
Proceedings of COLING 2012: Posters, pages 863–872,
COLING 2012, Mumbai, December 2012.

The Effect of Learner Corpus Size
in Grammatical Error Correction of ESL Writings

Tomoya Mizumoto1 Yuta Hayashibe1

Mamoru Komachi1 Masaaki Nagata2 Yu ji Matsumoto1

(1) Nara Institute of Science and Technology, Nara, Japan
(2) NTT Communication Science Laboratories, Kyoto, Japan

tomoya-m@is.naist.jp, yuta-h@is.naist.jp, komachi@is.naist.jp,

nagata.masaaki@lab.ntt.co.jp, matsu@is.naist.jp

ABSTRACT
English as a Second Language (ESL) learners’ writings contain various grammatical errors. Pre-
vious research on automatic error correction for ESL learners’ grammatical errors deals with re-
stricted types of learners’ errors. Some types of errors can be corrected by rules using heuristics,
while others are difficult to correct without statistical models using native corpora and/or learner
corpora. Since adding error annotation to learners’ text is time-consuming, it was not until recently
that large scale learner corpora became publicly available. However, little is known about the ef-
fect of learner corpus size in ESL grammatical error correction. Thus, in this paper, we investigate
the effect of learner corpus size on various types of grammatical errors, using an error correction
system based on phrase-based statistical machine translation (SMT) trained on a large scale error-
tagged learner corpus. We show that the phrase-based SMT approach is effective in correcting
frequent errors that can be identified by local context, and that it is difficult for phrase-based SMT
to correct errors that need long range contextual information.
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1 Introduction
English as a Second Language (ESL) learners’ writings contain various kinds of grammatical er-
rors. Recent growth in corpus annotation of learner English allows detailed analysis of grammatical
errors in learners’ writings. Konan-JIEM Learner Corpus (hereafter referred to as KJ Corpus)1 is
one such corpus composed of English essays written by Japanese college students. Table 1 shows
the distribution of errors found in KJ Corpus2. The most frequent error type is article errors, fol-
lowed by noun number and preposition errors. It is not surprising that frequent types of errors
account for the most errors, but it should be noted that there are many different types of errors in
learner corpus.

Thus far, a lot of studies have been made on automated error correction in regard to errors ESL
learners make. However, most previous studies of second language learning deal with one or
a few restricted types of learners’ errors. For example, there are studies on preposition errors
(Rozovskaya and Roth, 2011), verb selection errors (Liu et al., 2011), tense errors (Tajiri et al.,
2012), verb form errors (agreement and tense) (Lee and Seneff, 2008), preposition and article
errors (Dahlmeier and Ng, 2011) and spelling, article, preposition and word form (agreement and
tense) errors (Park and Levy, 2011). Recently, Swanson and Yamangil (2012) presented a detailed
analysis on correcting all types of errors in the Cambridge Learner Corpus, but their task is different
from the others in that their goal is to detect errors and select error types given both the original
and corrected text, which is not often available in practice.

Some types of errors like agreement errors can be corrected by simple rules using heuristics, while
others like preposition errors are difficult to correct without statistical model trained on native
corpora and/or learner corpora. It was not until recently that large scale learner corpora became
widely available for grammatical error correction. However, little is known about the effect of
learner corpus size in ESL grammatical error correction.

In this paper, we conduct experiments in error correction targeting all types of errors using a large
scale error-annotated learner corpus to see the effect of corpus size in grammatical error correction.
We build an error correction system with phrase-based statistical machine translation (SMT) tech-
nique. Also, we create a large scale error-tagged corpus of learner English from the web. We then
analyze the results of error correction by breaking down the error types and discuss the strength
and weakness of the example based approach using a large scale but noisy learner corpus.

The main contribution of this work is two-fold:
• To our knowledge, it is the first attempt to use a large scale learner corpus to correct all types

of errors.
• We show the effect of learner corpus size on the phrase-based SMT approach and show its

advantages and disadvantages.
In the following, we briefly overview related work of grammatical error correction in Section 2.
Then we describe our grammatical error correction system and large scale error-annotated learner
corpus in Section 3. Section 4 shows our experimental results and discusses the effect of corpus
size on different error types.

2 Related work
Even though there are many works on error correction in learners’ English, only a few target mul-
tiple various kinds of grammatical errors.

