, but
training is also a lot faster than with comparable dependency parsers (Goldberg and Elhadad,
2010); e.g. training an experiment for Spanish-Italian on a Macbook Pro takes less than a
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minute. The easy-first learning algorithm is used throughout our experiments, except that we
modify the update function when using easy-first with importance weighting.

4 Cross-language adaptation of easy-first parsing

The easy-first dependency parser (Goldberg and Elhadad, 2010) by default does 20 passes
over the data and returns an averaged weight vector as our parsing model. Since our training
data in cross-language adaptation is heavily biased, we do not want to over-fit our models
to source data and only do a single round over data for each source language. This hyper-
parameter is kept constant in all experiments. We use the feature model proposed for English
in Goldberg and Elhadad (2010) for all languages (see Discussion). There are no other hyper-
parameters to the parsing model. In our experiments we consider some possible extensions of
this simple model. The extensions are discussed in the following subsections:

4.1 Language-level weighted learning

Intuitively some languages are more relevant as source languages for some language than
others. While results in the literature show that good source languages may be geographi-
cally distant and unrelated to the target language (e.g. Arabic and Danish (Søgaard, 2011)),
genealogically related languages should in general be better source languages for each other.
This idea was first explored by Berg-Kirkpatrick and Klein (2010) who used genealogical rela-
tions to impose contraints on models in multi-lingual grammar inductions.

In the experiments below we use a language genealogy to take a weighted average of the
models obtained from our set of source languages. Each model is weighted by 4−d where d is
the distance between the source language and a node dominating the target language node in
a genealogical tree (see Figure 2). If two languages belong to the same subfamily such as the
Western Germanic languages Dutch and German, d = 1, but for Dutch to Greek, for example,
d = 3.

We also try using a typological database to weight languages by their typological properties.
The database lists basic typological properties of languages such as order of plural and noun,
or whether the language has anti-passive constructions, and we simply let the weight of each
target language be the inverse of the Hamming distance between the source language property
vector and its own property vector.

fw(LS) =
5

H(LS, LT )

The constant was chosen such that the number of weight vectors used in averaging was com-
parable to the experiments using linguistic genealogy to weight source languages.

Naseem et al. (2012) explore a similar idea (using the same typological database we do), but
(a) they only use a subset of features (without specifying how this subset was selected), and (b)
they use the typological features in a generative model rather than distances between property
vectors.

4.2 Unsupervised model selection

Our models for the source languages are comparable weight vectors, i.e. the ith weight encodes
the importance of the same feature across all models. So models with similar weights will lead
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to similar decisions. Like with data points in graph-based semi-supervised learning, we can
build a graph out of our models with edges representing similarity of models. We can then use
random walk algorithms to select diverse or homogeneous subsets of models.

In our experiments we explore the following idea: Using a random walk we compute the
probability of reaching a node in our graph of source language models. We then compute
the average of the three lower quartiles in order to optimize diversity and thereby regulariza-
tion in the final model. In principle we want to optimize diversity and individual accuracy
(Brown et al., 2005), but this method does unsupervised model selection not taking accuracy
into account. Combining this technique with the weighting techniques introduced here which
are intended to optimize for individual accuracy is theoretically an appealing option.

4.3 Sentence-level weighted learning

Some sentences in a source language may be more like the target language than others.
Søgaard (2011) introduces a very simple idea to reflect this intuition. He uses a language
model over POS sequences to remove outliers, discarding the 10% source language labeled
sentences with highest perplexity per word according to a target language model. We go
beyond Søgaard (2011) by learning from weighted data, where each weight estimates the rel-
evance of a labeled sentence by the perplexity by word of the corresponding POS sequence in
a target language model over its perplexity by word in a source language model.

In weighted perceptron learning (Cavallanti et al., 2006), we make the learning rate depen-
dent on the current instance, using the following update rule on xn:

wi+1←wi +βnα(yn − sign(wi · xn))xn (1)

where β1, . . . ,βn are importance weights.

Søgaard and Haulrich (2011) present an application of an importance weighted version of the
MIRA algorithm (Crammer and Singer, 2003) and apply it to dependency parsing. Huang et al.
(2007) present an instance-weighted learning algorithm for support vector machines. Under
the assumption that differences between source and target distributions are due to sample bias
only (which is clearly not the case here) we should weight a data point by its probability in the
target domain over its probability in the source domain (Shimodaira, 2000), but since it is not
possible to estimate densities in our case, we resort to a heuristic combining the insights from
Shimodaira (2000) and Søgaard (2011), weighting each sentence in every source language
treebank by:

fw(x) =

p
ppwS(x)p
ppwT (x)

where ppwD(·) is the perplexity per word given a language model trained on a corpus sampled
from domain D.
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Indo-Eur.

Germ. Hellenic Italic Slavic

North Germ. West Germ. Latin

Da, Sw Du, En Gr Ca, It, Bu, Cz,
Ge Po, Sp Sl

Figure 2: Language genealogy.

5 Experiments

Our parser is a modification of the publicly available implementation of the easy-first parser.1

In our main experiments, we used the English feature model as is with no modifications. This
is not entirely meaningful as the feature model refers to POS tags specific to the English Penn
Treebank (PTB) (see Discussion). We used the datasets from the CoNLL-X (Buchholz and Marsi,
2006) and CoNLL 2007 (Nivre et al., 2007) shared tasks with standard train-test splits, but
mapped all POS tags into Google’s universal tag set (Petrov et al., 2011). See the shared task
descriptions for dataset characteristics.

We used a publicly available language genealogy2 and a publicly available database of typo-
logical properties3 to obtain our weights. See Figure 2 for the linguistic genealogy. In the
typological table, we disregarded phonological properties (properties 1–20) when computing
Hamming distances between languages. We also report results obtained using voting. These
results are obtained using the reparsing technique first described in Sagae and Lavie (2006)
with our various weighted parsers as committee members.

6 Results

We note that our macro-average results are the best reported results for a fully delexicalized
model, i.e. without lexical projections or bilingual word clusters. That being said recent results
show that using cross-language projection or bilingual clustering to obtain lexical knowledge
is beneficial, and we will explore different ways of augmenting the models presented here with
such knowledge.

7 Discussion

We have tried to prevent over-fitting doing only a single pass over the data. While the aver-
aged perceptron is less prone to over-fitting than the original perceptron learning algorithm
(Rosenblatt, 1958), there is no guarantee that it does not over-fit the training data, and in
our case where there is a considerable bias in the training data, over-fitting is more likely to
happen. Averaging over several source languages provides implicit regularization.

Averaging has several advantages over just concatenating data. First of all we assign equal
weights to all source languages (unless taking a weighted average), which means our model
is not biased by the size of the linguistic resources used. More importantly, if we want to
deliberately under-fit our models, learning with concatenated data is risky, especially if we do
not shuffle the data.

Arguably our method to prevent over-fitting is crude, and we would like to explore more

1http://www.cs.bgu.ac.il/∼yoavg/software/easyfirst/
2http://andromeda.rutgers.edu
3http://wals.info
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source/target Bu Ca Cz Da Du Ge Gr It Po Sl Sp Sw AV AVM p-value
Bulgarian 68.5 55.7 45.0 44.1 50.4 49.2 47.8 55.7 67.0 35.8 51.7 61.1
Catalan 59.7 77.8 43.2 45.9 49.4 57.0 59.1 74.4 71.3 51.6 70.2 52.5
Czech 29.6 24.8 33.8 28.1 23.6 24.0 26.2 26.0 23.0 23.3 22.7 21.9
Danish 36.9 30.0 29.5 45.4 25.5 22.9 18.7 37.7 30.5 26.0 29.5 26.6
Dutch 59.6 59.4 43.4 46.6 71.2 57.6 63.1 59.5 67.4 44.1 53.1 57.4
German 54.2 51.7 41.7 40.8 43.7 81.2 53.4 55.5 55.0 41.3 49.3 57.9
Greek 56.5 67.6 45.8 42.3 60.5 52.3 70.6 66.9 67.9 55.2 58.0 57.5
Italian 61.6 79.5 41.1 47.0 49.6 55.1 61.9 77.0 71.6 52.2 67.5 51.7
Portuguese 49.5 59.7 34.5 25.8 49.0 37.9 50.6 59.3 58.1 34.1 50.6 39.7
Slovene 20.8 16.6 19.5 33.1 19.2 20.4 23.9 18.7 19.3 24.0 17.2 22.8
Spanish 46.0 74.8 30.5 42.1 41.3 46.6 42.6 64.1 67.2 42.1 72.9 46.9
Swedish 58.6 58.3 36.5 45.0 50.8 54.2 56.7 57.6 68.3 37.5 55.1 80.6