1http://www.gsk.or.jp/catalog/GSK2012-A/catalog_e.html
2Spelling errors are excluded from target of annotation in KJ Corpus.
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Types Proportion (%) Types Proportion (%)

article 19.23 verb other 4.09
noun number 13.88 adverb 3.59
preposition 13.56 conjunction 2.04
tense 8.77 word order 1.34
lexical choice of noun 7.04 noun other 1.30
lexical choice of verb 6.90 auxiliary verb 0.88
pronoun 6.62 other lexical choice 0.74
agreement 5.25 relative 0.42
adjective 4.30 interrogative 0.04

Table 1: The distribution of errors on KJ Corpus.

First, Brockett et al. (2006) proposed an error correction model with phrase-based SMT. Even
though their model can deal with all types of errors, they evaluated their method only on noun
number errors using an artificial data, partly because there was no large scale learner corpus avail-
able at the time. We would like to emphasize that our work is the first attempt to use a real world
large learner corpus with phrase-based SMT technique. We will show that phrase-based SMT
especially suffers from data sparseness.

Second, Park and Levy (2011) attempted to correct various kinds of errors with a noisy channel
model using a large scale unannotated corpus of learner English. Ours differs from their work in
that we use a large scale error-tagged corpus annotated by the wisdom of crowds. In addition,
they targeted only spelling, article, preposition and word form errors, while we do not restrict error
types.

Third, Han et al. (2010) developed a preposition correction system using a large scale error-tagged
corpus of learner English. They built a maximum entropy-based model for preposition errors
trained on learner and native corpora. We also take advantage of a large scale error-tagged cor-
pus of learner English, but use phrase-based SMT to deal with various kinds of errors and to fully
exploit the learner corpus.

Recently, Dahlmeier and Ng (2012) presented a beam-search decoder for correcting spelling, ar-
ticle, preposition, punctuation and noun number errors. They reported that their discriminative
model achieves considerably better results than an SMT baseline trained on a few hundreds of sen-
tences. As we will see later, we observed a similar tendency in preposition error correction when
we trained a phrase-based SMT system on a small learner corpus. However, in this work, we ex-
ploit a large scale error-annotated corpus extracted from the web to overcome the data sparseness
problem.

3 Using a large scale learner corpus with phrase-based SMT for grammati-
cal error correction

3.1 Error correction with phrase-based SMT
We use phrase-based statistical machine translation (Koehn et al., 2003) to conduct unrestricted
error correction. There are several studies about grammatical error correction using phrase-based
statistical machine translation (Brockett et al., 2006; Mizumoto et al., 2011; Ehsan and Faili, 2012).
Although Brockett et al. (2006) corrected English learners’ error using phrase-based statistical
machine translation, they only targeted mass noun errors. Mizumoto et al. (2011) dealt with un-
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restricted types of learners’ errors, but their target is not English but Japanese. Ehsan and Faili
(2012) applied an SMT framework to English and Persian grammatical error correction, but used
artificially created learner corpora.

The well-known statistical machine translation formulation using a log-linear model (Och and Ney,
2002) is defined by:

ê = argmax
e

P(e| f ) = argmax
e

M

∑
m=1

λmhm(e, f ) (1)

where e represents target sentences (corrected sentences) and f represents source sentences (sen-
tences written by learners). hm(e, f ) is a feature function and λm is a model parameter for each
feature function. This formulation finds a target sentence e that maximizes a weighted linear com-
bination of feature functions for source sentence f . A translation model and a language model
can be used as feature functions. The translation model is commonly represented as conditional
probability P( f |e) factored into the translation probability between phrases. The language model
is represented as probability P(e). The translation model is learned from sentence-aligned parallel
corpus while the language model is learned from target raw corpus.

3.2 Crowdsourcing annotation of a large scale corpus of learner English

We use data from a language learning social networking service Lang-8 3 to train the error correc-
tion system using statistical machine translation. In Lang-8, language learners post their writing on
the Lang-8 site to be corrected by native speakers. We can obtain pairs of learner’s sentence and
corrected sentence in large scale from Lang-8. Mizumoto et al. (2011) first presented an approach
to extract a learner corpus from the web, but we differ from them in that we create a learner corpus
of English rather than Japanese. Also, unlike (Tajiri et al., 2012), we propose to use metadata of
users to determine the L1 of English learners. Because our test corpus (KJ Corpus) is written by
Japanese college students, we would like to use the same kind of data; it is out side of the scope of
this paper to see the effect of learners’ L1.

We crawled blog entries found in Lang-8 as of December 2010. We used writings in Lang-8 written
by Japanese ESL learners for translation model and language model of error correction system with
SMT. There are 509,116 sentence pairs in English writings written by Japanese L1 English learners.
However, we need to filter noisy sentences because it may be hard to align them if the sentences
are drastically changed from the original learner’s sentences, resulting in degraded performance on
phrase-based SMT approach. Therefore, we calculate the edit distance between a learner sentence
and the corrected sentence using a dynamic programming algorithm, and retain sentences whose
numbers of both insertions and deletions is equal to or less than 5 words 4. As a result, we obtain
391,699 sentence pairs.

4 Experiment: Effect of learner corpus size in grammatical error correction
We carried out an experiment on grammatical error correction with SMT-based system using a large
scale learner corpus. To see the effect of corpus size, we compare a system using Lang-8 Corpus
(large scale learner corpus) with different sizes and a system using KJ Corpus (small scale corpus).
In order to get a closer look at the effect of error correction methods, we also experimented on the
preposition error correction task using a maximum entropy model as a discriminative baseline and
SMT-based models as our proposal for all error correction.

3http://lang-8.com/
4 We use 6 as a distortion-limit for Moses, therefore we chose the edit distance to be smaller than the distortion-limit.
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4.1 Tools and experimental data
We used Moses 2010-08-13 5 with default parameters as a decoder and GIZA++ 1.0.5 6 as an
alignment tool to implement an error correction system with phrase-based SMT. We applied grow-
diag-final-and (Och and Ney, 2003) heuristics for phrase extraction. The number of extracted
phrases are 1,050,070 (245 MB) using all data of Lang-8 Corpus. We used 3-gram as a language
model trained on the corrected text of Lang-8 Corpus.

Next, we built the maximum entropy model (Berger et al., 1996) as a multi-class classifier baseline
for preposition error correction (Sakaguchi et al., 2012). We used the implementation of Maximum
Entropy Modeling Toolkit 7 with its default parameters. We incorporated surface, POS, WordNet,
parse and language model features described in (Tetreault et al., 2010) and (De Felice and Pulman,
2008). POS and parse features were extracted using the Stanford Parser 2.0.2. This system achieves
recall of 18.44, precision of 34.88 and F-measure of 24.12 trained and tested on the CLC FCE
dataset (Yannakoudakis et al., 2011), which ranked the 4th out of 13 systems at the HOO 2012
Shared Task (Dale et al., 2012).

We use KJ Corpus as a test data. KJ Corpus consist of 170 essays, containing 2,411 sentences.
When we experiment on a system using KJ Corpus, we perform 5-fold cross validation.

4.2 Evaluation metrics
For the evaluation metrics, we use automatic evaluation criteria. To be precise, we use recall,
precision and F-measure.

Recall and precision for each type of errors are calculated from true positive, false positive and false
negative based on error tags in KJ Corpus. The word which does not have any tag in KJ Corpus
does not affect precision for each type of errors 8. For example, let us consider the following:

learner: He talked to me his life of Kyoto, and he took me Kyoto university.
correct: He talked to me about his life in Kyoto and he took me to Kyoto university.
system: He talked me his life on Kyoto, and he took me to Kyoto university.

In this example, the system deletes preposition “to”, which does not have any tag. Thus, precision
= 1/2, recall = 1/2 for preposition errors and precision = 1/3, recall = 1/2 for Total scores.

4.3 Experimental results
Table 2 shows error correction results for each type of errors on different corpora. We compared
SMT systems trained on KJ Corpus, Lang-8 Corpus with the same amount of data with KJ Corpus,
and full Lang-8 Corpus. With very few exceptions, the larger the size of learner corpus, the higher
the accuracy. In addition, using the larger corpus, precision tends to increase more than recall.

Table 3 presents F-measures for each type of error varying the corpus sizes (2K, 10K, 20K, 100K,
200K, 300K, All (390K)). As we will see later in the next section, there are two types of errors in
which learner corpus size matters.

Table 4 shows the performance of preposition error correction. Perhaps not surprising, but it still
deserves attention that SMT model trained on all Lang-8 Corpus clearly outperformed other two

5http://http://www.statmt.org/moses/
6http://code.google.com/p/giza-pp/
7https://github.com/lzhang10/maxent
8The total score is calculated using all the correction output with and without any tag.
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Training Corpus KJ Corpus Lang-8 Corpus (2K) Lang-8 Corpus (390K)