flat 62.1 68.9 45.5 46.0 54.0 58.0 63.4 67.4 76.5 44.7 64.4 60.7 59.2 61.2
gtree 62.1 67.0 46.9 45.8 54.3 57.7 63.4 69.4 75.5 47.4 66.0 61.6 59.8 61.7
typology 62.1 68.9 45.5 46.0 54.3 56.3 62.8 67.7 76.5 44.7 64.7 58.4 59.0 60.8
pr 62.6 69.3 46.1 45.8 53.2 57.4 63.2 68.0 76.0 46.4 65.3 60.1 59.4 61.1
vote (a) 62.7 69.3 45.8 46.3 54.0 57.7 63.4 68.8 76.4 45.8 65.6 61.2 60.5 62.6
weighted 64.6 68.5 46.9 48.6 57.2 56.3 65.0 67.2 77.6 44.6 62.9 62.4 60.1 62.1 ∼ 0.005
w-typ 64.6 68.5 46.9 48.6 58.6 55.7 66.2 68.3 77.6 44.6 62.8 61.4 60.3 62.4 < 0.001
w-gtree 64.2 69.1 46.7 48.3 57.2 56.3 65.0 68.3 76.9 46.1 63.8 63.1 60.4 62.4 < 0.001
vote (b) 64.2 68.9 46.9 48.6 57.3 57.4 65.3 69.0 77.3 45.7 63.6 62.6 60.6 62.6 < 0.001
MPH11(dir) - - - 48.9 55.8 56.7 60.1 64.1 74.0 - 64.2 65.3 61.2
MPH11(proj) - - - 49.5 65.7 56.6 65.1 65.0 75.6 - 64.5 68.0 63.8
TMU12(dir) - - - 36.7 52.8 48.9 - 64.6 66.8 - 60.2 55.4 55.1*
TMU12(clust) - - - 38.7 54.3 50.7 - 68.8 71.0 - 62.9 56.9 57.6*
NBO12(best) 66.8 71.8 44.6 - 55.9 53.7 67.4 65.6 73.5 - 62.1 61.5

Figure 3: Results, incl. language-level weighting (gtree and typology), unsupervised model
selection (pr), instance-weighted extensions (w–) and a comparison with recent work. AV is
macro-average, and AVM is macro-average on the 8 languages used in McDonald et al. (2011).
The voted systems (a) and (b) take non-weighted votes over the systems in the above rows.

advanced methods in the future.

Since we average over languages - which in a domain adaptation setting corresponds to distinct
source domains - our model is very similar to multi-source domain adaptation models that
use mixtures of experts (McClosky et al., 2010; Spinello and Arras, 2012). In future work we
would also like to explore the idea of using smoothness assumptions in the target domain
to select models based on source languages (Gao et al., 2008). Another option would be to
view multi-source language learning as multi-task learning and apply a multi-task perceptron
learning algorithm (Cavallanti et al., 2008) rather than just averaged perceptron learning.

On a more technical note, as already mentioned, readers familiar with the easy-first parser
may wonder what we did with the POS-tag specific features in the English feature model
distributed with the parser. We did not change anything in the feature model specification,
keeping features that refer to PTB-specific tags. Changing the PTB-specific tags to their Google
tag set translations yielded worse results on average with only small improvements for four
languages (Catalan, Italian, Slovene and Spanish). Instead of optimizing the feature model we
therefore chose to keep the original feature specification file as is for reproducibility.
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