Recall Prec F Recall Prec F Recall Prec F

article 0.187 0.531 0.277 0.187 0.571 0.282 0.359 0.761 0.488
noun number 0.207 0.603 0.308 0.136 0.671 0.226 0.199 0.710 0.311
preposition 0.137 0.375 0.201 0.092 0.319 0.143 0.262 0.585 0.361

tense 0.102 0.170 0.128 0.043 0.088 0.058 0.080 0.149 0.104
lexical choice of noun 0.035 0.114 0.054 0.033 0.152 0.054 0.182 0.443 0.258
lexical choice of verb 0.070 0.161 0.098 0.065 0.200 0.098 0.192 0.324 0.241

pronoun 0.075 0.220 0.112 0.040 0.143 0.063 0.150 0.367 0.213
agreement 0.236 0.604 0.340 0.125 0.483 0.199 0.228 0.469 0.307
adjective 0.151 0.326 0.206 0.056 0.286 0.094 0.389 0.522 0.446
verb other 0.089 0.139 0.109 0.147 0.333 0.204 0.286 0.419 0.340

adverb 0.265 0.450 0.333 0.214 0.429 0.286 0.292 0.432 0.349
conjunction 0.100 0.417 0.161 0.091 0.714 0.161 0.115 0.546 0.190
word order 0.500 0.025 0.048 0.667 0.050 0.093 0.750 0.075 0.136
noun other 0.182 0.222 0.200 0.143 0.167 0.154 0.571 0.429 0.490

auxiliary verb 0.056 0.167 0.083 0.100 0.400 0.160 0.100 0.400 0.160
other lexical choice 0.167 0.200 0.182 0.000 0.000 0.000 0.357 0.455 0.400

relative 0.111 0.250 0.154 0.182 0.667 0.286 0.091 0.500 0.154
interrogative 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total 0.149 0.147 0.148 0.113 0.205 0.146 0.247 0.275 0.260

Table 2: Result for each type of errors by statistical machine translation. Bold face indicates that
one system’s result is equal or greater by more than 0.1 points than the other systems’ result.

systems. MaxEnt does slightly better than SMT when they are trained on the same small corpus.
Unfortunately, we were not able to use Lang-8 Corpus since it took too long to train.

4.4 Discussion
We can classify errors into two types: (1) errors which get better correction by increasing corpus
size and (2) errors which have little relationship with corpus size. The first type of errors includes
article, preposition, lexical choice of noun, lexical choice of verb, adjective, and noun other. On the
other hand, the second type of errors comprises noun number, tense, agreement, adverb, conjunc-
tion, word order, auxiliary verb, relative and interrogative. We can expect to improve performance
(both recall and precision) for errors that require wide coverage lexical knowledge, such as lexical
choice errors, by using a much larger corpus with phrase-based SMT. In contrast, we may say that
errors which involve larger context such as tense errors are difficult to correct with phrase-based
SMT. We discuss the result while looking at examples of two of the former type of errors (article
and lexical choice of noun) whose F-measures improve with increasing corpus size, and three of
the latter type of errors (noun number, tense and agreement), whose F-measures do not change or
even degrade.

Table 5 shows examples of article and lexical choice of noun. These are the examples that phrase-
based SMT failed to correct using KJ Corpus. Because we can acquire a lot of pairs of an error
phrase and its correction by increasing the size of the learner corpus, the phrase-based SMT was
able to correct them using Lang-8 Corpus.

Table 6 shows examples of noun number, tense and agreement errors. The first example of noun
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Training Corpus KJ Lang-8

2K 10K 20K 100K 200K 300K 390K

article 0.277 0.282 *0.390 *0.420 *0.443 *0.459 *0.475 *0.488
noun number 0.308 0.226 0.214 0.238 0.270 0.300 0.319 0.311
preposition 0.201 0.143 0.192 0.226 *0.333 *0.336 *0.344 *0.362

tense 0.128 0.058 0.066 0.058 0.081 0.096 0.089 0.104
lexical choice of noun 0.054 0.054 0.124 0.133 *0.189 *0.216 *0.250 *0.258
lexical choice of verb 0.098 0.098 0.087 0.138 *0.196 *0.232 *0.232 *0.241

pronoun 0.112 0.063 0.131 0.150 0.177 0.195 0.213 0.213
agreement 0.340 0.197 0.224 0.248 0.260 0.284 0.307 0.307
adjective 0.206 0.094 0.165 0.219 *0.413 *0.426 *0.426 *0.446
verb other 0.109 0.204 0.240 0.311 0.291 *0.340 0.308 0.340

adverb 0.333 0.286 0.286 0.302 0.333 0.349 0.349 0.349
conjunction 0.161 0.161 0.161 0.191 0.161 0.191 0.191 0.191
word order 0.048 0.093 0.093 0.091 0.091 0.091 0.091 0.136
noun other 0.200 0.154 0.286 0.286 *0.531 *0.490 *0.490 *0.490

auxiliary verb 0.083 0.160 0.160 0.083 0.083 0.160 0.160 0.160
other lexical choice 0.182 0.000 0.095 0.095 0.400 0.400 0.400 0.400

relative 0.154 0.285 0.154 0.154 0.154 0.154 0.154 0.154
interrogative 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total 0.148 0.146 0.180 0.200 0.239 0.247 0.254 0.260

Table 3: Results (F-measure) for error correction by SMT varying the learner corpus sizes. As-
terisks indicate that the difference of result using Lang-8 Corpus and result using KJ Corpus is
statistically significant (p < 0.01).

System Training corpus Recall Precision F-measure

Maximum entropy-based model KJ Corpus 0.165 0.407 0.235
Phrase-based SMT KJ Corpus 0.137 0.375 0.201
Phrase-based SMT Lang-8 Corpus (390K) 0.262 0.585 0.362

Table 4: Result for preposition error correction on KJ Corpus.

number was corrected using Lang-8 Corpus with phrase-based SMT since the error is one of the
common learners’ expressions. The second was not corrected using Lang-8 Corpus with phrase-
based SMT because “dools” 9 is slightly displaced from “a big”, and a proper noun “snoopy” is
inserted between “dools” and “a big”. It is hard to correct this kind of error with Phrase-based
SMT, even using artificial data such as in Brockett et al. (2006). To solve this problem, we need to
conduct generalization using POS or consider dependency relations.

The first example of a tense error was corrected using both KJ Corpus and Lang-8 Corpus with
phrase-based SMT. One of the reasons why the baseline system was able to correct the error is that
it requires only local context to correct and is very frequent even in a small leaner corpus. In the
second example, the system fails to find tense agreement in the complex sentence. Tense error is
difficult to correct for phrase-based SMT since it involves global context (Tajiri et al., 2012).

The first example of agreement error was corrected using Lang-8 Corpus with phrase-based SMT.
This is because the phrase pair correcting “Flowers is” to “Flowers are” is frequent and the language

9The word “dools” written by a learner is also a spelling error.
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learner correct

article I like a chocolate very much. I like chocolate very much.
lexical choice of noun my cycle was injured, but i wasn’t. my bicycle was damaged, but i wasn’t.

Table 5: Examples of system output for article and lexical choice of noun error

learner correct

noun number 1 I read various type books. I read various types of books.
*noun number 2 There is a big snoopy dools in my room. There is a big snoopy doll in my room.

tense 1 If I ’ll live in saitama, I must have ... If I live in saitama, I must have ...
*tense 2 The weather is very sunny, so we were ... The weather was very sunny, so we were ...

agreement 1 Flowers is very beautiful. Flowers are very beautiful.
*agreement 2 I think, reading comics are not "reading" I think, reading comics is not "reading"

Table 6: Examples of system results for noun number, tense and agreement errors. Asterisks
indicate that the SMT system using full Lang-8 Corpus failed to correct the errors.

model probability of “Flowers are” is also higher than “Flowers is”. The second example is one
that the system failed to correct since the pattern is unseen in the learner corpus and thus the system
has no way to capture the relation between the subject “reading” and “are”. To solve this problem,
it needs to get the subject-verb relation considering a dependency structure.

As for prepostion error correction, we suspect that there are two reasons why the SMT-based model
using full Lang-8 Corpus outperformed the MaxEnt model. First, due to the small amount of
training data in KJ Corpus (2,000 sentences), the MaxEnt model failed to build a high performance
system. Second, the high performance of the SMT system may be attributed to the fact that both
KJ Corpus and Lang-8 Corpus were written by Japanese native speakers. Also, the reason why
the MaxEnt model achieved better result than SMT when trained on the same small corpus is
possibly because KJ Corpus is too small to learn variations in learner English by phrase-based
SMT approach, while a discriminative model can exploit a small dataset using rich features.

Conclusion

We tackled the task of ESL grammatical error correction of all types of errors using a large scale
corpus of learner English with phrase-based SMT technique. Previous research focused on re-
stricted types of errors due to the small amount of learner corpora. We overcome this problem by
training an error correction system on a large scale error tagged corpus extracted from the web.

We found that the size of corpus is critical to improve phrase-based SMT approach. However,
the degree of improvement varies across error types. Phrase-based SMT is effective in correcting
frequent errors which require only local context. For example, there is a clear improvement in
increasing the size of learner corpus for correcting article, preposition, lexical choice and adjective
errors, while there is little improvement for correcting agreement and tense errors.
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